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Abstract

In this report, some collaborative work between the fields of Machine Learning (ML) and
Natural Language Processing (NLP) is presented. The document is structured in two parts.
The first part includes a superficial but comprehensive survey covering the state-of-the-art
of machine learning techniques applied to natural language learning tasks. In the second
part, a particular problem, namely Word Sense Disambiguation (WSD), is studied in more
detail. In doing so, four algorithms for supervised learning, which belong to different families,
are compared in a benchmark corpus for the WSD task. Both qualitative and quantitative
conclusions are drawn.

This document stands for the complementary documentation for the conference “Aprendizaje au-
tomatico aplicado al procesamiento del lenguaje natural”, given by the author within the course: “Curso
de Industrias de la Lengua: La Ingenieria Lingiiistica en la Sociedad de la Informacién”, Fundacién Duques

de Soria. Soria. July 2000.
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1 Introduction

In the eighties but especially throughout the nineties, an important resurgence of empirical
and statistical methods, applied to the automatic processing of natural language, has been
observed (under the name of corpus-based, statistical, or empirical methods). In the last
five to ten years there has been a dramatic shift in computational linguistics from manually
constructing grammars and knowledge bases to partially or totally automating this process by
using statistical learning methods trained on large annotated or unnanotated natural language
corpora. This popularity has its origin in four main factors:

e The growing availability of big machine-readable corpora, from different sources, levels
of annotation, languages, etc.

e The improvement in performance of current software and hardware architectures that
allow the processing of huge amounts of information, by highly time—consuming algo-
rithms (as statistical models usually demand), at an admissible cost of time and money.

e The initial success obtained with the statistical processing of low-level language prob-
lems, such as those related with speech recognition and syntactic tagging.

e The appearance and development of a large amount of text—based natural language ap-
plications with specific requirements, for which conventional methods based on linguistic
knowledge seemed not to be appropriate.

The choice of automatically processing such massive quantities of free text (commonly
referred to data—intensive approach or corpus—based approach) has contributed to develop-
ing a number of methods and techniques with an application to a great variety of natural
language acquisition and understanding problems, including: automatic extraction of lex-
ical knowledge, lexical and structural disambiguation (part—of-speech tagging, word sense
disambiguation and prepositional phrase attachment disambiguation), grammatical inference
and robust parsing, information extraction and retrieval, automatic summarization, machine
translation, etc. Additionally, corpora have provided linguists with benchmarks for the em-
pirical evaluation of theoretical studies and models of language. The reader may find good
and plain introductions to the corpus—based NLP in [114, 46, 244].

Most of the initial corpus—based language acquisition methods applied by the NLP com-
munity researchers were borrowed from statistics and information theory. As a consequence
of this collaboration, a significant progress was made in the development and adaptation of
well-known statistics based techniques to the particular problems of automatic natural lan-
guage modelling and processing. This progress was especially noticeable in the low—level tasks
of speech processing and lexical knowledge extraction and disambiguation, but a consider-
able effort was also devoted to grammatical inference, robust parsing and other semantic and
discourse level NLP tasks.

Several articles and introductory books, surveying statistical approaches in Computational
Linguistics, have appeared in recent years. We especially recommend [41, 42, 106, 28, 102].

Starting in the early 90s, but particularly in recent years, the application of machine
learning (ML) based techniques to language learning and acquisition problems has been the
focus of increasing attention in the NLP community. The core of problems addressed by
machine learning techniques are those of natural language disambiguation (appearing at all



levels of the language understanding process). They are particularly appropriate because they
can be easily recast as classification problems, a generic type of problem with a long tradition
in the artificial intelligence (Al) area, and especially addressed by the ML community.

Already applied ML based methods include several traditional symbolic inductive learn-
ing paradigms: instance—based learning, decision trees, threshold linear separators, induc-
tive logic, unsupervised clustering, etc.; and also a number of subsymbolic and connection-
ist approaches, such as neural networks and genetic algorithms. Additionally, some new
specific learning algorithms have also been proposed in recent years. This is the case of
Transformation—based Learning in [19]. This recent approach permits the use and adapta-
tion of general purpose machine learning algorithms for classification —which are well known
and widely studied methods—, with the aim of providing general frameworks in which many
disambiguation problems could be addressed simultaneously by homogeneous techniques [19,
31, 59, 188].

Some concrete publication statistics clearly illustrate the extent of the revolution in nat-
ural language research. As an example, a full 63.5% of the papers in the Proceedings of the
Annual Meeting of the Association for Computational Linguistics and 47.7% of the papers in
the journal Computational Linguistics concerned corpus—based research in 1997 (the percent-
ages of 1990 were still only 12.8% and 15.4%). Furthermore, the connection and collaboration
between NLP and machine learning communities is becoming noticeable in the international
conferences and journals of both areas, which have experimented a proliferation of special
issues on natural language learning, applications of ML techniques to natural language pro-
cessing, etc.

Despite this growing collaboration, most of the research performed on natural language
learning has been carried out within the Computational Linguistics research community. This
is unfortunate, since we think that machine learning and empirical NLP have much to offer
each other and that increased interaction and exchange of ideas would greatly benefit both
areas.

On the one hand, a variety of thoroughly studied and well-understood alternative algo-
rithms can be applied to natural language problems and can have significant advantages in
particular applications. In addition to specific learning algorithms, a variety of general ideas
from traditional machine learning such as “active learning”, “boosting”, “reinforcement learn-
ing”, “constructive induction”, “learning with background knowledge”, “theory refinement”,
“experimental evaluation methods”, etc. may also be usefully applied to natural language
problems.

On the other hand, natural language can provide machine learning with a variety of in-
teresting and challenging problems, frequently with particular characteristics such as: Very
large feature space, extremely sparse data, presence of irrelevant and highly correlated fea-
tures (redundancy), noisy training data, very large training sets, necessity of unsupervised or
semi-supervised learning (when training data is difficult to obtain), problems that go beyond
the simple classification scheme, e.g. parsing, in which a structured parse tree should be
generated, etc. Further, as already said, some learning paradigms have been introduced by
empirical NLP, e.g. TBL [21, 19] (Transformation-based Error-Driven Learning), Maximum
Entropy [110, 187, 179], etc. These methods are not well studied in the machine learning lit-
erature. Perhaps these methods could also be productively applied to other machine learning
problems.

For an extensive compilation of relevant articles about the current approaches to natural
language learning, one may consult [231, 32].



The Ambiguity Problem

Natural language is ambiguous in nature. Ambiguity appears at many levels of the usual
language processing chain, and it represents many of the most difficult problems of language
understanding. Some classical examples of ambiguity are: Word selection in speech recogni-
tion, part of speech ambiguity (e.g. past vs. participle in regular verbs), semantic ambiguity
in polysemic words, structural ambiguity in parsing (e.g. PP-attachment), accent restora-
tion, reference ambiguity in anaphora resolution, word choice selection in machine translation,
context—sensitive spelling correction, etc.

