
Machine Learning, 39(2/3):135-168, 2000.

BoosTexter:
A Boosting-based System for Text Categorization

ROBERT E� SCHAPIRE schapire@research.att.com
AT&T Labs, Shannon Laboratory, 180 Park Avenue, Room A279, Florham Park, NJ 07932-0971

YORAM SINGER singer@research.att.com
AT&T Labs, Shannon Laboratory, 180 Park Avenue, Room A277, Florham Park, NJ 07932-0971

Abstract. This work focuses on algorithms which learn from examples to perform multiclass text and speech
categorization tasks. Our approach is based on a new and improved family of boosting algorithms. We describe
in detail an implementation, called BoosTexter, of the new boosting algorithms for text categorization tasks. We
present results comparing the performance of BoosTexter and a number of other text-categorizationalgorithms on
a variety of tasks. We conclude by describing the application of our system to automatic call-type identification
from unconstrained spoken customer responses.

1. Introduction

Text categorization is the problem of classifying text documents into categories or classes.
For instance, a typical problem is that of classifying news articles by topic based on their
textual content. Another problem is to automatically identify the type of call requested
by a customer; for instance, if the customer says, “Yes, I would like to charge this call to
my Visa,” we want the system to recognize that this is a calling-card call and to process
the call accordingly. (Although this is actually a speech-categorization problem, we can
nevertheless apply a text-based system by passing the spoken responses through a speech
recognizer.)

In this paper, we introduce the use of a machine-learning technique called boosting to
the problem of text categorization. The main idea of boosting is to combine many simple
and moderately inaccurate categorization rules into a single, highly accurate categorization
rule. The simple rules are trained sequentially; conceptually, each rule is trained on the
examples which were most difficult to classify by the preceding rules.

Our approach is based on a new and improved family of boosting algorithms which we
have described and analyzed in detail in a companion paper (Schapire & Singer, 1998).
This new family extends and generalizes Freund and Schapire’s AdaBoost algorithm (Fre-
und & Schapire, 1997), which has been studied extensively and which has been shown
to perform well on standard machine-learning tasks (Breiman, 1998; Drucker & Cortes,
1996; Freund & Schapire, 1996, 1997; Maclin & Opitz, 1997; Margineantu & Dietterich,
1997; Quinlan, 1996; Schapire, 1997; Schapire, Freund, Bartlett, & Lee, 1998). The pur-
pose of the current work is to describe some ways in which boosting can be applied to the
problem of text categorization, and to test its performance relative to a number of other
text-categorization algorithms.

Text-categorization problems are usually multiclass in the sense that there are usually
more than two possible categories. Although in some applications there may be a very

� R� E� SCHAPIRE AND Y� SINGER

large number of categories, in this work, we focus on the case in which there are a small
to moderate number of categories. It is also common for text-categorization tasks to be
multi-label, meaning that the categories are not mutually exclusive so that the same doc-
ument may be relevant to more than one category. For instance, bibliographic medical
articles are routinely given multiple Medical Subject Index (MeSH) categories when en-
tered into Medline, the national bibliographic searchable archive which contains more than
twenty million documents. While most machine-learning systems are designed to handle
multiclass data, much less common are systems that can handle multi-label data. While
numerous categorization algorithms, such as k-nearest neighbor, can be adapted to multi-
label categorization problems, when machine-learning and other approaches are applied
to text-categorization problems, a common technique has been to decompose the multi-
class, multi-label problem into multiple, independent binary classification problems (one
per category).

In this paper, we adopt a different approach in which we use two extensions of AdaBoost
that were specifically intended for multiclass, multi-label data. In the first extension, the
goal of the learning algorithm is to predict all and only all of the correct labels. Thus,
the learned classifier is evaluated in terms of its ability to predict a good approximation of
the set of labels associated with a given document. In the second extension, the goal is to
design a classifier that ranks the labels so that the correct labels will receive the highest
ranks. We next describe BoosTexter, a system which embodies four versions of boosting
based on these extensions, and we discuss the implementation issues that arise in multi-
label text categorization.

There has been voluminous work done on text categorization, including techniques based
on decision trees, neural networks, nearest neighbor methods, Rocchio’s method, support-
vector machines, linear least squares, naive Bayes, rule-based methods and more. (See,
for instance, (Apté, Damerau, & Weiss, 1994; Biebricher, Fuhr, Lustig, Schwantner, &
Knorz, 1988; Cohen & Singer, 1996; Field, 1975; Fuhr & Pfeifer, 1994; Koller & Sahami,
1997; Lewis & Ringuette, 1994; Moulinier, Raškinis, & Ganascia, 1996; Ng, Goh, & Low,
1997; Yang, 1994).) It would be impossible for us to compare our algorithms to all of the
previous methods. Instead, we compare to four very different methods which we believe
are representative of some of the most effective techniques available, and report results on
several different tasks. Our experiments show that, using a number of evaluation measures,
our system’s performance is generally better than the other algorithms, sometimes by a
wide margin.

To further compare our algorithm to other methods, we tested the performance of Boos-
Texter on a standard benchmark problem so that performance could be compared directly
with a large body of results reported in the literature. We specifically focus on a recent
study by Yang (1999) who conducted several experiments on this benchmark and who also
surveyed many results reported by other authors. BoosTexter’s performance places it at the
very top of all the methods included in Yang’s study.

Finally, we discuss the application of BoosTexter to an automatic speech-categorization
task and compare the performance of our system to a previous algorithm which was specif-
ically designed for this task.

A BOOSTING�BASED SYSTEM FOR TEXT CATEGORIZATION �

2. Preliminaries

In this section, we describe the formal setting we use to study multi-label text categoriza-
tion.

Let X denote the domain of possible text documents and let Y be a finite set of labels or
classes. We denote the size of Y by k � jYj.

In the traditional machine-learning setting, each document x � X is assigned a single
class y � Y. The goal then, typically, is to find a classifier H � X � Y which minimizes
the probability that y �� H�x� on a newly observed example �x� y�. In the multi-label case,
each document x � X may be assigned multiple labels in Y. For example, in a multiclass
news-filtering problem in which the possible classes are News, Finance and Sports,
a document may belong to both News and Finance. Thus, a labeled example is a pair
�x� Y � where Y � Y is the set of labels assigned to x. The single-label case is a special
case in which jY j � � for all observations.

For Y � Y, let us define Y ��� for � � Y to be

Y ��� �

�
�� if � � Y
�� if � �� Y .

In this paper, we will be primarily interested in classifiers which produce a ranking of
the possible labels for a given document with the hope that the appropriate labels will
appear at the top of the ranking. To be more formal, the goal of learning is to produce a
function of the form f � X � Y � Rwith the interpretation that, for a given instance x,
the labels in Y should be ordered according to f�x� ��. That is, a label �� is considered to
be ranked higher than �� if f�x� ��� � f�x� ���. If Y is the associated label set for x, then
a successful learning algorithm will tend to rank labels in Y higher than those not in Y .
Precise evaluation measures are discussed in Sec. 5.

Finally, to simplify the notation, for any predicate �, let ����� be � if � holds and � other-
wise.

3. Boosting algorithms for multi-label multiclass problems

In a companion paper (Schapire & Singer, 1998), we introduced and analyzed two new
boosting algorithms for multiclass, multi-label classification problems. Here, we review
the two algorithms, discuss four versions of these algorithms, and describe an efficient
implementation of the algorithms for the problem of text categorization.

The purpose of boosting is to find a highly accurate classification rule by combining
many weak or base hypotheses, each of which may be only moderately accurate. We
assume access to a separate procedure called the weak learner or weak learning algorithm
for computing the weak hypotheses. The boosting algorithm finds a set of weak hypotheses
by calling the weak learner repeatedly in a series of rounds. These weak hypotheses are
then combined into a single rule called the final or combined hypothesis.

In the simplest version of AdaBoost for single-label classification, the boosting algorithm
maintains a set of importance weights over training examples. These weights are used by
the weak learning algorithm whose goal is to find a weak hypothesis with moderately low

� R� E� SCHAPIRE AND Y� SINGER

Given: �x�� Y��� � � � � �xm� Ym� where xi � X , Yi � Y
Initialize D��i� �� � ���mk�.
For t � �� � � � � T :

� Pass distributionDt to weak learner.
� Get weak hypothesis ht � X � Y � R.
� Choose �t � R.
� Update:

Dt���i� �� �
Dt�i� �� exp���t Yi���ht�xi� ���

Zt

where Zt is a normalization factor (chosen so that Dt�� will be a distribution).

Output the final hypothesis:

f�x� �� �
TX
t��

�tht�x� ���

Figure 1. The algorithm AdaBoost.MH.

error with respect to these weights. Thus, the boosting algorithm can use these weights to
force the weak learner to concentrate on the examples which are hardest to classify.

As we will see, for multiclass, multi-label problems, it is appropriate to maintain instead
a set of weights over training examples and labels. As boosting progresses, training ex-
amples and their corresponding labels that are hard to predict correctly get incrementally
higher weights while examples and labels that are easy to classify get lower weights. For
instance, for the news classification problem, it might be easy to classify a document as a
news item but hard to determine whether or not it belongs to the finance section. Then, as
boosting progresses the weight of the label News for that document decreases while the
weight of Finance increases. The intended effect is to force the weak learning algorithm
to concentrate on examples and labels that will be most beneficial to the overall goal of
finding a highly accurate classification rule.

3.1. AdaBoost.MH

Our first boosting algorithm for multiclass multi-label classification problems, called
AdaBoost.MH, is shown in Fig. 1. Let S be a sequence of training examples
h�x�� Y��� � � � � �xm� Ym�i where each instance xi � X and each Yi � Y. As described
above, AdaBoost.MH maintains a set of weights as a distribution Dt over examples and
labels. Initially, this distribution is uniform. On each round t, the distributionD t (together
with the training sequence S) is passed to the weak learner who computes a weak hypoth-
esis ht. The output of the weak learner is a hypothesis h � X � Y � R. We interpret
the sign of h�x� �� as a prediction as to whether the label � is or is not assigned to x (i.e.,

A BOOSTING�BASED SYSTEM FOR TEXT CATEGORIZATION �

a prediction of the value of Y ���). The magnitude of the prediction jh�x� ��j is interpreted
as a measure of “confidence” in the prediction. The precise goal of the weak learner is
described below, as are the weak learners used in our experiments.

A parameter �t is then chosen and the distributionDt is updated. We discuss the choice
of �t below. In the typical case that �t is positive, the distribution Dt is updated in a
manner that increases the weight of example-label pairs which are misclassified by ht (i.e.,
for which Yi��� and ht�xi� �� differ in sign). The final hypothesis ranks documents using a
weighted vote of the weak hypotheses.

This algorithm is derived using a natural reduction of the multiclass, multi-label data
to binary data. Under this reduction, each example �x� Y � is mapped to k binary-labeled
examples of the form ��x� ��� Y ���� for all � � Y; that is, the instance or “document” part
of each derived example is formally a pair �x� ��, and the binary label associated with this
instance is Y ���. In other words, we can think of each observed label set Y as specifying k
binary labels (depending on whether a label � is or is not included in Y), and we can then
apply binary AdaBoost to the derived binary data. The algorithm that results from such a
reduction is equivalent to AdaBoost.MH.

This view of AdaBoost.MH also leads to a simple analysis. Specifically, we have proved
(Schapire & Singer, 1998) a bound on the empirical Hamming loss of this algorithm, i.e.,
the fraction of examples i and labels � for which the sign of f�xi� �� differs from Yi���.
We showed that the Hamming loss of this algorithm is at most

QT
t�� Zt, where Zt is the

normalization factor computed on round t. This upper bound can be used in guiding both
our choice of �t and the design of our weak learning algorithm. Together, these choices
should be geared on each round t toward the minimization of

Zt �
mX
i��

X
��Y

Dt�i� �� exp ���t Yi��� ht�xi� ��� � (1)

In Sec. 4, we describe the methods used for choosing �t and the implementation of the
weak learning algorithm for text categorization.

Note that the space and time-per-round requirements of AdaBoost.MH are O�mk�, not
including the call to the weak learner.

3.2. AdaBoost.MR

We next describe our second boosting algorithm called AdaBoost.MR. Whereas Ada-
Boost.MH is designed to minimize Hamming loss, AdaBoost.MR is designed specifically
to find a hypothesis which ranks the labels in a manner that hopefully places the correct
labels at the top of the ranking.

With respect to a labeled observation �x� Y �, we focus now only on the relative ordering
of the crucial pairs ��� �� for which �� �� Y and �� � Y . A classification rule f misorders a
crucial pair ��� �� if f�x� ��� � f�x� ��� so that f fails to rank �� above ��. Our goal now is
to find a function f with a small number of misorderings so that the labels in Y are ranked
above the labels not in Y . Put another way, our goal is to minimize the average fraction of
crucial pairs which are misordered, a quantity that we call the empirical ranking loss:

� R� E� SCHAPIRE AND Y� SINGER

Given: �x�� Y��� � � � � �xm� Ym� where xi � X , Yi � Y
Initialize D��i� ��� ��� �

�
���m � jYij � jY � Yij� if �� �� Yi and �� � Yi
� else.

For t � �� � � � � T :

� Train weak learner using distributionDt.
� Get weak hypothesis ht � X � Y � R.
� Choose �t � R.
� Update:

Dt���i� ��� ��� �
Dt�i� ��� ��� exp

�
�
��t�ht�xi� ���� ht�xi� ����

�
Zt

where Zt is a normalization factor (chosen so that Dt�� will be a distribution).

Output the final hypothesis:

f�x� �� �
TX
t��

�tht�x� ���

Figure 2. The algorithm AdaBoost.MR.

�

m

mX
i��

�

jYij jY � Yij jf���� ��� � �Y � Yi�� Yi � f�x� ��� � f�x� ���gj �

(We assume that Yi is never empty nor equal to all of Y for any instance. If there are such
instances in the training set we can simply discard them since there is no ranking problem
to be solved in this case and they do not carry any information.)

AdaBoost.MR is shown in Fig. 2. We now maintain a distributionDt over f�� � � � �mg�
Y � Y and denote the weight for instance xi and the pair ��� �� by Dt�i� ��� ���. This
distribution is zero, however, except on the relevant triples �i� ��� ��� for which ��� �� is a
crucial pair relative to �xi� Yi�.

As before, weak hypotheses have the form ht � X � Y � R; we think of these as
providing a ranking of labels as described above. The update rule is a bit new. Let ��� ��
be a crucial pair relative to �xi� Yi� (recall that Dt is zero in all other cases). Assuming
momentarily that �t � �, this rule decreases the weight Dt�i� ��� ��� if ht gives a correct
ranking (ht�xi� ��� � ht�xi� ���), and increases this weight otherwise.

As for the Hamming loss, it can be shown (Schapire & Singer, 1998) that the empirical
ranking loss of this algorithm is at most

QT
t�� Zt. Thus, as before, our goal in choosing�t

and ht should be minimization of

Zt �
X
i������

Dt�i� ��� ��� exp
�
�
���ht�xi� ���� ht�xi� ����

�
(2)

We again defer the description of the technique used for this purpose to Sec. 4.

A BOOSTING�BASED SYSTEM FOR TEXT CATEGORIZATION �

Given: �x�� Y��� � � � � �xm� Ym� where xi � X , Yi � Y
Initialize v��i� �� � �m � jYij � jY � Yij�����

For t � �� � � � � T :

� Train weak learner using distributionDt (as defined by Eq. (3))
� Get weak hypothesis ht � X � Y � R.
� Choose �t � R.
� Update:

vt���i� �� �
vt�i� �� exp

���
��t Yi���ht�xi� ��

�
p
Zt

where

Zt �
X
i

�
�
�
�X

���Yi

vt�i� �� exp
�
�
��tht�xi� ��

��A�X
��Yi

vt�i� �� exp
���

��tht�xi� ��
�	
�

Output the final hypothesis:

f�x� �� �
TX
t��

�tht�x� ���

Figure 3. A more efficient version of AdaBoost.MR: on each round of boosting and for each example, the running
time is linear in the number of labels (O�k�).

This algorithm is somewhat inefficient when there are many labels since, naively, we
need to maintain jYij � jY �Yijweights for each training example �xi� Yi�, and each weight
must be updated on each round. Thus, the space complexity and time-per-round complex-
ity can be as bad as ��mk��. In fact, the same algorithm can be implemented using only
O�mk� space and time per round. By the nature of the updates, we can show (Schapire &
Singer, 1998) that we only need to maintain weights vt over f�� � � � �mg � Y. To do this,
we maintain the condition that if ��� �� is a crucial pair relative to �xi� Yi�, then

Dt�i� ��� ��� � vt�i� ��� � vt�i� ��� (3)

at all times. (Recall that Dt is zero for all other triples �i� ��� ���.) The pseudocode for
this implementation is shown in Fig. 3. Note that all space requirements and all per-round
computations are O�mk�, with the possible exception of the call to the weak learner which
is discussed in the next section.

� R� E� SCHAPIRE AND Y� SINGER

4. Weak hypotheses for text categorization

So far, we left unspecified the actual form and implementation of the weak learner, as well
as the choice of the parameter �t. In this section, we describe four implementations of
weak learners, three for AdaBoost.MH and one for AdaBoost.MR. Our system for multi-
label text categorization, called BoosTexter, can be used with any of the four methods
described below.

Boosting is meant to be a general purpose method that can be combined with any classi-
fier, and in practice it has been used, for instance, with decision trees and neural nets. In
this paper, however, we focus on the use of boosting with very simple classifiers. Specif-
ically, for all of the methods we use, the weak hypotheses have the same basic form as
a one-level decision tree. The test at the root of this tree is a simple check for the pres-
ence or absence of a term in the given document. All words and pairs of adjacent words
are potential terms.� Based only on the outcome of this test, the weak hypothesis outputs
predictions and confidences that each label is associated with the document. For example,
going back to the news categorization example, a possible term can be Bill Clinton, and the
corresponding predictor is: “If the term Bill Clinton appears in the document then predict
that the document belongs to News with high confidence, to Finance with low confi-
dence, and that it does not belong to Sports with high confidence. If, on the other hand,
the term does not appear in the document, then predict that it does not belong to any of
the classes with low confidence.” Fig. 4 shows the first several weak hypotheses actually
found by a version of AdaBoost on one of the datasets tested later in the paper.

Formally, denote a possible term by w, and let us define (abusively) w � x to mean that
w occurs in document x. Based on the term, we will be interested in weak hypotheses h
which make predictions of the form:

h�x� �� �

�
c�� if w �� x
c�� if w � x

where the cj�’s are real numbers. The three weak learners we describe for AdaBoost.MH
differ only with respect to possible restrictions which we place on the values of these
numbers.

Our weak learners search all possible terms. For each term, values cj� are chosen as
described below, and a score is defined for the resulting weak hypothesis. Once all terms
have been searched, the weak hypothesis with the lowest score is selected and returned by
the weak learner. For AdaBoost.MH, this score will always be an exact calculation of Zt
as defined in Eq. (1) since, as noted in Sec. 3.1, minimization of Zt is a reasonable guiding
principle in the design of the weak learning algorithm. For AdaBoost.MR, we know of no
analytical solution for the problem of minimizing Zt. Instead, an approximation of Zt is
used as described below.

4.1. AdaBoost.MH with real-valued predictions

For our first weak learner, we permit unrestricted real-valued predictions cj�. In our exper-
iments, we call this version real AdaBoost.MH.

A BOOSTING�BASED SYSTEM FOR TEXT CATEGORIZATION �

Round Term EARN ACQ COM ECON GNRL ENRG
1 vs

2 tonnes

3 company

4 oil

5 cts

6 agriculture

7 shares

8 trade

9 dividend

10 money market

1

Figure 4. The first ten weak hypotheses found when real AdaBoost.MH (Sec. 4.1) is run on the entire Reuters-
21450 dataset as described in Sec. 6.5. Each weak hypothesis has the following form and interpretation: if the
term associated with the weak hypothesis occurs in the given document, then output the first row of values;
otherwise, output the second row of values. Here, each value, represented graphically as a bar, gives the output of
the weak hypothesis for one of the classes. For instance, the weak hypothesis found on the first round of boosting
tests on the term vs. If present, a positive value is output for EARN and negative values are output for all of the
other classes. If not present, weakly negative values are output for all classes.

With minimization of Zt in mind, the values cj� should be calculated as follows for a
given term w: Let X� � fx � w �� xg and X� � fx � w � xg. Given the current
distribution Dt, we calculate the following for each possible label �, for j � f�� �g, and
for b � f�����g:

W j�
b �

mX
i��

Dt�i� ����xi � Xj 	 Yi��� � b�� � (4)

�	 R� E� SCHAPIRE AND Y� SINGER

For readability of notation, we abbreviate the subscripts �� and �� in W j�
�� and W j�

��,

writing instead W j�
� and W j�

� . In words, W j�
� (W j�

�) is the weight (with respect to the
distributionDt) of the documents in partitionXj which are (are not) labeled by �.