Such ambiguity resolution problems can be generically characterized as follows: At a
certain moment, the NLP system reaches a segment of information for which it has multiple
interpretations, and it must decide which interpretation is appropriate in the current context.
In order to resolve this difficulty, it is necessary to disambiguate two or more semantically,
syntactically or structurally distinct forms based on the properties of the surrounding context
[31].

Consider, for instance, the following simple sentence, which was picked from the Wall
Street Journal (WSJ) corpus:

He was shot in the hand as he chased the robbers in the back street. (1)

First, the sentence contains a number of PoS ambiguities that should be resolved before the
sentence can be understood. For instance, “shot” and “hand” can be a noun or a verb;
“chased” can be an adjective or a verb; “back” can be a noun, an adjective, an adverb,
and a verb; finally, “in” and “as” can be a preposition or an adverb. Even if we know
its part of speech, the intended meaning of the word in a particular context often requires
disambiguation. In the present example, the word “hand” is highly polysemous. Among other
interpretations, it could refer to a part of the body in the anatomical sense, but also to a
part of a clock in a mechanical sense. In addition to these cases of lexical ambiguity we also
find an example of structural ambiguity: The prepositional phrase “in the back street” could
modify the noun “robbers” or the verb “chased”. Both readings are syntactically legal and the
NLP system must access some kind of semantic information to make the correct attachment
decision.

Overview of this document

Section 2 surveys state-of-the—art main approaches related with the application of machine
learning techniques to natural language learning and disambiguation tasks. Section 3 is
devoted to explain a thorough comparative experiment between four machine learning algo-
rithms for supervised word sense disambiguation. Note that, after the references and acknowl-
edgements, some additional material has been included. Appendix A contains the technical
details about the algorithms tested, which have not been included in section 3 (mainly, for
clarity reasons).

2 A survey on Machine Learning Techniques Applied to Nat-

ural Language Processing

In this section, a broad-coverage compilation of references linking the fields of machine learning
and natural language processing is provided. Although in a very compact way, we think that



it contains valuable information that can contribute to ease the approach of any researcher
to the use of machine learning techniques in processing natural language'.

Learning approaches are usually categorized as statistical (also probabilistic or stochas-
tic) methods and symbolic methods, belonging to the latter the typical learning paradigms
that do not explicitly use probabilities in the hypothesis (decision trees, instance-based learn-
ing, rule-induction systems, etc.)?. We will follow this criterion in the following exposition
merely for clarity reasons. Additionally, we have treated separately the subsymbolic and
connectionist approach, and we have included a last category, containing unsupervised ap-
proaches (all other referenced methods belong to the supervised family) and the recently
emergent approach of combining classifiers. The main focus will be on the symbolic family.

2.1 Stochastic Machine Learning Approaches

Dietterich [65] define a stochastic model as a model that describes the real-world process
by which the observed data are generated. The stochastic models are typically represented
as a probabilistic network that represents the probabilistic dependencies between random
variables. Each node in the graph has a distribution, and from these individual distributions,
the joint distribution of the observed data can be computed. Different approaches vary in
how this probabilistic network is acquired and in which is the method applied to combine
individual probability distributions.

The most simple approach to stochastic classification is to use the Naive Bayes Classifier
(NB), originally described in [68], which is based on the Bayes’ theorem and the assumption
of independence between features. Despite its simplicity it has been widely used in the
ML and NLP communities with a surprising success. NB provides a simple way to combine
information from several sources, however, when the statistical sources to combine are of
different degree of generalization NB is usually combined with back—off estimates. We can
find the NB algorithm (either the basic version or other variations and hybrids) applied to
the following NLP disambiguation tasks: Context—sensitive spelling correction [88, 89], PoS
tagging [194, 189], PP-attachment disambiguation [52], Word sense disambiguation [86, 150,
156, 112, 73] and Text Categorization [117, 190, 119, 142, 196].

Recently, Lau, Rosenfeld and Roukos [110, 187] have proposed a new approach for com-
bining statistical evidence from different sources, that is based on the Mazimum FEntropy
Principle (ME). This work was originated within the speech recognition field [187], but it
has also been successfully applied to word morphology [168], PoS tagging [101, 177], PP-
attachment disambiguation [180], identification of clause boundaries [181], partial and gen-
eral parsing [211, 178], text categorization [161], and machine translation [10]. See [179] for
a broad introduction to ME methods and a survey of existing applications.

Hidden Markov Models [175], already referenced in the previous section, can be also seen as
stochastic models of learning. HMMs had their major success in the low-level tasks of language
disambiguation, that is, speech recognition and synthesis [175, 97], PoS tagging [45, 54, 144],
and named entity recognition and classification [11]. However, there have been also efforts to

"Those interested can consult the following URL to find a larger list of related references:
http://www.lsi.upc.es/~1luism/BibTexDB.html. The available format is BibTex and several links are pro-
vided to help obtain postscript versions of the original papers.

2However, as Roth points in [188], all learning methods are statistical in the sense that they attempt to
make inductive generalization from observed data and use it to make inferences with respect to previously
unseen data.



extend the use of HMM to WSD [205], and partial parsing by tagging grammatical functions
and bracketing simple constituents [16, 212].

The Ezpectation Mazimization (EM) algorithm is an iterative algorithm that starts with
an initial value for the parameters of the model and incrementally modifies them to increase
the likelihood of the observed data [63]. Particular instances of the EM algorithm have been
applied to a number of different problems in NLP. For instance, the parameter estimation of
HMM models is done by the EM algorithm, namely the Baum—-Welch or Forward-Backward
algorithm [41]. The Inside-Outside algorithm [41] is another version of the EM algorithm
related to the estimation of parameters for probabilistic grammars (Stochastic Context—Free
Grammars, Stochastic Lexicalized Tree—Adjoining Grammars, etc.) and to the grammar infer-
ence from annotated corpus to produce robust parsers [167, 25, 41, 120]. The EM algorithm is
also used in the Linear Interpolation approach for smoothing in HMM-based models [41, 132],
in a version of unsupervised sense discrimination by Schiitze [203], in semi-supervised word
sense disambiguation [166], and, in combination with the Naive Bayes classifier, in a semi-
supervised approach to text classification [162, 163].

Finally, log-linear models [44] are also being applied to natural language processing. In
particular, log—linear regression [195], a popular technique for binary classification, is used in
[209] to classify verbs for machine translation purposes. In the same direction, the work by
Marques et al. [135] use log-linear models to induce verbal transitivity.

2.2 Symbolic Machine Learning Approaches
2.2.1 Decision Trees

Decision tree based methods of supervised learning from examples represent one of the most
popular approaches within the Al field for dealing with classification problems [17, 170, 171,
173].

Decision trees are a way to represent rules underlying training data, with hierarchical
sequential structures that recursively partition the data. They have been used for years
in several disciplines such as statistics, engineering (pattern recognition), decision theory
(decision table programming), and signal processing. More recently renewed interest has been
generated by the research in artificial intelligence (machine learning, expert systems, etc.). In
all these fields of application, decision trees have been used for data exploration with some of
the following purposes®: Description (i.e. to reduce a volume of data by transforming it into
a more compact form), Classification (i.e. discover whether the data contains well-separated
and meaningful clusters of objects) and Generalization (i.e. uncovering a mapping from
independent to dependent variables that is useful for predicting the value of the dependent
variable in the future).