It can be shown (Schapire & Singer, 1998) that Zt is minimized for a particular term by
choosing

cj� �
�
� ln

�
W j�

�

W j�
�

	
� (5)

and by setting �t � �. These settings imply that

Zt � 	
X

j�f���g

X
��Y

q
W j�

� W j�
� � (6)

Thus, we choose the term w for which this value of Zt is smallest.
In fact, it may well happen that W j�

� or W j�
� is very small or even zero, in which case

cj� as defined in Eq. (5) will be very large or infinite in magnitude. In practice, such large
predictions may cause numerical problems, and there may be theoretical reasons to sus-
pect that large, overly confident predictions will increase the tendency to overfit. To limit
the magnitudes of the predictions, in our implementation, we use instead the “smoothed”
values

cj� �
�
� ln

�
W j�

� � �

W j�
� � �

	
� (7)

In our experiments, we set � � ��mk. Since both W j�
� and W j�

� are bounded between �
and �, this has the effect of bounding jcj�j by roughly �

� ln�����.

4.2. AdaBoost.MH with real-valued predictions and abstaining

The method described above assigns confidence values both when a term appears in a
document and when it does not. Thus, it employs a tacit assumption that the absence of a
term carries information about the possible classes a document may belong to. However,
given our intuitive knowledge about the problem, we may wish to reject this assumption
and force the weak hypothesis to abstain whenever the given term does not appear in a
document. This can be accomplished simply by forcing each weak hypothesis to output
a confidence value of zero for documents which do not contain the given term. In our
experiments, we call this version real abstaining AdaBoost.MH.

For a given term w, this weak learner chooses predictions c�� for documents which con-
tain w exactly as before. (In our implementation, we also smooth these values as before.)
For the rest of the documents, the prediction values c�� are all set to zero. Hence, the term
w has no influence on the classification if it does not appear in the document. As before,
�t is set to �.

Let

A BOOSTING�BASED SYSTEM FOR TEXT CATEGORIZATION ��

W� �
X

i�xi�X�

Dt�i� ��

be the weight of all the document that do not contain w. Then it can be shown (Schapire &
Singer, 1998) that

Zt � W� � 	
X
��Y

q
W ��

� W ��
� � (8)

and, as before, on each round we choose a term w for which the value Zt is smallest.
One advantage of this weak learner over the first one is an improvement in the running

time as we need to consider only the documents that include a given term w when comput-
ing Zt. Since, typically, the number of documents that include a non-trivial term is only a
small fraction of the training data, this version is in practice �
� faster than the previous
one. Furthermore, in most of the experiments described in Sec. 6, the performance of the
two versions is comparable.

4.3. AdaBoost.MH with discrete predictions

The next weak learner forces the predictions cj� of the weak hypotheses to be either �� or
��. This is the more standard setting in which predictions do not carry confidences. We
call this version discrete AdaBoost.MH.

With this restriction on the range of the weak hypotheses, we can still minimize Zt for a
given term w using the following method. With the same notation defined in Sec. 4.1, we
set

cj� � sign
�
W j�

� �W j�
�

which can be viewed as a (weighted) majority vote over examples in block Xj for each
label �. Let

rt �
X

j�f���g

X
��Y

���W j�
� �W j�

�

��� � (9)

Then it can be shown (Schapire & Singer, 1998) that, for the purposes of minimizing Zt,
we should choose

�t �
�
� ln

�
� � rt
�� rt

�

giving

Zt �
q
�� r�t �

�� R� E� SCHAPIRE AND Y� SINGER

4.4. AdaBoost.MR with discrete predictions

We next describe a weak learner for AdaBoost.MR. As noted in Sec. 3.2, we would like to
minimize Zt as defined in Eq. (2). Unfortunately, the exact minimization of this quantity
is not as straightforward as it was for AdaBoost.MH. We therefore only consider discrete
predictions in f�����g, and we also use an approximation for Zt as a score, rather than
an exact computation. We call this discrete AdaBoost.MR.

For a given hypothesis ht, let

rt �
�
�

X
i������

Dt�i� ��� ����h�xi� ���� h�xi� �����

Then, similar to the analysis for discrete AdaBoost.MH, it can be shown thatZt �
p
�� r�t

if we choose

�t �
�
� ln

�
� � rt
�� rt

�
� (10)

Since we do not know how to efficiently minimize Zt exactly, we instead find a weak
hypothesis which minimizes the upper bound

p
�� r�t . We use this upper bound as our

score in choosing the best weak hypothesis.
For efficiency, it is important to note that the quantity rt can be computed efficiently in

terms of the weights vt (defined in Eq. (3)). Let

dt�i� �� �
�
� vt�i� ��

X
��� Yi������Yi ���

vt�i� �
�� �

Then it can be shown (Schapire & Singer, 1998) that

rt �
X
i��

dt�i� ��Yi���h�xi� ���

Thus, for a particular term w, we should choose

cj� � sign

�
� X

i�xi�Xj

dt�i� ��Yi���

�
A

which gives

rt �
X

j�f���g

X
��Y

������
X

i�xi�Xj

dt�i� ��Yi���

������ � (11)

We thus choose the term w which maximizes this quantity, and we assign predictions
correspondingly. The parameter �t is set as in Eq. (10).

The search for a good weak hypothesis can be very time consuming when the training
corpus is large. We therefore use an inverted list that stores for each term (word, bigram,

A BOOSTING�BASED SYSTEM FOR TEXT CATEGORIZATION ��

Table 1. Summary of the properties of the four weak learners for multiclass multi-label text categorization.

Version Loss Prediction �t

Real MH Hamming cj� � �

�
ln

�
W

j�

�

W
j�

�

�
�j � f���g� �

Real & abstaining MH Hamming c�� � � c�� � �

�
ln

�
W��
�

W��
�

�

Discrete MH Hamming cj� � sign
�
W

j�
�
�W

j�
�

�
�

�
ln
�
��rt
��rt

�
[rt defined in Eq. (9)]

Discrete MR Ranking cj� � sign

�P
i�xi�Xj

dt�i� �� Yi���

�

�
ln
�
��rt
��rt

�
[rt defined in Eq. (11)]

sparse n-gram, etc.) the list of documents in which it appears. On each round, when
searching for a good weak hypothesis, we scan the inverted list and for each term we
evaluate its prediction confidences cj� according to the version of AdaBoost that we use.
A straightforward implementation would require scanning the entire collection for each
term. However, precomputing certain values can save a significant amount of time. For
AdaBoost.MH for instance, we first compute on each round once for all j the following
values

W j� �
X

i�xi�Xj

Dt�i� �� �

We now find for each term the values Wj�
� by summing over the documents in which each

term appears using the inverted list. We then set W j�
� � W j� �W j�

� , and proceed to find
cj� and the corresponding values for Zt. Hence, the amount of time spent on each round
searching for a weak hypothesis is proportional to the total number of occurrences of all
the terms in the training collection. After a weak hypothesis is found, it takes O�mk� time
to update the distributionDt�i� ��.

Our system for multi-label text categorization, called BoosTexter, can be used with any
of the four implementations of weak learners described above. A brief summary of the
different implementations is given in Tab. 1.

5. Evaluation measures

For evaluating the performance of our boosting algorithms we used three evaluation mea-
sures. The first one, one-error, is a simple generalization of classification error for mul-
ticlass multi-label problems. The one-error is also directly related to the training er-
ror (Schapire & Singer, 1998). The other two evaluation measures are based on measures
used in information retrieval and used to evaluate the performance of the various classifi-
cation algorithms in terms of their label rankings.

As noted earlier, we assume that a multi-label system induces an ordering of the possible
labels for a given instance. That is, the output of the learning system is a function f �
X � Y � Rwhich ranks labels according to f�x� �� so that label �� is considered to
be ranked higher than �� if f�x� ��� � f�x� ���. With the exception of RIPPER, all the

�� R� E� SCHAPIRE AND Y� SINGER

classification systems we tested in this paper can indeed be viewed in this way, where the
ordering is defined by assigning a real number for each possible instance-label pair x� �.

We will find it convenient to refer to the rank of a given label � for instance x under f
which we denote by rankf �x� ��. That is, formally, rankf �x� �� is a one-to-one mapping
onto f�� � � � � kg such that if f�x� ��� � f�x� ��� then rankf �x� ��� 	 rankf �x� ���.

One-error. This measure evaluates how many times the top-ranked label was not in the
set of possible labels. Thus, if the goal of a multiclass system is to assign a single label
to a document, the one-error measures how many times the predicted label was not in
Y . We call this measure the one-error of hypothesis H since it measures the probability
of not getting even one of the labels correct. We denote the one-error of a hypothesis f
by one-err�f�. We can define a classifier H � X � Y that assigns a single label for a
document x by setting H�x� � argmax��Y f�x� y�. Then, for a set of labeled documents
S � h�x�� Y��� � � � � �xm� Ym�i, the one-error is

one-errS �H� �
�

m

mX
i��

��H�xi� �� Yi�� �

Note that, for single-label classification problems, the one-error is identical to ordinary
error.

Coverage. While the one-error evaluates the performance of a system for the top-ranked
label, the goal of the coverage measure is to assess the performance of a system for all the
possible labels of documents. That is, coverage measures how far we need, on the average,
to go down the list of labels in order to cover all the possible labels assigned to a document.
Coverage is loosely related to precision at the level of perfect recall. Formally, we define
the coverage of f with respect to S � h�x�� Y��� � � � � �xm� Ym�i to be

coverageS�H� �
�

m

mX
i��

max
��Yi

rankf �xi� ��� � �

For single-label classification problems, coverage is the average rank of the correct label,
and is zero if the system does not make any classification errors.

Average Precision. The above measures are not complete for multi-label classification
problems: We can achieve good (low) coverage but suffer high one-error rates, and vice
versa. In order to assess the label ranking of a multiclass system as a whole we used the
non-interpolated average precision, a performance measure frequently used for evaluation
of information retrieval (IR) systems (Salton, 1991). Note, however, that non-interpolated
average precision is typically used in IR systems to evaluate the document ranking per-
formance for query retrieval. In contrast, in our experiments we use average precision for
evaluating the effectiveness of the label rankings. Formally, we define average-precision
for a ranking H with respect to a training set S, denoted avgprec�� for short, to be

avgprecS�H� �
�

m

mX
i��

�

jYij
X
��Yi

jf�� � Yijrankf �xi� ��� � rankf �xi� ��gj
rankf �x� ��

�

A BOOSTING�BASED SYSTEM FOR TEXT CATEGORIZATION ��

In words, this measure evaluates the average fraction of labels ranked above a particular
label � � Yi which actually are in Yi. Note that avgprecS�f� � � for a system f which
ranks perfectly the labels for all documents so that there is no document xi for which a
label not in Yi is ranked higher than a label in Yi.

6. Text categorization experiments

In this section, we describe and analyze the experiments we performed using the four
boosting algorithms for text categorization that were described in previous sections. The
experiments were performed on an SGI Challenge with 20 MIPS R10000 processors run-
ning at 195 MHz. The timing information we give in this section is with respect to a single
cpu.

6.1. Test corpora

Reuters-21450. The documents in this collection were collected from Reuters newswire
in 1987. We used the modified Apte (“ModApte”) split which contains �	���	 documents.
A cleaned-up version of this dataset, called Reuters-21578, is publicly available from the
web page http://www.research.att.com/
lewis by David Lewis, who orig-
inally compiled the collection. We performed the following pre-processing prior to the
experiments: All words were converted to lower case, punctuation marks were removed,
and “function words” from a standard stop-list were removed.� The average length of a
document after pre-processing is 	 words. This corpus is divided into categories which in
turn are sub-divided into sub-categories. The Reuters corpus has served as the benchmark
for many text-categorization studies using various partitions of the corpus. See Yang’s
work (1999) for an overview of the more common partitions and versions of this corpus as
well as a summary of the text categorization algorithms that tested on this corpus. In this
work, we considered several partitions of the Reuters corpus based on the broad topics at
the top hierarchy (for further details see Tabs. A.1, A.7, andA.9). We used 3-fold cross val-
idation in our experiments with these partitions. To compare our algorithm to previously
published work, we also performed experiments with a partition that includes all topics
in Reuters that have at least two relevant documents for training. This collection includes
�� topics and was studied extensively by Yang (1999) and others. Yang referred to this
partition as version-3 and compared the results to previously studied text-categorization
algorithms. We devote a separate section, Sec. 6.5, to the description of our experiment
with this widely tested partition of Reuters.

AP Titles. This is a corpus of AP newswire headlines (Lewis & Gale, 1994; Lewis &
Catlett, 1994). As for the Reuters corpus, previous work concentrated on binary classifi-
cation by tagging documents as being relevant or irrelevant to topics like “federal budget”
and “Nielsens ratings.” The total number of documents in this corpus is 319,463. The
headlines are an average of nine words long, with a total vocabulary of 67,331 words. No
preprocessing of the text was done, other than to convert all words to lower case and re-
move punctuation marks. We performed two sets of experiments with this corpus based on
two different labeling schemes available for this corpus.

�� R� E� SCHAPIRE AND Y� SINGER

UseNet data. This dataset consists of Usenet articles collected by Lang (1995) from 	�
different newsgroups. One thousand articles were collected for each newsgroup so there
are 	����� articles in the entire collection. This data was originally treated as single-labeled
(see for instance (Joachims, 1997)). However, since people tend to post articles to multiple
newsgroups, we found after examining the headers of the articles that about ��
� of the
articles are actually multi-labeled. Furthermore, we found
�� identical articles which
were posted to more than one group. The total number of articles after relabeling the data
based on the headers is ������ with 	����� labels. Further description of this dataset is
given in Tab. A.11. We used �-fold cross validation in our experiments with the newsgroup
data.

6.2. Other algorithms

As mentioned in the introduction, there has been immense work on text categorization
using many different algorithms. Since it is impossible to implement and evaluate all
previously published algorithms, we chose the following algorithms for comparison with
the boosting algorithms:

RIPPER. This is Cohen’s (1995) rule-learning system as adapted to text categorization
problems by Cohen and Singer (1996). RIPPER classifies a document by applying a set
of boolean tests that check the absence (or presence) of words in the documents. RIPPER
is not capable of dealing with multiple labels. RIPPER learns a classifier in the form of a
boolean combination of simple terms. It does not provide a ranking of the possible labels
for a given document. Therefore, the only performance measure we can use for comparison
is the error rate.

Rocchio. We implemented a version of Rocchio’s algorithm (Rocchio, 1971), as adapted
to text categorization by Ittner et al. (1995) and modified to multiclass problems. In
Rocchio, we represent the data (both training and test documents) as vectors of numeric
weights. The weight vector for the ith document is vi � �vi�� v

i
�� � � � � v

i
l �, where l is the

number of indexing terms used. We use single words as terms. We followed the TF-IDF
weighting (Salton, 1991) and defined the weight vik to be:

vik �
f ik log�ND�nk�Pl
j�� f

i
j log�ND�nj�

�

Here, ND is the number of documents, nk is the number of documents in which the index-
ing term k appears. The weight fik is log�m� � �, where m is the number of occurrences
of the indexing term k in document i. We set f ik � � if m � �. For each class � we build
a “prototype” vector which is the average weight vector over all documents xi for which
� � Yi. Formally, let X��� � fij� � Yig. Then the prototype vector for class � is

�

jX���j
X

i�X��	

v
i �

Test documents are classified by calculating the dot-products between the weight vector
representing the document and each of the prototype vectors. These dot-products induce

A BOOSTING�BASED SYSTEM FOR TEXT CATEGORIZATION ��

a ranking of the possible labels. We use this ranking to evaluate the performance of the
classifier for each of the measures discussed in Sec. 5.

Sleeping-experts. This is an algorithm originally proposed by Blum (1997), studied
further by Freund et al. (1997), and first applied to text categorization by Cohen and
Singer (1996). Briefly, this algorithm classifies a document by thresholding a score which
is a weighted combination of “experts” which are based on the word-grams appearing in
the text. This score can be used to rank the labels. The algorithm can be easily adapted
to multiclass (and multi-label) settings by assigning mini-experts for each possible pair of
class and sparse word-gram. We used words and word pairs as the set of experts in the
experiments.

Naive-Bayes and probabilistic TF-IDF. These are probabilistic classifiers that assign,
for each document, a probability vector of belonging to each of the possible labels. Like
the algorithms above, these probability vectors can be viewed as rankings and thus used for
evaluating the performance with respect to the measures discussed in Sec. 5. These algo-
rithms are available as part of the publicly available Rainbow text-categorization system

which we used in our experiments. This system includes other classification methods but,
in all of the experiments we performed, Naive-Bayes and probabilistic TF-IDF performed
better than the other methods available in Rainbow. Further description of Naive-Bayes
and probabilistic TF-IDF for text categorization is given in (Mitchell, 1997; Joachims,
1997). To handle multi-label data, we mapped to the single-label case by simply repeating
each document once for each of its assigned labels.

6.3. Experiments using single-label corpora

In the first set of experiments, we partitioned the Reuters corpus into six disjoint classes.
These classes roughly constitute the top categorization hierarchy. We discarded articles
that do not belong to any of the classes and articles that belong to more than one class. A
detailed description of this subset is given in Tab. A.1. The total number of articles in this
experiment is �����. We used three-fold cross-validation in the experiments. The results
we report are averaged over the three folds. For all subsets of this dataset, we ran the
real AdaBoost.MH and real-abstaining AdaBoost.MH for
���� rounds and the discrete
AdaBoost.MH and AdaBoost.MR for 	�����.

We performed experiments with varying numbers of classes. We selected subsets of the
data by taking the top k classes, in decreasing number of documents, from k � � to �. For
instance, for k � � we took 7,761 documents from the classes EARN, ACQ, and COM.
We then created three different splits into training and test data and ran the various text
categorization algorithms on each of the splits.

A summary of the results of the experiments with this dataset is given in Tab. A.2 and
graphically in Fig. 5. The performance of the different multiclass versions of AdaBoost
is comparable on this data set, with a small advantage to the real-valued versions of Ada-
Boost.MH (with and without abstaining). All the four versions of AdaBoost for multi-label
problems clearly outperform all of the other classification algorithms. The error of Ada-
Boost.MH is almost
�� smaller than the error-rate of the best competing algorithm on this
dataset (Naive-Bayes). Similar behavior is observed for coverage and average-precision.

�� R� E� SCHAPIRE AND Y� SINGER

1.5

2

2.5

3

3.5

4

4.5

5

3 4 5 6

%
 O

ne
-E

rr
or

Number of Classes

real AdaBoost.MH
real w/abstain AdaBoost.MH

discrete AdaBoost.MH
discrete AdaBoost.MR

0

2

4

6

8

10

12

14

16

3 4 5 6

%
 O

ne
-E

rr
or

Number of Classes

real AdaBoost.MH
Sleeping-experts

Rocchio
Naive-Bayes

PrTFIDF

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

3 4 5 6

C
ov

er
ag

e

Number of Classes

real AdaBoost.MH
real w/abstain AdaBoost.MH

discrete AdaBoost.MH
discrete AdaBoost.MR

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

3 4 5 6

C
ov

er
ag

e

Number of Classes

real AdaBoost.MH
Sleeping-experts

Rocchio
Naive-Bayes

PrTFIDF

0.974

0.976

0.978

0.98

0.982

0.984

0.986

0.988

0.99

0.992

3 4 5 6

A
ve

ra
ge

 P
re

ci
si

on

Number of Classes

real AdaBoost.MH
real w/abstain AdaBoost.MH

discrete AdaBoost.MH
discrete AdaBoost.MR

0.9

0.92

0.94

0.96

0.98

1

3 4 5 6

A
ve

ra
ge

 P
re

ci
si

on

Number of Classes

real AdaBoost.MH
Sleeping-experts

Rocchio
Naive-Bayes

PrTFIDF

Figure 5. Left: Comparison of the various boosting algorithms for text categorization on the first single-label
subset of Reuters-21450. Right: Comparison of real AdaBoost.MH with Naive-Bayes, probabilistic TF-IDF,
Sleeping-experts, and Rocchio on the same subset.

The next set of experiments with single-label datasets is with the AP Titles corpus. In
the first subset of AP titles, each headline is (possibly) labeled by a single topic from 	�
possible classes. We extracted 	���� documents which belong to exactly one of the 	�
classes. A description of this subset of AP titles is given in Tab. A.3. For the subsets in this
dataset, we ran the real-valued version of AdaBoost.MH (with and without abstaining) for
������ rounds and the discrete AdaBoost.MH and AdaBoost.MR for ������ rounds.