Their application to NLP is also noticeable, and we find tree—based solutions to address
natural language ambiguity problems at several levels: Speech recognition [8, 9], PoS tagging
[200, 132, 140, 141, 164, 136, 138, 137], word sense disambiguation [26], parsing [132, 92],
text categorization [117, 69, 230], text summarization [134], dialogue act tagging [192], co-
reference resolution [5, 143], cue phrase identification [122], and machine translation (verb
classification) [221, 209].

In Magerman’s approach [132], decision trees are used for a number of simultaneous dif-
ferent decision-making problems, such as: Assigning part—of-speech tags to words, assigning

3This classification is extracted from [154].



constituent labels, determining the constituent boundaries in a sentence, deciding the scope
of conjunctions, etc. In a previous work [12] a mixed, statistical and tree-based, approach was
used to pick up the correct parse among all possibilities. Other mixed approaches are that
of Schmid [200] and Kempe [103] who introduced decision trees for estimating the transition
probabilities in HMM-based taggers.

In concept-learning, decision trees are sometimes translated into rules (and eventually
pruned) for representing the target concept. The most representative system is C4.5-RULES,
a variant of C4.5 [173], which is used for instance in [134] for automatic summarization.

There are other popular logic-based rule-induction systems that employ different repre-
sentations of concepts: Disjunctive normal form (DNF), conjunctive normal form (CNF) and
decision lists. The FoIL algorithm [172] and some variants [149, 234] have been widely used to
acquire first-order logic representations, and, in relation to the NLP classification problems,
we find them tested in many of the already cited works as benchmarks for any other applied
inductive learning algorithm.

2.2.2 Decision Lists

Decision lists [184] are ordered lists of conjunctive rules (where rules are tested in order and
the first one that matches an instance is used to classify it) which have been applied in a
number of concept—learning systems [47, 152, 174].

Decision lists work well in domains with many attributes (or with attributes with many
values) because they avoid to some extent the data fragmentation problem. Thus, regarding
NLP, they have been applied to lexical ambiguity resolution. In particular: Word sense
disambiguation, lexical choice in machine translation, homograph disambiguation in speech
synthesis and accent restoration [240, 243, 241, 150, 208].

2.2.3 Transformation-Based Error—Driven Learning (TBL)

TBL was introduced by Brill in the early 90s, as a new approach to corpus—based natural
language learning. The learning algorithm is a mistake—driven greedy procedure that produces
a set of rules. It works iteratively by adding at each step the rule that best repairs the current
errors. Concrete rules are acquired by instantiation of a predefined set of template rules.

This algorithm has been applied to a number of natural language problems, including
part—of-speech tagging [21, 22, 23, 6, 186], PP—attachment disambiguation [20], parsing [18],
spelling correction [133], and word sense disambiguation [67].

One major drawback of TBL is its computational cost since all instantiations of templates
are tested at each iteration to find the best rule. Recently, Samuel [191] presented an efficient
approximation called Lazy TBL which restrict the search to a small subset of all possible
instantiations, by applying Monte Carlo sampling techniques, with a very slight decrease in
accuracy. In this way, more complex problems can be faced using LTBL. In particular, Samuel
and colleagues have applied this new algorithm to dialogue act tagging [192, 193], that is,
to label each utterance in a conversational dialogue with the correct dialogue act, which is a
concise abstraction of a speaker’s intention.

Another rule-learning system successfully applied to text categorization is Cohen’s Rip-
PER algorithm [51]. In this case, the algorithm learns a classifier in the form of a boolean
combination of simple terms.



2.2.4 Linear Separators

Linear separators with multiplicative weight-update algorithms*, have been shown to have
exceptionally good behaviour when applied to very high dimensional problems, in the pres-
ence of noise, and specially when the target concepts depend on only a small subset of the
features in the feature space. Clearly, this is a usual scenario in the text processing domain.
Roth and colleagues have designed the SNOw architecture [188], a sparse network of linear
separators in the feature space, using the WiNNOw algorithm [123], for on-line and adap-
tive learning. They have applied it successfully to a broad spectrum of natural language
disambiguation tasks, including context—sensitive spelling correction [89], PoS tagging [189],
PP-attachment disambiguation [107], shallow parsing [130], text categorization [62], and word
sense disambiguation [74], achieving state—of-the-art accuracies and surpassing several alter-
native algorithms.

Other methods based on linear separators have been applied to the text categorization
task. Cohen and Singer [51] presented EXPERTS (based on the weighted majority algorithm
[124]), Lewis et al. [118, 64] used Widrow-Hoff [232] and EG (Exponentially Gradient) [105]
algorithms to text categorization and routing. Again, another variation on the WINNOW algo-
rithm, BALANCEDWINNOW™T [62], has reported competitive results in the text categorization
task. All these algorithms proved to overcome one of the most commonly used techniques, the
Rocchio algorithm and variants [185, 91, 118, 196, 64], which is a classifier that uses vectors of
numeric weights to represent the data (vector space model) and works in a relevance feedback
context.

2.2.5 Instance—based Learning

Instance—based learning algorithms [3, 4, 126] have appeared in several areas of the Al
with many different names: Similarity—based, example—based, case-based, memory—based,
exemplar—based, analogical, etc. It is a form of supervised, inductive learning from examples,
based on keeping full memory of training material and classifying new examples by using a
sort of k-nn (k nearest neighbours) algorithm.

We find several uses of this kind of algorithms in NLP tasks. Particularly relevant is the
work by Cardie [36, 38], which addressed the lexical, semantic and structural disambiguation
of full sentences (in limited domains), within an information extraction (IE) environment.
Additionally, her instance—based system takes advantage of decision—trees for identifying rel-
evant attributes [37]. More recent work refers to relative pronoun resolution [39], and to the
description of the Kenmore Framework [31], a general framework that embedded machine
learning algorithms for a global treatment of many natural language problems.

Equally essential is the recent work of the ILK Group at Tilburg University. Daelemans
and colleagues have developed the TiMBL (Tilburg Memory-based Learning Environment)
which is a general instance—based algorithm that makes a compression of the base of examples
into a tree-based structure, IGTree [57], used later for classifying new examples. These trees
have proved to reduce significantly the space requirements and to be very efficient and accurate
in several domains [58], including: Phonology (stress, word pronunciation) and morphology

*Linear threshold algorithms, like WINNOW, are very simple on-line learning algorithms for 2—class problems
with binary (i.e., 0/1-valued) input features. To classify new examples, they simply calculate a weighted sum
of input features (linear combination) and outputs O if the result is below the threshold, and 1 otherwise.
Wrongly predicted training examples make the weights of the model change, in a multiplicative way, to better
fit the training set.