As before, we tested the performance of the algorithms by extracting subsets with grow-
ing numbers of classes, where we ordered the classes by decreasing number of documents
in each class. The results are summarized in Tab. A.4 and graphically in Fig. 6. Among

A BOOSTING�BASED SYSTEM FOR TEXT CATEGORIZATION ��

the different boosting algorithms, real AdaBoost.MH exhibits the best performance: it is
slightly better than real abstaining AdaBoost.MH and significantly better than the discrete
AdaBoost.MH and discrete AdaBoost.MR where the latter is the worst performer among
the four boosting algorithms. The main reason for this is that ������ rounds were simply
not enough for the discrete versions. For discrete AdaBoost.MR and AdaBoost.MH, the
training error was still monotonically decreasing when we reached the maximal number
of rounds. This improved performance in decreasing the training error of the real-valued
versions of AdaBoost is even more vivid for large datasets, as we show subsequently.

The best competitor algorithm for this dataset is Sleeping-experts. In fact, Sleeping-
experts slightly outperforms AdaBoost.MH when the number of classes is three. How-
ever, for subsets of at least eight classes, AdaBoost.MH significantly outperform Sleeping-
experts with respect to all three performance measures. Note also the interesting fact that,
in contrast to the results for the previous dataset, probabilistic TF-IDF outperforms Naive-
Bayes, yet both algorithms are clearly inferior to AdaBoost.MH.

The last set of experiments with single-labeled multiclass problems is with the entire
AP titles collection. In addition to the partial partition into twenty specific topics above,
this corpus is also divided into six general categories� such that each article falls into
exactly one category. We removed all articles not belonging to any of the categories. The
number of articles that remained is 	������. Since this labeling scheme results in a very
large corpus, we did not use cross-validation in the experiments. Instead, we used Lewis’s
chronological split into training and test sets. The training set for this split contains ��	��	�
headlines and the test set ������. A description of the classes is given in Tab. A.5 and a
summary of the results is given in Tab. A.6.

Since Rainbow allocates a different file for each article, this dataset was too large to
be converted into the format required for Rainbow. We therefore compared real Ada-
Boost.MH, discrete AdaBoost.MH, and discrete AdaBoost.MR only with Sleeping-experts,
Rocchio, and RIPPER.

Our main focus in the experiment with this dataset was the performance of the different
boosting algorithms as a function of number of rounds. In Fig. 7, we show the training and
test error of the algorithms as a function of the number of rounds. We see that the version of
AdaBoost.MH which uses real-valued predictions dramatically outperforms the methods
with predictions in f�����g. After ������ rounds, discrete AdaBoost.MH reaches a
training error of �	�	� while it took real AdaBoost.MH only ��	 rounds to reach this
training error — more than a two-hundred fold speed-up!

As with the previous experiments, discrete AdaBoost.MH seems to consistently outper-
form discrete AdaBoost.MR. This might be partially due to the approximation that is made
of Zt in lieu of its direct minimization. We fortunately do not observe overfitting with the
AdaBoost algorithms so that the better performance in decreasing the training error results
in lower error rates on the test data.

The best competitor algorithm for this dataset is Sleeping-experts. It takes about a thou-
sand rounds for AdaBoost.MH to reach the test error rate of Sleeping-experts and after
������ rounds its test error is significantly lower. However, Sleeping-experts is much faster
on this dataset, finishing in about a minute, roughly as long as it takes to run boosting for
25 rounds.

�	 R� E� SCHAPIRE AND Y� SINGER

4

6

8

10

12

14

16

18

20

22

24

4 6 8 10 12 14 16 18 20

%
 O

ne
-E

rr
or

Number of Classes

real AdaBoost.MH
real w/abstain AdaBoost.MH

discrete AdaBoost.MH
discrete AdaBoost.MR

5

10

15

20

25

30

35

4 6 8 10 12 14 16 18 20

%
 O

ne
-E

rr
or

Number of Classes

real AdaBoost.MH
Sleeping-experts

Rocchio
Naive-Bayes

PrTFIDF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

4 6 8 10 12 14 16 18 20

C
ov

er
ag

e

Number of Classes

real AdaBoost.MH
real w/abstain AdaBoost.MH

discrete AdaBoost.MH
discrete AdaBoost.MR

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

4 6 8 10 12 14 16 18 20

C
ov

er
ag

e

Number of Classes

real AdaBoost.MH
Sleeping-experts

Rocchio
Naive-Bayes

PrTFIDF

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 P
re

ci
si

on

Number of Classes

real AdaBoost.MH
real w/abstain AdaBoost.MH

discrete AdaBoost.MH
discrete AdaBoost.MR

0.75

0.8

0.85

0.9

0.95

1

4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 P
re

ci
si

on

Number of Classes

real AdaBoost.MH
Sleeping-experts

Rocchio
Naive-Bayes

PrTFIDF

Figure 6. Left: Comparison of the various boosting algorithms for text categorization on the first single-label
subset of AP titles. Right: Comparison of real AdaBoost.MH with Naive-Bayesprobabilistic TF-IDF Sleeping-
experts and Rocchio on the same dataset.

6.4. Experiments using multi-label corpora

For the first set of experiments with multi-labeled corpora, we used the Reuters dataset
again. This time, we partitioned it into classes based on the nine topics constituting the top
hierarchy. We discarded documents not belonging to any topic; however, articles belonging
to more than one topic were assigned multiple labels. The total number of articles for this
partition is �����	 and the number of different labels is ���
; about �� of the articles are
labeled with more than one label. We performed experiments by selecting a subset of the
classes and the corresponding articles. The subsets were again selected by choosing the k

A BOOSTING�BASED SYSTEM FOR TEXT CATEGORIZATION ��

10

20

30

40

50

60

70

1 10 100 1000 10000 100000

%
 O

ne
-E

rr
or

Number of rounds

discrete AdaBoost.MR
discrete AdaBoost.MH

real AdaBoost.MH

20

30

40

50

60

70

1 10 100 1000 10000 100000

%
 O

ne
-E

rr
or

Number of rounds

Rocchio

RIPPER

Sleeping-experts

discrete AdaBoost.MR
discrete AdaBoost.MH

real AdaBoost.MH

Figure 7. Comparison of the training (left) and test (right) error using three boosting methods on the second
single-label subset of AP titles

classes with the largest number of articles for k � �� � � � � �. Thus, once again, the difficulty
of the classification problem increases with k. A description of the dataset is given in
Tab. A.7. In all of the experiments with this data, we used three-fold cross validation. We
ran the versions with real-valued prediction for ������ rounds and the discrete versions
������ rounds.

A summary of the results, averaged over the three folds, is given in Tab. A.7 and Fig. 8.
The results for this multi-label dataset are similar to the previous single-label datasets.
The different boosting methods are comparable in performance. AdaBoost.MR is slightly
worse than the other three for one-error and average-precision. Real AdaBoost.MH again
outperforms all the competitor algorithms with respect to the three performance evalua-
tion measures. Furthermore, there is no clear winner among the other algorithms: while
Sleeping-experts is best for the subsets with a small number of classes (k 	 �), Naive-
Bayes is the best one for the large classification problems (k � �). Nonetheless, Ada-
Boost.MH clearly outperforms both methods on all subsets.

In the second set of multi-label experiments with Reuters, we partitioned the dataset into
the classes constituting the leaves of the hierarchy of topics. We chose all classes which
include at least ��� articles. This subset includes �� different classes which sum to 3,631
documents labeled by 5,173 different labels. In the full subset with �� classes about ��� of
the articles have more than one label. As before, we performed experiments with subsets
of growing size and classes, for k � �� � � � � ��. A detailed description of the dataset is
given in Tab. A.9. As before we used �-fold cross-validation to estimate the performance.
Again, we ran the real-valued version for ������ rounds and the discrete for ������.

A summary of the results is given in Tab. A.10 and Fig. 9. Here again we see comparable
performance of the different boosting algorithms. Also, real AdaBoost.MH is better than
all competitor algorithms, especially with respect to one-error and average-precision. For
this dataset, Rocchio seems to be the best alternative. In fact, it achieves coverage values
which are comparable to real AdaBoost.MH on most, if not all, of the subsets.

The last experiment with multi-labeled text data was performed with newsgroup articles.
Here we followed the experimental methodology used in previous studies with this dataset.
We used �-fold cross validation. For each fold we held the test set fixed and varied the size

�� R� E� SCHAPIRE AND Y� SINGER

1.5

2

2.5

3

3.5

4

4.5

5

5.5

3 4 5 6 7 8 9

%
 O

ne
-E

rr
or

Number of Classes

real AdaBoost.MH
real w/abstain AdaBoost.MH

discrete AdaBoost.MH
discrete AdaBoost.MR

0

2

4

6

8

10

12

14

16

3 4 5 6 7 8 9

%
 O

ne
-E

rr
or

Number of Classes

real AdaBoost.MH
Sleeping-experts

Rocchio
Naive-Bayes

PrTFIDF

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

3 4 5 6 7 8 9

C
ov

er
ag

e

Number of Classes

real AdaBoost.MH
real w/abstain AdaBoost.MH

discrete AdaBoost.MH
discrete AdaBoost.MR

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

3 4 5 6 7 8 9

C
ov

er
ag

e

Number of Classes

real AdaBoost.MH
Sleeping-experts

Rocchio
Naive-Bayes

PrTFIDF

0.965

0.97

0.975

0.98

0.985

0.99

0.995

3 4 5 6 7 8 9

A
ve

ra
ge

 P
re

ci
si

on

Number of Classes

real AdaBoost.MH
real w/abstain AdaBoost.MH

discrete AdaBoost.MH
discrete AdaBoost.MR

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

3 4 5 6 7 8 9

A
ve

ra
ge

 P
re

ci
si

on

Number of Classes

real AdaBoost.MH
Sleeping-experts

Rocchio
Naive-Bayes

PrTFIDF

Figure 8. Left: Comparison of the various boosting algorithms for text categorization on the first multi-label
subset of Reuters-21450. Right: Comparison of real AdaBoost.MH with Naive-Bayes, probabilistic TF-IDF,
Sleeping-experts, and Rocchio (right) on the same dataset.

of the training set by sub-sampling the full training set for each fold. We ran the different
algorithms for training sets of size 	���
��� ����� 	����
���� ������ and �	���� (two
thirds of the total number of articles available for this dataset). We compared real Ada-
Boost.MH with the two methods which in previous studies achieved the best results on this
dataset, namely, Naive-Bayes and probabilistic TF-IDF. We allowed weak hypotheses (and
features for Naive-Bayes and probabilistic TF-IDF) of single words and word pairs. We
set the number of rounds for AdaBoost.MH to be twice the number of training documents.
Hence, we ran AdaBoost.MH as little as ��� rounds and at most 	����� rounds.