[55, 14, 56, 15], PoS tagging [61, 60, 90], PP-attachment disambiguation [246], shallow parsing
[227], and smoothing of probability estimates [245].

The work of other authors include applications to partial parsing (chunking) and context—
sensitive parsing [210, 7, 33], WSD [159, 157, 84, 73], text categorization [183, 238, 237, 239],
semantic interpretation [38], machine translation [100], and lexical acquisition by analogy

[76, 75].

2.2.6 Inductive Logic Programming (ILP)

This is a discipline devoted to the inductive learning of Prolog programs from examples.
The most relevant work in relation to natural language learning has been carried out by
Mooney and colleagues at the University of Texas. A general survey of applications of ILP to
NLP can be found in [151]. Particular works include applications to grammatical inference
[247, 248], automatic induction of natural language interfaces for querying data bases [249,
222], information extraction tasks [216, 217, 29, 79, 80, 81, 30, 215], acquisition of verbal
properties [153], text categorization [49, 50, 53, 213], and generation of natural language [176].

2.3 Subsymbolic Machine Learning Approaches
2.3.1 Neural Networks

In their relation to NLP, neural networks [94] have been used basically to address low-level
problems, such as OCR [204], speech recognition and synthesis [206, 121, 155, 113, 229],
and PoS tagging [155, 201, 70, 199, 131]. The basic models refer to feed—forward multilayer
neural networks trained with the backpropagation algorithm, but also include some examples
of recurrent networks and ensembles of several single neural networks.

Other examples addressing more complex problems, sometimes in combination with sym-
bolic approaches, are: Identification of clause boundaries [95], parsing and sentence analysis
[115, 43, 128, 129], grammatical inference [111], PP—attachment disambiguation [218, 125],
WSD [224], text categorization [233], and detecting spelling errors [116]. In [125] there is a
present day survey of neural networks with application to NLP®.

2.3.2 Genetic Algorithms

Genetic Algorithms [87, 219] have been basically used in language learning problems [214] from
a non informed perspective, that is trying to infer word categories and syntactic structure from
the sole source of unannotated corpora and with no a priori knowledge. This is an approach
that it has been also addressed with unsupervised learning algorithms for clustering. Relevant
contributions here are: [108, 109, 214] and [127], in which language learning is approached
within an information retrieval and filtering framework. The work by Yang [236] also applies
genetic algorithms to information retrieval. Finally, in [209] we find an application to verbal
classification for machine translation purposes.

5This survey is written in Spanish.
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2.4 Others
2.4.1 Clustering Algorithms

Concept formation and clustering algorithms are instances of the unsupervised machine learn-
ing paradigm [78, 77]. They have been used in the NLP field in tasks such as: Document
retrieval, automatic hyphenation, semantic, syntactic and phonological classification, extrac-
tion of hierarchical structure, machine translation, etc. See [169] for a good survey including
pointers to relevant references. Additionally, conceptual clustering algorithms have been used
by Cardie [35, 34] to tackle relative pronoun and noun phrase coreference resolution in a
information extraction framework.

2.4.2 Ensembles of Classifiers

An ensemble of classifiers is a set of classifiers whose individual decisions are combined in some
way (usually by weighted or unweighted voting) to classify new examples. These techniques
have been mainly studied in the supervised learning area and it has been proven that ensem-
bles are often much more accurate than the individual classifiers that make them up. Within
the voting (and variants) approaches, and related to NLP problems, we find ensembles applied
to part—of-speech tagging [90, 24, 139, 136], context—sensitive spelling correction [89], word
sense disambiguation [182, 165], shallow parsing [223], and anaphora resolution [148, 1471°.

More complex combination strategies, and algorithms for constructing the ensembles, in-
cluding stacking, bagging, boosting, etc. can be found in text categorization [196] and text
filtering [198], where an adapted version of the popular ADABoOST algorithm [82, 83, 197] is
presented for information retrieval tasks. Other applications of ADAB0OOST variants to NLP
tasks include: PoS tagging [2], PP—attachment disambiguation [2], word sense disambigua-
tion [72, 74], and full parsing [93]. [13] is another relevant example of the combination of
classifiers applied to information retrieval, in which the combination of classifiers allows the
use of a big set of unlabelled examples (semi-supervised approach) to iteratively improve the
classification accuracy in the task of filtering web pages.

2.4.3 Support Vector Machines

Support Vector Machines (SVM) were introduced by Vapnik in 1979 [225], but they have
only recently been gaining popularity in the learning community. SVMs are based on the
Structural Risk Minimization principle from Computational Learning Theory [225, 226] and
in their basic form, they learn the linear hyperplane that separates a set of positive examples
from a set of negative examples with maximum margin (the margin is defined by the distance
of the hyperplane to the nearest of the positive and negative examples). Despite the lineality
of the basic algorithm, by using appropriate kernel functions, SVMs can be extended to learn
polynomial classifiers, radial basic function (RBF) networks, and three-layer sigmoid neural
nets.

SVMs have been succesfully applied to a number of problems related to pattern recognition.
Regarding NLP, SVMs have obtained the best results to date in Text Categorization [98,
69]. Additionally, a slightly different approach, called Transductive Support Vector Machines
allows a semi—supervised learning procedure, which is very useful in domains with few training

®In these cases, the disambiguation is performed by straightforwardly combining a set of pre—existing
classifiers, heuristics, or predictors.
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instances but a very large test set (Relevance Feedback, Netnews Filtering, Reorganizing a
document collection, etc.). In [99] it is empirically shown that transductive learning has
advantages over the standard inductive approach in the text classification domain.

2.5 A Reversed Summary

The already described survey about the interactions between the fields of NLP and ML has
been organized by taking as a reference the machine learning paradigms and showing which
NLP problems have been addressed by each of them. In the current section, we present a
reversed summary, that is, indexing the information by the type of NLP task to be solved.
The information is presented in the form of tables.

The notation used for the machine-learning algorithms appearing in the tables is the
following: DTs stands for Decision Trees, HMMs stands for Hidden Markov Models and sta-
tistical approaches, ME stands for the Maximum Entropy Approach, IBL stands for Instance—
Based (or memory-based) Learning, NNs stands for Neural Networks, TBL stands for the
Transformation-Based (error—driven) Learning, NB stands for Naive Bayes classifiers and de-
rived approaches, LSM stands for Linear Separators (on-line classifiers with Multiplicative up-
dating functions), GAs stands for Genetic Algorithms, Clust stands for Clustering algorithms,
DLs stands for Decision Lists, ILP stands for Inductive Logic Programming, Rocchio stands
for Rocchio’s algorithm for text categorization, Rl stands for Rule Induction algorithms, EC
stands for any algorithm that uses ensembles of classifiers or simple combination of heuristics,
SVM stands for Support Vector Machines, and, finally, LoglL stands for Log—linear Models.

Table 1 contains information about low—level NLP tasks, such as speech processing, mor-
phology and PoS tagging.

| | NB | DTs | HMMs | ME | TBL | NNs |
Speech recog- [8, 9] [97] [187] [55, 56, 15] | [206, 121, 155,
nition and 113, 229]
synthesis
Morphology [14]
PoS tagging [194, 189] | [200, 132, 140, | [45, 54, 144] | [10L, [21, 22, 23, | [155, 201, 70,
141, 164, 136, 177] 6, 186] 199, 131]
138, 137]
| | IBL | LSM | EC | | | |
PoS tagging | [61, 60, 90, | [188] [90, 24, 139,
58] 2, 136]

Table 1: References corresponding to some low—level NLP tasks

Table 2 contains the references about parsing (either shallow or general) and structural
ambiguity resolution.

Table 3 groups the references about semantic and discourse-level NLP tasks, namely, sense
disambiguation, co-reference resolution, anaphora resolution, dialogue act tagging, and text
filtering and categorization, which are NLP tasks usually associated to information retrieval
and information extraction.

Table 4 summarizes the references corresponding to different levels (lexical, syntactic,
semantic, etc.) of language acquisition.
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‘ ‘ DTs ‘ HMMs ‘ ME ‘ IBL ‘
Clause Boudaries [181]
Shallow Parsing [45,1,16,212] | [211] [7, 227, 33, 58]
Parsing [12, 132, 92] [178] [210, 37, 36, 38]
PP-attachment [180] [246]
disambiguation

‘ ‘ TBL ‘ NB ‘ NNs ‘ LSM ‘ EC ‘
Clause Boudaries [95]
Shallow Parsing [18] [128, 129] [130] [223]
Parsing [115, 43] [93]
PP-attachment [20] [52] [125, 218] [107] [2]
disambiguation

Table 2: References corresponding to syntactic analysis and structural ambiguity NLP prob-

lems
‘ ‘ DLs ‘ DTs ‘ NB ‘ TBL ‘ EM
WSD [240, 150] | [26, 150] | [86, 150, 112] | [67] [203, 166]
Text categorization [117, 69, | [117, 190, 119, [162, 163]
and filtering 230] 142, 196]
Dialogue act tagging [192] [193, 192]
Co-reference and [5, 143]
anaphora resolution
Cue phrase identifi- [122]
cation
‘ ‘ IBL ‘ NNs ‘ EC ‘ SVM ‘ Clust
WSD [159, 157,84, 73] | [150, 224] | [182, 72, 74, 165] [202]
Text categoriza- | [183, 238, 237, | [233] [198, 196, 13] [98, 69, 99]
tion and filtering | 239)
Co-reference and | [39] [148, 147] [35, 34]
anaphora resol.
‘ Rocchio ‘ RI/ILP ‘ LSM ‘ GAs ‘ ME ‘
WSD [74]
Text categoriza- | [185, 91, 118, | [49, 51, 50, 53, | [51, 118, 62, | [236, 127] [161]
tion and filtering | 196, 64] 134, 213] 64]
Information [216, 217, 29, 79,
Extraction 80, 81, 30, 215]

Table 3: References corresponding to the discourse-level semantics NLP problems.
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‘ ‘ IBL ‘ ILP ‘ NNs ‘ GAs ‘ Clust ‘

Lexical acqui- | [76, 75] [169]
sition

PoS acquisi- [108, 127]

tion

Grammatical [247, 248, | [111] [109, 127,
Inference 249, 222] 214]

Semantic ac- | [38] [169]
quisition

Table 4: References corresponding to automatic language inference tasks.

Finally, table 5 contains references about other NLP tasks, such those related with machine
translation, spelling correction, etc.

‘ ‘ DTs ‘ ME ‘ IBL ‘ TBL ‘ NB ‘
Acquisition of | [221, 209]
verbal properties
General machine [10] [100]
translation
Spelling  correc- [133] [86, 88, 89]
tion

‘ | DLs/ILP [ NNs/Clust | GAs | LSM | Logl ‘
Acquisition of | [152, 153, 29] [209] [209, 135]
verbal properties

General machine [235]

translation

Spelling  correc- | [241, 208] [116] [89]
tion

Generation [176]

Table 5: References corresponding to Machine Translation and other NLP tasks
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3 Word Sense Disambiguation: A Case Study in Supervised
Machine Learning

The present section is devoted to explain the comparison between four machine learning
algorithms applied to Word Sense Disambiguation. This work, which can be also found
in [74], is organized as follows: Sections 3.1 and 3.2 describes the word sense disambiguation
problem. Section 3.3 defines the general framework of supervised learning for classification
and section 3.4 presents the four ML algorithms used. In section 3.5 the general setting is
presented, including the corpora and the experimental methodology used. Sections 3.6, 3.7,
and 3.8 report the experiments carried out and the results obtained. Finally, section 3.9
concludes and discusses some lines for further research.

3.1 Word Sense Disambiguation

Word Sense Disambiguation (WSD) is the problem of assigning the appropriate meaning
(sense) to a given word in a text or discourse where this meaning is distinguishable from other
senses potentially attributable to that word. As an example, table 6 shows the definition of
two senses of the word age” and an example sentence® for each sense. Thus, a WSD system
must be able to assign the correct sense of a given word, for instance age, depending on the
context in which the word occurs.

Sense Definitions

age 1 | the length of time something (or someone) has existed;
“his age was 717; “it was replaced because o its age”

age 2 | a historic period;
“the Victorian age”; “we live in a litigious age”

Corpora Examples

age 1 | He was mad about stars at the age of nine .

age 2 | About 20,000 years ago the last ice age ended .

Table 6: Sense definitions and corpora examples.

Resolving the ambiguity of words is a central problem for Natural Language Processing
(NLP) applications and their associated tasks [96], including, for instance, natural language
understanding, machine translation, information retrieval and hypertext navigation, parsing,
acquisition of subcategorization patterns, selectional restrictions, speech synthesis, spelling
correction, reference resolution, automatic text summarization, etc.

WSD is one of the most important open problems in NLP. Despite the wide range of
approaches investigated [104] and the large effort devoted to tackle this problem, it is a fact
that to date, no large-scale broad-coverage and highly accurate WSD system has been built.

One of the most successful current lines of research is the corpus-based approach in which
statistical or Machine Learning (ML) algorithms have been applied to learn statistical models
or classifiers from corpora in order to perform WSD. Generally, supervised approaches (those
that learn from previously semantically annotated corpus) have obtained better results than
unsupervised methods on small sets of selected ambiguous words, or artificial pseudo-words.

"The senses of the example have been taken from the WordNet 1.5 [146].
8 These examples have been taken from the DSO corpus [159].
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Many standard ML algorithms for supervised learning have been applied to WSD, including;:
Decision Lists [242], Neural Networks [224], Bayesian learning [27], Exemplar Based learn-
ing [156, 84], and Boosting [72]. Further, in [150] some of the previously cited methods are
compared, jointly with Decision Trees and Rule Induction algorithms, on a very restricted
domain.