A BOOSTING�BASED SYSTEM FOR TEXT CATEGORIZATION ��

0

1

2

3

4

5

6

7

8

9

10

11

4 6 8 10 12 14 16 18

%
 O

ne
-E

rr
or

Number of Classes

real AdaBoost.MH
real w/abstain AdaBoost.MH

discrete AdaBoost.MH
discrete AdaBoost.MR

0

5

10

15

20

25

4 6 8 10 12 14 16 18

%
 O

ne
-E

rr
or

Number of Classes

real AdaBoost.MH
Sleeping-experts

Rocchio
Naive-Bayes

PrTFIDF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

4 6 8 10 12 14 16 18

C
ov

er
ag

e

Number of Classes

real AdaBoost.MH
real w/abstain AdaBoost.MH

discrete AdaBoost.MH
discrete AdaBoost.MR

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4 6 8 10 12 14 16 18

C
ov

er
ag

e

Number of Classes

real AdaBoost.MH
Sleeping-experts

Rocchio
Naive-Bayes

PrTFIDF

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

4 6 8 10 12 14 16 18

A
ve

ra
ge

 P
re

ci
si

on

Number of Classes

real AdaBoost.MH
real w/abstain AdaBoost.MH

discrete AdaBoost.MH
discrete AdaBoost.MR

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

4 6 8 10 12 14 16 18

A
ve

ra
ge

 P
re

ci
si

on

Number of Classes

real AdaBoost.MH
Sleeping-experts

Rocchio
Naive-Bayes

PrTFIDF

Figure 9. Left: Comparison of the various boosting algorithms for text categorization on the second multi-label
subset of Reuters-21450. Right: Comparison of real AdaBoost.MH with Naive-Bayes probabilistic TF-IDF
Sleeping-experts and Rocchio on the same dataset.

The results comparing real AdaBoost.MH, probabilistic TF-IDF and Naive-Bayes for
the three evaluation measures as a function of the training set size are shown in Fig. 10.
For training sets of size smaller than ������, real AdaBoost.MH is clearly inferior to prob-
abilistic TF-IDF and Naive-Bayes. The performance of AdaBoost.MH is especially poor
for training sets of size smaller than a thousand. When the training set is large enough,
we again see that AdaBoost.MH outperforms both probabilistic TF-IDF and Naive-Bayes
with respect to all three measures. However, the difference in performance is not as sig-
nificant as in the previous datasets. One possible explanation for these results is that, in
contrast to probabilistic TF-IDF and Naive-Bayes, AdaBoost.MH incorporates very little

�� R� E� SCHAPIRE AND Y� SINGER

10

20

30

40

50

60

70

80

0.2 0.5 1 2 5 10 13

%
 O

ne
-O

ne
-E

rr
or

Number of Training examples (x1000)

real AdaBoost.MH
Naive-Bayes

PrTFIDF

1

2

3

4

5

6

7

0.2 0.5 1 2 5 10 13

C
ov

er
ag

e

Number of Training examples (x1000)

real AdaBoost.MH
Naive-Bayes

PrTFIDF

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.5 1 2 5 10 13

A
ve

ra
ge

 P
re

ci
si

on

Number of Training examples (x1000)

real AdaBoost.MH
Naive-Bayes

PrTFIDF

Figure 10. Comparison of real AdaBoost.MH Naive-Bayes and probabilistic TF-IDF as a function of the number
of training examples on the UseNet data

prior knowledge. Thus, although AdaBoost.MH is minimizing the Hamming loss on the
training set, the generalization error is rather poor, as indeed implied by theoretical studies.
Once there are enough examples, the prior knowledge, incorporated via the term weights
in probabilistic TF-IDF and Naive-Bayes, is much less crucial and AdaBoost.MH does a
better job in driving the training error down, and therefore also the generalization error
decreases. These results suggest that the new boosting algorithms for text categorization
would be best utilized in complex multiclass problems with a large number of training
examples.

6.5. An experiment with a large number of classes

We conclude this section on text categorization experiments with a multi-label categoriza-
tion experiment using a dataset that contains a large number of classes. In this experiment

A BOOSTING�BASED SYSTEM FOR TEXT CATEGORIZATION ��

0

0.1

0.2

0.3

0.4

0.5

1 10 100 1000 10000

O
n
e
-
e
r
r
o
r

Number of rounds

Train
Test

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

AdaBoost.MH
kNN

RIPPER
Sleeping-Experts
Recall=Precision

Figure 11. Left: The one-error on the training and test data for the Reuters partition with �� classes. Right:
Precision-Recall curve for AdaBoost.MH on the test collection of the same dataset.

we used the partition of Reuters-21450 that was prepared by Apté et al. (1994) for their
experiments with the SWAP-1 rule learner. The Reuters-21450 corpus was partitioned into
a training set of �� �� documents and a test set containing �� ��� document. This partition
includes all classes with at least two documents in the training set and at least one docu-
ment in the test set. There are �� such classes. Yang (1999), who refers to this partition of
Reuters as version-3, performed extensive comparisons with various algorithms that were
evaluated on this partition. Here we compare AdaBoost.MH with the two classification
algorithms that achieved the best performance results according to Yang; these are a k-
nearest-neighbor (KNN) classifier and a linear classifier based on a least squares fit of term
weights to the class labels (LLSF).

We processed the text as described in Sec. 6.1. Each document was labeled with a subset
of the �� possible classes. The average number of labels per document is ��	�. This
problem requires a vast amount of memory; to maintain the distributionDt�i� j�, we need
a table of size mk � ���� �� which amounts to over 700,000 numbers. As in previous
experiments, we ran AdaBoost.MH for 10,000 rounds which took about � days of cpu time
to complete. The smoothing value � was set using �-fold cross validation on the training
set. We would like to note however that using the default value yielded only slightly worse
results. (For instance, the 11-point average precision is ����	 when using the default value
for � compared to �����when using cross-validation to determine �.) On the left hand-side
of Fig. 11 we plot the one-error on the training and test data as a function of the number
of rounds. Note that the one-error on the training set reaches its minimal value, which
is very close to zero, after about ���� rounds of boosting while the test error continues
to decrease even after ������ rounds, apparently without overfitting. This behavior was
also observed in other experiments with boosting algorithms and is partially motivated by
theoretical analysis (Schapire et al., 1998).

To make our results on this dataset comparable with previously published results, we
used the three evaluation measures that were used by Yang (1999) and others, namely, 11-
point interpolated average precision (Salton & McGill, 1983), F� (van Rijsbergen, 1979),
and micro-averaged break-even point. The first and the third performance measures asses
the general quality of the label ranking while the second measure evaluates the classifi-
cation quality. For further details on these evaluation measures see (Yang, 1999). To use

�� R� E� SCHAPIRE AND Y� SINGER

Table 2. Summary of results obtained for Reuters-21450 with �� classes.

(threshold adjusted on data) (threshold � �) mircro-avg.
Algorithm 11-pt Avg. Precision F� F� BEP

AdaBoost.MH 0.934 0.853 0.851 0.86
kNN 0.924 0.852 — 0.85
LLSF 0.901 0.855 — 0.85

the F� measure we need to set a threshold for the label-rankings and decide which labels
should be associated with a document. We evaluated the performance using two thresh-
olds: the zero threshold and a threshold that was adjusted so as to maximize F� on the
training data after AdaBoost.MH completed ������ rounds. In Tab. 2 we summarize the
results and compare them to the best results obtained by Yang. (We would like to note
parenthetically that in a very recent work, which was brought to out attention during the
final preperations of this paper, Weiss et al. (1999) report a break-even point of �� using
the Reuters-21578 dataset.) We also give on the right hand side of Fig. 2 a precision-recall
graph for AdaBoost.MH together with the break-even points of three other classification
algorithms evaluated on this dataset. The performance of AdaBoost.MH is state-of-the-art:
it achieves the highest 11-point interpolated average precision and break-even point and
comes very close to the best F� value obtained on this partition of Reuters. However, it is
difficult to asses the statistical significance of these results since the performance measures
used are highly nonlinear and non-additive. Nonetheless, the good performance of Ada-
Boost.MH on this well-studied dataset provides further empirical evidence that boosting
algorithms can serve as a viable alternative to existing algorithms for text categorization.

7. Speech categorization experiments

In the final set of experiments, we tested our system on a call-classification task. The
purpose of this task is to automatically identify the type of call requested in response to
the greeting, “How may I help you?” For instance, if the response is, “Yes, I would like to
charge this call to my Visa card,” then the call should be classified as a calling-card call.
There are fourteen call types, plus an ‘other’ category. Some calls can be of more than one
type (for instance, a call can be both collect and person-to-person).

This task was previously studied by Gorin and others (Gorin, Riccardi, & Wright, 1997;
Gorin, Parker, Sachs, & Wilpon, 1996; Riccardi, Gorin, Ljolje, & Riley, 1997; Wright,
Gorin, & Riccardi, 1997), and we used the same data, namely, a collection of ���� train-
ing utterances and ����� test utterances. Both the training and test utterances were all
transcribed by humans from actual spoken responses. The test utterances are also available
in a form produced by an automatic speech recognizer; this, of course, is the only form
that would be available in a real system.

Following others who have worked on this dataset, we present our results in the form
of an ROC curve. For this, each algorithm needs to produce a confidence in its own pre-
dictions. The curve is then produced by varying a reject threshold which specifies that

A BOOSTING�BASED SYSTEM FOR TEXT CATEGORIZATION ��

10 20 30 40 50 60 70 80 90 100

70

75

80

85

90

95

100

False rejection rate (%)

C
or

re
ct

 c
la

ss
ifi

ca
tio

n
ra

te
 (

%
)

ROC curves for test sentences 10−Mar−1998

Baseline − Text
Baseline − Speech
BoosTexter − Text
BoosTexter − Speech

Figure 12. Results on a call-type identification task.

examples with confidence below the given threshold should be rejected (for this task, this
would mean that the call would have to be handled by a human operator). We then plot
the accuracy of the classifier on non-rejected examples as a function of the false rejection
rate, which is the fraction of examples incorrectly rejected. A classification by the system
of ‘other’ is also considered equivalent to rejection.

To get a confidence level for the predictions of AdaBoost.MH, we used the difference
between the final scores of the first and second ranked labels. That is, if f is the final
classifier produced by AdaBoost.MH, then the confidence assigned to the prediction of f
on a test example x is f�x� ��� � f�x� ��� where �� and �� are the first and second ranked
labels according to f�x� ��.

We trained real AdaBoost.MH on this data using ��� rounds of boosting, and allowing
sparse word trigrams for the terms used in forming the weak hypotheses. We compared our
system to the best previous published work on this dataset, namely, that of Wright, Gorin,
and Riccardi (1997). The results are shown in Fig. 12 as a set of ROC curves. For the top
set of curves, the algorithms were tested using human-transcribed test data. For the bottom
set of curves, the test data were generated using an automatic speech recognizer (based
on the same spoken utterances). The solid curves are for AdaBoost.MH, and the dashed
curves are those of Wright, Gorin, and Riccardi (1997).

The performance of the two algorithms is strikingly similar for most reject levels. How-
ever, AdaBoost.MH does significantly better on the transcribed data for moderately large
reject levels of 40% or more. These results indicate that for slightly less than half of the
examples, AdaBoost.MH can produce predictions that are almost certainly correct.

Note that the training set is the same, whether we test on manually transcribed or au-
tomatically recognized data. AdaBoost.MH, like other learning algorithms, attempts to
minimize the classification error on the training data and thus employs the tacit assump-
tion that the test data are generated by the same source as the training data. This is clearly
not true when we use the automatically transcribed data for testing. We believe that we can
improve the performance of our system using training data that is automatically generated
by a speech recognizer.

�� R� E� SCHAPIRE AND Y� SINGER

Acknowledgments

We would like to thank Allen Gorin, David Lewis, Andrew McCallum, Fernando Pereira,
Amit Singhal and Jerry Wright for useful discussions and for help with our experiments.

Notes

1. arbitrary long (sparse)n-grams but we restrict ourselves to words and word bigrams for comparison purposes.

2. “Function words” include high frequency but contentless words like ‘of’ and ‘the’. We used the stop-list
given by Lewis (Lewis, 1992).

3. http://www.cs.cmu.edu/afs/cs/project/theo-11/www/naive-bayes.html

4. There are actually �	 categories but only
 of them contain more than �� articles. We discarded the �
categories (and the corresponding articles) with only a few articles.

References

Apté, C., Damerau, F., & Weiss, S. M. (1994). Towards language independent automated
learning of text categorization models. In Proceedings of the 17th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Re-
trieval, pp. 23–30.

Biebricher, P., Fuhr, N., Lustig, G., Schwantner, M., & Knorz, G. (1988). The automatic
indexing system AIR/PHYS — from research to application. In Proceedings of the
11th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 333–342.

Blum, A. (1997). Empirical support for winnow and weighted-majority based algorithms:
results on a calendar scheduling domain. Machine Learning, 26, 5–23.

Breiman, L. (1998). Arcing classifiers. The Annals of Statistics, 26(3), 801–849.

Cohen, W. (1995). Fast effective rule induction. In Proceedings of the Twelfth International
Conference on Machine Learning, pp. 115–123.

Cohen, W. W., & Singer, Y. (1996). Context-sensitive learning methods for text catego-
rization. In Proceedings of the 19th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 307–315.

Drucker, H., & Cortes, C. (1996). Boosting decision trees. In Advances in Neural Infor-
mation Processing Systems 8, pp. 479–485.

Field, B. J. (1975). Towards automatic indexing: automatic assignment of controlled-
language indexing and classification from free indexing. Journal of Documentation,
31(4), 246–265.

Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In Ma-
chine Learning: Proceedings of the Thirteenth International Conference, pp. 148–
156.

A BOOSTING�BASED SYSTEM FOR TEXT CATEGORIZATION ��

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learn-
ing and an application to boosting. Journal of Computer and System Sciences, 55(1),
119–139.

Freund, Y., Schapire, R. E., Singer, Y., & Warmuth, M. K. (1997). Using and combining
predictors that specialize. In Proceedings of the Twenty-Ninth Annual ACM Sympo-
sium on the Theory of Computing, pp. 334–343.

Fuhr, N., & Pfeifer, U. (1994). Probabilistic information retrieval as a combination of
abstraction, inductive learning, and probabilistic assumptions. ACM Transactions
on Information Systems, 12(1), 92–115.

Gorin, A. L., Parker, B. A., Sachs, R. M., & Wilpon, J. G. (1996). How may I help you?.
In Proceedings Interactive Voice Technology for Telecommunications Applications
(IVTTA), pp. 57–60.

Gorin, A. L., Riccardi, G., & Wright, J. H. (1997). How may I help you?. Speech Commu-
nication, 23(1-2), 113–127.

Ittner, D. J., Lewis, D. D., & Ahn, D. D. (1995). Text categorization of low quality images.
In Symposium on Document Analysis and Information Retrieval, pp. 301–315 Las
Vegas, NV. ISRI; Univ. of Nevada, Las Vegas.

Joachims, T. (1997). A probabilistic analysis of the Rochhio algorithm with TFIDF for text
categorization. In Machine Learning: Proceedings of the Fourteenth International
Conference, pp. 143–151.

Koller, D., & Sahami, M. (1997). Hierarchically classifying docuemnts using very few
words. In Machine Learning: Proceedings of the Fourteenth International Confer-
ence, pp. 171–178.

Lang, K. (1995). Newsweeder: Learning to filter netnews. In Proceedings of the Twelfth
International Conference on Machine Learning, pp. 331–339.

Lewis, D. (1992). Representation and learning in information retrieval. Tech. rep. 91-93,
Computer Science Dept., University of Massachusetts at Amherst. PhD Thesis.

Lewis, D., & Catlett, J. (1994). Heterogeneous uncertainty sampling for supervised learn-
ing. In Machine Learning: Proceedings of the Eleventh International Conference.

Lewis, D., & Gale, W. (1994). Training text classifiers by uncertainty sampling. In Seven-
teenth Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval.

Lewis, D. D., & Ringuette, M. (1994). A comparison of two learning algorithms for text
categorization. In Third Annual Symposium on Document Analysis and Information
Retrieval, pp. 81–93.

Maclin, R., & Opitz, D. (1997). An empirical evaluation of bagging and boosting. In
Proceedings of the Fourteenth National Conference on Artificial Intelligence, pp.
546–551.

�	 R� E� SCHAPIRE AND Y� SINGER

Margineantu, D. D., & Dietterich, T. G. (1997). Pruning adaptive boosting. In Machine
Learning: Proceedings of the Fourteenth International Conference, pp. 211–218.

Mitchell, T. M. (1997). Machine Learning. McGraw Hill.

Moulinier, I., Raškinis, G., & Ganascia, J.-G. (1996). Text categorization: a symbolic
approach. In Fifth Annual Symposium on Document Analysis and Information Re-
trieval, pp. 87–99.

Ng, H. T., Goh, W. B., & Low, K. L. (1997). Feature selection, perceptron learning, and
a usability case study for text categorization. In Proceedings of the 20th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 67–73.

Quinlan, J. R. (1996). Bagging, boosting, and C4.5. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pp. 725–730.

Riccardi, G., Gorin, A. L., Ljolje, A., & Riley, M. (1997). Spoken language understanding
for automated call routing. In Proceedings of the 1997 IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, pp. 1143–1146.

Rocchio, J. (1971). Relevance feedback information retrieval. In Salton, G. (Ed.), The
Smart retrieval system—experiments in automatic document processing, pp. 313–
323. Prentice-Hall, Englewood Cliffs, NJ.

Salton, G. (1991). Developments in automatic text retrieval. Science, 253, 974–980.

Salton, G., & McGill, M. J. (1983). Introduction to Modern Information Retrieval.
McGraw-Hill.

Schapire, R. E. (1997). Using output codes to boost multiclass learning problems. In
Machine Learning: Proceedings of the Fourteenth International Conference, pp.
313–321.

Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1998). Boosting the margin: A new
explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5),
1651–1686.

Schapire, R. E., & Singer, Y. (1998). Improved boosting algorithms using confidence-rated
predictions. In Proceedings of the Eleventh Annual Conference on Computational
Learning Theory, pp. 80–91. To appear, Machine Learning.

van Rijsbergen, C. J. (1979). Information Retrieval. Butterworths, London.

Weiss, S., Apte, C., Damerau, F., Johnson, D., Oles, F., Goetz, T., & Hampp, T. (1999).
Maximizing text-mining performance. IEEE Intelligent Systems.

Wright, J. H., Gorin, A. L., & Riccardi, G. (1997). Automatic acquisition of salient gram-
mar fragments for call-type classification. In Proceedings of the 5th European Con-
ference on Speech Communication and Technology, pp. 1419–1422.

A BOOSTING�BASED SYSTEM FOR TEXT CATEGORIZATION ��

Yang, Y. (1994). Expert network: effective and efficient learning from human decisions
in text categorization and retrieval. In Proceedings of the 17th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
13–22.

Yang, Y. (1999). An evaluation of statistical approaches to text categorization. Information
Retrieval. to appear.

Appendix A

Description of text datasets and summary of results

Table A.1. Description of the classes constituting the single-label subset
of Reuters-21450.

Class #Docs Cum. #Docs

1 Earnings and Earnings Forecasts (EARN) 3923 3923
2 Mergers/Acquisitions (ACQ) 2292 6215
3 Commodity Codes (COM) 1546 7761
4 Economic Indicator Codes (ECON) 997 8758
5 General Articles (GNRL) 871 9629
6 Energy Codes (ENRG) 558 10187

Table A.2. Results for the single-label subset of Reuters-21450 (Tab. A.1).

real AdaBoost.MH Naive-Bayes Rocchio Sleeping-experts RIPPER
k Error Cover Prec. Error Cover Prec. Error Cover Prec. Error Cover Prec. Error

3 1.71 0.018 0.991 4.63 0.052 0.975 14.71 0.203 0.917 4.50 0.049 0.977 8.52
4 2.22 0.027 0.988 5.40 0.066 0.971 14.36 0.250 0.914 6.27 0.075 0.967 10.78
5 3.86 0.051 0.978 6.24 0.086 0.965 15.25 0.290 0.907 9.18 0.123 0.950 14.35
6 4.21 0.058 0.976 7.29 0.108 0.959 15.37 0.323 0.905 9.93 0.145 0.945 14.81

Table A.3. Description of the classes constituting the first single-label subset of AP titles.