The performance of supervised ML based systems is usually calculated by testing the
algorithm on a separate part of the set of annotated examples (say 10-20%), or by N-fold
cross—validation, in which the set of examples is partitioned into N disjoint sets (or folds),
and the training—test procedure is repeated N times using all combinations of N —1 folds for
training and 1 fold for testing. In both cases, test examples are different from those used for
training, but they belong to the same corpus, and, therefore, they are expected to be quite
similar.

Although this methodology could be valid for certain NLP problems, such as English
Part-of-Speech tagging, we think that there exists reasonable evidence to say that, in WSD,
accuracy results cannot be simply extrapolated to other domains:

e WSD is very dependant on the domain of application. In [85], the idea of “one sense
per discourse” has been suggested, that is, if a polysemous word appears two or more
times in a well-written discourse, it is extremely likely that they will all share the same
sense.

e Further, see [159, 156], where quite different accuracy figures are obtained when testing
an Exemplar Based WSD classifier on two different corpora, namely Wall Street Journal
and Brown Corpus (both corpora belong to different domains).

o It does not seem reasonable to think that the training material is large and representative
enough to cover “all” potential types of examples.

We think that the study of the domain dependence of WSD —in the style of other studies
devoted to parsing [207]— is needed to assess the validity of the supervised approach, and to
determine to which extent a tuning process is necessary to make real WSD systems portable.
In order to corroborate the previous hypotheses, this work explores the portability and tuning
of four different ML algorithms by training and testing them on different corpora.

3.2 Is Supervised WSD Really Viable?

It is well-known that supervised methods suffer from the lack of widely available semantically
tagged corpora, from which to construct really broad coverage WSD systems. This is known
as the “knowledge acquisition bottleneck” [86]. In [158] is estimated that the manual annota-
tion effort necessary to build a broad coverage semantically annotated English corpus would
be about 16 man-years. This extremely high overhead for supervision (which could be much
greater if a costly tuning procedure is required before applying any existing system to each
new domain) and, additionally, the also serious learning overhead when common ML algo-
rithms scale to real size WSD problems, explain why supervised methods have been seriously
questioned.

Due to this fact, recent works have focused on reducing the acquisition cost, the need for
supervision, and the computational requirements in corpus-based methods for WSD. Conse-
quently, the following four lines of research are being explored:
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1. The design of efficient sampling methods [71, 84];

2. The use of external lexical resources, such as WordNet [146], and Web search engines to
automatically obtain from Internet arbitrarily large samples of word senses [112, 145];

3. The use of unsupervised EM-like algorithms for estimating the statistical model param-
eters [166].

—

4. The application of efficient and accurate ML algorithms [72] and attribute representa-
tions [73] in order to deal with real size WSD problems.

Solving the problem of knowledge acquisition is crucial for making the unsupervised WSD
approach viable. It is our belief that the referred work, and especially second and fourth
lines, provides enough evidence towards the “opening” of the bottleneck in the near future.
For that reason, it is worth further investigating the robustness and portability of existing
supervised ML methods to better resolve the WSD problem.

3.3 Machine Learning Framework: Supervised Learning for Classification

The goal in supervised automated learning for classification consists of inducing an approxi-
mation (or hypothesis) of an unknown function f defined from an input space €2 to a discrete
unordered output space®: {1,..., K}, given a set of training examples:

T ={(x1, f(x1))s -y (Xny f(%n))}-

The components of each example x; are typically vectors of the following form:
X; = <$i71, T2, $i,m>7

whose components, called features (or attributes) of x;, are discrete or real-valued. Therefore
the objects of the domain are completely described by a set of attribute—value pairs, and a
class label.

The function f:Q — {1,..., K} defines a K-partition of the input space into sets f~! (k)
called classes and denoted ;.10

Given a training set T', a learning algorithm outputs a classifier, denoted h, which is a
hypothesis about the true function f. This process of deriving classification rules from samples
of classified objects is sometimes called discrimination. Given new x values, h predicts the
corresponding y values, i.e. it classifies the new examples.

3.4 Learning Algorithms Tested

This section provides some references and short descriptions of the main characteristics of the
four learning methods compared in this report: Naive Bayes, Exemplar Based, SNoW and
LazyBoosting.

?When a continuous output space is considered we talk about regression instead of classification.
1%Sometimes f is viewed as a distribution (and not a deterministic mapping). In this more general situation
f7! would be ill-defined. Nevertheless, we state it as deterministic for the sake of simplicity.
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3.4.1 Naive Bayes (NB)

Naive Bayes is intended as a simple representative of statistical learning methods. It has been
used in its most classical setting [68]. That is, assuming independence of features, it classifies
a new example by assigning the class that maximizes the conditional probability of the class
given the observed sequence of features of that example.

Let {1...K} be the set of classes and {z;1,..., 2} the set of feature values of a example
x;. The Naive Bayes method tries to find the class that maximizes P(k | z;1,...,2Z;m):

arg ml;cLX Pk|ziq,...,zim) & arg ml;cLX P(k) HP(:C,'J‘ | k),
J

where P(k) and P(z;; | k) are estimated during training process using relative frequencies.
To avoid the effects of zero counts when estimating the conditional probabilities of the
model, a very simple smoothing technique, proposed in [156], has been used. It consists in
replacing zero counts of P(z; ; | k) with P(k)/N where N is the number of training examples.
Despite its simplicity, Naive Bayes is claimed to obtain state—of-the—art accuracy on
supervised WSD in many papers [150, 156, 112].

3.4.2 Exemplar Based Classifier (EB)

In Exemplar Based learning [220, 3] no generalization of training examples is performed.
Instead, the examples are stored in memory and the classification of new examples is based
on the classes of the most similar stored examples. After the instance base is built, new
(test) instances are classified by matching them to all instances in the instance base, and by
calculating with each match the distance between the new instance x = (zy,..., 2,,) and the
stored instance y = (Y1,. .., Ym)-

The most basic metric for instances with symbolic features is the overlap metric (also
called Hamming distance), defined as follows:

Alx,y) =Y wid(wi, yi),
=1

where w; is the weight for 7_th feature and &(z;, y;) is the distance between two values, which
is defined as:
S(zi,yi) =0 if z; =y, 1 otherwise.

In our basic implementation, all examples are stored in memory and the classification of
a new example is based on a k-NN (Nearest—Neighbours) algorithm using Hamming distance
to measure closeness (in doing so, all examples are examined and no feature weighting is used,
i.e. w; =1 for all ¢). For k’s greater than 1, the resulting sense is the weighted majority sense
of the k nearest neighbours —where each example votes its sense with a strength proportional
to its closeness to the test example.

In the experiments explained in following sections, the EB algorithm is run several times
using different number of nearest neighbours (1, 3, 5, 7, 10, 15, 20 and 25) and the results
corresponding to the best choice are reported!!.

"In order to construct a real EB-based system for WSD, the k parameter would be estimated by cross—
validation using only the training set [156].
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Exemplar Based learning is said to be the best option for WSD [156]. Other authors [58]
point out that Exemplar Based methods tend to be superior in language learning problems
because they do not forget exceptions.

3.4.3 SNoW: A Winnow—based Classifier

SNoW stands for Sparse Network Of Winnows, and it is intended as a representative of on—line
learning algorithms.

The basic component is the Winnow algorithm [123]. It consists of a linear threshold
algorithm with multiplicative weight updating for 2-class problems, which learns very fast in
the presence of many binary input features.

In the SNoW architecture there is a winnow node for each class, which learns to separate
that class from all the rest. During training, each example is considered a positive example
for winnow node associated to its class and a negative example for all the rest. A key point
that allows a fast learning is that the winnow nodes are not connected to all features but only
to those that are “relevant” for their class. When classifying a new example, SNoW is similar
to a neural network which takes the input features and outputs the class with the highest
activation.

A detailed description of the SNoW architecture and its current implementation is included
in appendix A.l.

SNoW is proven to perform very well in high dimensional domains, where both, the training
examples and the target function reside very sparsely in the feature space [188], e.g: text
categorization, context—sensitive spelling correction, WSD, etc.

3.4.4 Boosting

The main idea of boosting algorithms is to combine many simple and moderately accurate
hypotheses (called weak classifiers) into a single, highly accurate classifier. The weak classifiers
are trained sequentially and, conceptually, each of them is trained on the examples which were
the most difficult to classify by the preceding weak classifiers. These weak hypotheses are
then linearly combined into a single rule called the combined hypothesis.

More particularly, the Schapire and Singer’s AdaBoost.MH algorithm for multiclass multi-
label classification [197] has been used. As in that paper, very simple weak hypotheses are
used. They test the value of a boolean predicate and make a real-valued prediction based
on that value. The predicates used, which are the binarization of the attributes described in
section 3.5.2, are of the form “f = v”, where f is a feature and v is a value (e.g: “previous_word
= hospital”). Each weak rule uses a single feature, and, therefore, they can be seen as simple
decision trees with one internal node (testing the value of a binary feature) and two leaves
corresponding to the yes/no answers to that test.

A detailed description of Schapire and Singer’s AdaBoost.MH algorithm for multiclass
multi-label classification, and its implementation for WSD is included in appendix A.2.

LazyBoosting (LB)

LazyBoosting, explained in [72], is a simple modification of the AdaBoost.MH algorithm, which
consists of reducing the feature space that is explored when learning each weak classifier. More
specifically, a small proportion p of attributes are randomly selected and the best weak rule
is selected only among them. The idea behind this method is that if the proportion p is
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not too small, probably a sufficiently good rule can be found at each iteration. Besides, the
chance for a good rule to appear in the whole learning process is very high. Another important
characteristic is that no attribute needs to be discarded and so we avoid the risk of eliminating
relevant attributes. The method seems to work quite well since no important degradation
is observed in performance for values of p greater or equal to 5% (this may indicate that
there are many irrelevant or highly dependant attributes in our domain). Therefore, this
modification significantly increases the efficiency of the learning process (empirically, up to 7
times faster) with no loss in accuracy.

3.5 Setting
3.56.1 The DSO Corpus

The DSO corpus is a semantically annotated corpus containing 192,800 occurrences of 121
nouns and 70 verbs!2, corresponding to the most frequent and ambiguous English words. This
corpus was collected by Ng and colleagues [159] and it is available from the Linguistic Data
Consortium (LDC)'3.

The DSO corpus contains sentences from two different corpora, namely Wall Street Journal
(WSJ) and Brown Corpus (BC). Therefore, it is easy to perform experiments about the
portability of alternative systems by training on the WSJ part and testing on the BC part,
or vice-versa. Hereinafter, the WSJ part of DSO will be referred to as corpus A, and the BC
part to as corpus B. At a word level, we force the number of examples of corpus A and B be
the same'* in order to have symmetry and allow the comparison in both directions.

From these corpora, a group of 21 words which frequently appear in the WSD literature
has been selected to perform the comparative experiments (each word is treated as a different
classification problem). These words are 13 nouns (age, art, body, car, child, cost, head,
interest, line, point, state, thing, work) and 8 verbs (become, fall, grow, lose, set, speak, strike,
tell). Table 7 contains information about the number of examples, the number of senses, and
the percentage of the most frequent sense (MFS) of these reference words, grouped by nouns,
verbs, and all 21 words.

examples senses MFS (%)

corpus | PoS min max avg | min max avg | min max avg
nouns | 122 714 420 24 7.7 1379 90.7 59.8
A verbs | 101 741 369 13 8.9 | 20.8 81.6 49.3
all 101 741 401 24 8.1 | 20.8 90.7 56.1
nouns | 122 714 420 24 88 | 21.0 87.7 453
B verbs | 101 741 369 14 114 | 28.0 71.7 46.3
all 101 741 401 24 9.8 | 21.0 87.7 45.6

O = WIN &~ DN

Table 7: Information about the set of 21 words of reference.

12These examples, consisting of the full sentence in which the ambiguous word appears, are tagged with a
set of labels corresponding, with minor changes [160], to the senses of WordNet 1.5 [146].

BLDC address: http://www.ldc.upenn.edu/

4 This is achieved by reducing the size of the largest corpus (by performing random elimination of examples)
to the size of the smallest.
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3.5.2 Attributes

Two kinds of information are used to perform disambiguation: local and topical context.

Let “...w_3 w_g w_1 w w41 Wi wis...” be the context of consecutive words around
the word w to be disambiguated, and py; (—3<i<3) be the part—of-speech tag of word w;'?.
Attributes referring to local context are the following 15:

P-3, P-2, P-1, P+1, P42, P+3, W-1, W41, (w—27w—1)7 (w_l,w+1), (w+1,w+2),
('w—37lw—27lw—1)7 (lw—27lw—17lw+1)7 (lw—17lw+17lw+2) and (lw+17lw+27lw+3)

where the last seven correspond to collocations of two and three consecutive words.

The topical context is formed by ¢y, ..., ¢y, which stand for the unordered set of open
class words appearing in the sentence'®.

The four methods tested translate this information into features in different ways. SNoW
and LB algorithms require binary features. Therefore, local context attributes have to be
binarized in a preprocess, while the topical context attributes remain as binary tests about
the presence/absence of a concrete word in the sentence. As a result the number of attributes
is expanded to several thousands (from 1,764 to 9,900 depending on the particular word).

The binary representation of the topical-context attributes is not appropriate for NB and
EB algorithms. Such a representation leads to an extremely sparse vector representation of
the examples, since in each example only a few words, among all possible, are observed.
Thus, the examples are represented by a vector of thousands of 0’s and only a few 1’s. In this
situation two examples will coincide in the majority of the values of the attributes (roughly
speaking in “all” the zeros) and will probably differ in those positions corresponding to 1’s.
This fact wrongly biases the similarity measure (and thus the classification) used in EB in
favour of that stored examples which have less 1’s, that is, those corresponding to the shortest
sentences.