Class #Docs Cum. #Docs Class #Docs Cum. #Docs

1 japan 4272 4272 11 aparts 770 26262
2 bush 3738 8010 12 dukakis 702 26964
3 israel 3541 11551 13 yugoslavia 575 27539
4 britx 3370 14921 14 quayle 488 28027
5 gulf 3216 18137 15 ireland 457 28484
6 german 2321 20458 16 burma 432 28916
7 weather 1824 22282 17 bonds 384 29300
8 dollargold 1613 23895 18 nielsens 248 29548
9 hostages 800 24695 19 boxoffice 170 29718

10 budget 797 25492 20 tickertalk 123 29841

�� R� E� SCHAPIRE AND Y� SINGER

Table A.4. Results for the first single-label subset of AP titles (Tab. A.3)

real AdaBoost.MH Naive-Bayes Rocchio Sleeping-experts Ripper
k Error Cover Prec. Error Cover Prec. Error Cover Prec. Error Cover Prec. Error

3 5.87 0.0789 0.9673 11.53 0.1397 0.9383 24.79 0.4144 0.8483 5.20 0.0661 0.9716 10.71
4 9.34 0.1517 0.9450 16.90 0.2503 0.9035 33.15 0.6365 0.7886 9.48 0.1501 0.9446 18.76
5 11.39 0.2075 0.9313 21.04 0.3528 0.8757 30.98 0.7888 0.7867 11.92 0.2161 0.9281 21.78
6 13.19 0.2782 0.9171 23.86 0.4525 0.8545 31.28 0.9386 0.7789 13.90 0.2972 0.9123 23.80
7 12.43 0.2671 0.9220 21.89 0.4204 0.8664 29.23 0.9002 0.7935 13.36 0.2861 0.9162 22.81
8 12.04 0.2606 0.9246 21.29 0.4084 0.8701 27.77 0.8480 0.8047 13.25 0.2954 0.9161 21.93
9 12.57 0.2887 0.9207 21.71 0.4383 0.8661 28.00 0.9541 0.8004 13.99 0.3230 0.9109 22.25
10 13.27 0.3098 0.9160 22.77 0.4788 0.8587 28.38 1.0103 0.7977 14.89 0.3600 0.9049 23.29
11 14.24 0.3461 0.9094 23.80 0.5301 0.8504 30.02 1.1412 0.7861 15.75 0.4163 0.8974 25.69
12 13.97 0.3500 0.9108 24.82 0.5636 0.8441 29.76 1.1892 0.7873 16.08 0.4356 0.8953 25.41
13 14.71 0.3949 0.9049 25.03 0.5940 0.8415 30.24 1.2752 0.7838 16.49 0.4675 0.8921 26.03
14 15.01 0.4050 0.9033 26.25 0.6570 0.8322 30.32 1.3229 0.7828 16.97 0.5019 0.8884 25.83
15 15.53 0.4372 0.8993 26.65 0.6888 0.8289 30.44 1.3933 0.7811 17.08 0.5248 0.8869 26.74
16 15.58 0.4647 0.8979 26.87 0.7191 0.8268 30.63 1.4676 0.7786 17.33 0.5510 0.8849 26.74
17 16.00 0.4915 0.8950 27.09 0.7483 0.8245 31.04 1.4875 0.7760 17.59 0.5697 0.8829 26.86
18 15.93 0.5008 0.8950 27.02 0.7722 0.8239 30.98 1.4955 0.7768 17.93 0.5940 0.8806 26.55
19 15.91 0.5041 0.8951 27.07 0.7948 0.8229 31.04 1.5212 0.7759 17.58 0.6035 0.8824 26.90
20 16.29 0.5483 0.8920 27.04 0.8365 0.8218 32.11 1.6277 0.7674 18.01 0.6430 0.8788 27.52

Table A.5. Description of the classes constituting
the second single-label subset of AP titles

Class #Docs Train #Docs Test

1 Domestic 46142 21605
2 International 44499 21398
3 Financial 22698 11410
4 Washington 22407 10656
5 Political 5739 1313
6 Entertainment 1242 591

Table A.6. Error rates for the different algorithms on the second single-label subset of AP
titles (Tab. A.5)

(������ rounds) (������� rounds)
real AdaBoost.MH discrete AdaBoost.MH RIPPER Sleeping-experts Rocchio

27.43 32.22 53.29 29.44 40.14

A BOOSTING�BASED SYSTEM FOR TEXT CATEGORIZATION ��

Table A.7. Description of the classes constituting the
first multi-label subset of Reuters-21450

Cum. Avg. No.
Class #Docs #Docs Labels/Docs

1 Earnings 3964 3964 —
2 Acquisitions 2369 6333 —
3 Commodity 1695 8028 1.0064
4 Economics 1140 9168 1.0116
5 Interest 717 9885 1.0171
6 Energy 701 10586 1.0220
7 Money-Fx 478 11064 1.0407
8 Shipping 286 11350 1.0534
9 Currency 238 11588 1.0738

Table A.8. Results for the first multi-labeled subset of Reuters-21450 (Tab. A.7)

real AdaBoost.MH Naive-Bayes Rocchio Sleeping-experts
k Error Cover Prec. Error Cover Prec. Error Cover Prec. Error Cover Prec.

3 1.96 0.0283 0.9898 5.30 0.0666 0.9723 14.64 0.2164 0.9163 3.23 0.0459 0.9826
4 2.42 0.0408 0.9871 5.66 0.0846 0.9693 14.15 0.2681 0.9138 4.42 0.0714 0.9755
5 3.24 0.0616 0.9821 6.64 0.1122 0.9631 14.10 0.2985 0.9130 6.33 0.1127 0.9640
6 3.80 0.0792 0.9785 7.03 0.1402 0.9595 13.93 0.3392 0.9122 6.94 0.1370 0.9597
7 5.15 0.1315 0.9697 8.32 0.1969 0.9507 13.91 0.3940 0.9107 8.61 0.2660 0.9439
8 5.10 0.1486 0.9695 8.79 0.2433 0.9465 14.31 0.4336 0.9078 9.50 0.3126 0.9382
9 5.24 0.1868 0.9674 8.84 0.2856 0.9452 14.79 0.4843 0.9042 9.15 0.4073 0.9361

Table A.9. Description of the classes constituting the second multi-label subset of Reuters-21450

Cum. Avg. No. Cum. Avg. No.
Class #Docs #Docs Labels/Docs Class #Docs #Docs Labels/Docs

1 money-fx 717 717 — 11 oilseed 171 4167 1.3835
2 grain 582 1299 — 12 sugar 162 4329 1.3778
3 crude 578 1877 1.0032 13 coffee 139 4468 1.3693
4 trade 486 2363 1.0261 14 gnp 136 4604 1.3682
5 interest 478 2841 1.0956 15 oil 124 4728 1.2842
6 ship 286 3127 1.1309 16 gold 124 4852 1.3625
7 wheat 283 341 1.2319 17 soybean 111 4963 1.3937
8 corn 237 3647 1.3176 18 gas 105 5068 1.3544
9 dlr 175 3822 1.3773 19 bop 105 5173 1.4247

10 supply 174 3996 1.3629

�� R� E� SCHAPIRE AND Y� SINGER

Table A.10. Results for the second multi-labeled subset of Reuters-21450 (Tab. A.9)

real AdaBoost.MH Naive-Bayes Rocchio Sleeping-experts
k Error Cover Prec. Error Cover Prec. Error Cover Prec. Error Cover Prec.

3 1.07 0.0155 0.9944 1.87 0.0257 0.9901 1.82 0.0225 0.9907 1.66 0.0208 0.9915
4 2.95 0.0625 0.9842 5.77 0.1151 0.9667 9.81 0.1329 0.9496 5.99 0.1033 0.9674
5 6.83 0.1978 0.9613 10.14 0.2646 0.9409 11.30 0.2391 0.9392 10.64 0.2503 0.9408
6 7.63 0.2590 0.9554 11.68 0.3729 0.9285 12.04 0.2850 0.9351 11.68 0.3212 0.9330
7 7.30 0.3671 0.9564 13.04 0.5448 0.9174 12.28 0.3934 0.9334 11.42 0.4187 0.9345
8 7.41 0.4682 0.9545 13.44 0.7240 0.9093 12.14 0.4956 0.9321 11.31 0.5213 0.9337
9 8.22 0.5553 0.9487 14.63 0.9041 0.8971 13.15 0.5888 0.9263 11.78 0.7719 0.9199
10 8.90 0.5768 0.9429 14.56 0.8469 0.8984 13.71 0.6153 0.9195 14.53 0.9130 0.8973
11 9.36 0.6338 0.9383 16.20 1.0817 0.8809 14.67 0.6657 0.9136 15.37 1.0110 0.8909
12 9.01 0.6200 0.9414 16.52 1.1012 0.8790 13.81 0.6620 0.9173 13.97 1.0359 0.8979
13 9.29 0.6378 0.9389 16.12 1.1382 0.8822 14.01 0.6448 0.9175 13.67 1.0257 0.9011
14 8.65 0.6710 0.9392 17.24 1.1866 0.8736 13.58 0.6734 0.9161 15.22 1.2101 0.8862
15 6.30 0.4888 0.9576 14.69 1.1174 0.8876 11.68 0.5966 0.9232 14.47 0.8724 0.9006
16 9.74 0.7082 0.9329 18.23 1.3679 0.8652 14.38 0.7321 0.9083 15.95 1.2842 0.8813
17 9.21 0.7001 0.9372 18.25 1.6119 0.8602 14.27 0.7863 0.9081 15.84 1.3839 0.8807
18 7.08 0.6179 0.9510 15.59 1.5274 0.8704 12.16 0.7298 0.9178 15.56 1.3659 0.8826
19 10.02 0.8369 0.9295 18.01 1.7656 0.8570 14.51 0.8251 0.9052 17.43 1.8193 0.8613

Table A.11. List of the newsgroups and the number of articles posted to
the newsgroups. (An article may be posted to multiple groups.)

Group #Docs Group #Docs

alt.atheism 1114 rec.sport.hockey 1000
comp.graphics 1002 sci.crypt 1000
comp.os.ms-windows.misc 1000 sci.electronics 1000
comp.sys.ibm.pc.hardware 1028 sci.med 1001
comp.sys.mac.hardware 1002 sci.space 1000
comp.windows.x 1000 soc.religion.christian 997
misc.forsale 1005 talk.politics.guns 1008
rec.autos 1004 talk.politics.mideast 1000
rec.motorcycles 1000 talk.politics.misc 1163
rec.sport.baseball 1000 talk.religion.misc 1023