In order to address this limitation we propose [73] to reduce the attribute space by col-
lapsing all binary attributes cq,..., ¢, in a single set—valued attribute ¢ that contains, for
each example, all closed class words that appear in the sentence. In this setting, the similarity
S between two values V; = {w;,, w;y,...,w;,} and V; = {w;,, wj,,...,w,, } is redefined as:
S(V;,V;) = | VinV;|, that is, equal to the number of words shared'”.

This approach implies that a test example is classified taking into account the information
about the words it contains (positive information), but not the information about the words
it does not contain.

On the other hand, NB have problems with the efficiency when classifying new examples,
since a product of thousands of conditional probabilities (real values) must be done to classify
a new example. In order to improve performance, we tested a variant of the Naive Bayes
algorithm which does not take into account all attributes but only the conditional probabilities
corresponding to the words that appear in the test examples (again positive information). In
this way, the efficiency is increased with no loss in accuracy [73].

'5In this experiment, the Decision-tree-based tagger by [138] has been used to annotate training examples
with the part—of-speech labels.

'6The already described set of attributes contains those attributes used in [159], with the exception of the
morphology of the target word and the verb—object syntactic relation.

17"This measure is usually known as the matching coefficient [28]. More complex similarity measures, e.g.
Jaccard or Dice coefficients, have not been explored.
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These variants of NB and EB algorithms are called PNB and PEB, standing for Positive
EB and NB. They are fully tested in [73] and empirically proven to perform much better than
other variants of handling available attributes.

3.5.3 Experimental Methodology

The comparison of algorithms has been performed in series of controlled experiments using
exactly the same training and test sets. There are 7 combinations of training—test sets called:
A+B—A+B, A+B-A, A+B-B, A-A, B-B, A-B, and B-A, respectively. In this notation, the
training set is placed at the left hand side of symbol “~”, while the test set is at the right
hand side. For instance, A—B means that the training set is corpus A and the test set is corpus
B. The symbol “4” stands for set union, therefore A+B—B means that the training set is A
union B and the test set is B.

When comparing the performance of two algorithms, two different statistical tests of
significance have been applied depending on the case. A-B and B—A combinations represent
a single training—test experiment. In this cases, the McNemar’s test of significance is used
(with a confidence value of: X%,0.95 = 3.842), which is proven to be more robust than a simple
test for the difference of two proportions.

In the other combinations, a 10-fold cross-validation was performed in order to prevent
testing on the same material used for training. In these cases, accuracy/error rate figures
reported in following sections are averaged over the results of the 10 folds. The associated
statistical tests of significance is a paired Student’s #-test with a confidence value of: g o975 =
2.262.

Information about both statistical tests can be found at [66].

When classifying test examples, all methods resolve potential ties between senses by choos-
ing the most frequent sense among all those tied.

3.6 First Experiment

Table 8 shows the accuracy figures of the four methods in all combinations of training and
test sets'®. MFC stands for a Most-Frequent-sense Classifier, that is, a naive classifier that
learns the most frequent sense of the training set and uses it to classify all examples of the
test set. Averaged results are presented for nouns, verbs, and overall, and the best results for
each case are printed in boldface.

It can be observed that LB outperforms all other methods in all cases. Additionally, this
superiority is statistically significant, except when comparing LB to the EB approach in the
cases marked with an asterisk. Note that, surprisingly, LB in A+B-A (or A+B-B) does not
achieve substantial improvement to the results of A-A (or B-B) —in fact, the first variation is
not statistically significant and the second is only slightly significant. That is, the knowledge
acquired from a single corpus almost covers the knowledge of combining both corpora. This
effect is also observed in the other methods, specially in some cases (e.g. SNoW in A+B-A
vs. A-A) in which the joining of both training corpora is even counterproductive.

Regarding the portability of the systems, very disappointing results are obtained. Re-
stricting to LB results, we observe that the accuracy obtained in A-B is 47.1% while the
accuracy in B-B (which can be considered an upper bound for LB in B corpus) is 59.0%, that
is, a difference of 12 points. Furthermore, 47.1% is only slightly better than the most frequent

'8 The second and third column correspond to the same train and test sets presented in [159, 156]
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Accuracy (%)

Method | PoS A+B—A+B | A+B-A | A+B-B A-A B-B A-B B-A

nouns 46.59 56.68 36.49 59.77 45.28 33.97 | 39.46
MFC | verbs 46.49 48.74 | 44.23 48.85 45.96 40.91 | 37.31
total 46.55 53.90 39.21 55.94 45.52 36.40 | 38.71

nouns 62.29 68.89 55.69 66.93 56.17 36.62 | 45.99
NB verbs 60.18 64.21 56.14 63.87 57.97 50.20 | 50.75
total 61.55 67.25 55.85 65.86 56.80 41.38 | 47.66

nouns 62.66 69.45 56.09 69.38 56.17 42.15 | 50.53
EB verbs 63.67 68.39 58.58 68.25 59.57 51.19 | 52.24
total 63.01 69.08 56.97 68.98 57.36 45.32 | 51.13

nouns 61.24 66.36 56.11 68.85 56.55 42.13 | 49.96
SNoW | verbs 60.35 64.11 56.58 63.91 55.36 47.66 | 49.39
total 60.92 65.57 | 56.28 67.12 56.13 44.07 | 49.76

nouns 66.00 72.09 | 59.92 71.69 | 58.33 || 43.92 | 51.28"
LB verbs 66.91 71.23 | 62.58 || 70.45* | 60.14* || 52.99 | 53.29*
total 66.32 71.79 | 60.85 71.26 | 58.96 || 47.10 | 51.99*

Table 8: Accuracy results of the methods on all training—test combinations

sense in corpus B, 45.5%. The comparison in the reverse direction is even worse: a difference
of 19% from A-A to B-A, which is lower than the most frequent sense of corpus A, 55.9%.

Apart from accuracy figures, the observation of the predictions made by the four methods

on the test sets provides interesting information about the comparison of the algorithms.
Figure 1 shows the agreement rates and the Kappa (k) statistics'® between all pairs of methods
in the A-A, A-B, B-B and B-A cases. ‘DSQ’ stands for the annotation of DSO corpus, which

is taken as the correct. Therefore the agreement rate with DSO contain the accuracy results

previously reported. Some interesting conclusions can be drawn from those tables:

1. NB obtains the most similar results with regard to MFC in agreement rate and Kappa
values in all tables. The average agreement ratio between the four tables is 83% and it
achieves 89% in one case. This means that more than 8 out of 10 times it predicts the
most frequent sense.

. LB obtains the most similar results with regard to DSO (accuracy) in agreement rate
and Kappa values, and it has the less similar Kappa and agreement values with regard to
MFC (furthermore, LB provides the most dissimilar annotation with respect to the rest
of algorithms). This indicates that LB is the method that better learns the behaviour
of the DSO examples.

. The Kappa values are very low. But, as it is suggested in [228], evaluation measures,
such as precision and recall, should be computed relative to the agreement between the
human annotators of the corpus and not to a theoretical 100%. It seems pointless to
expect more agreement between the system and the reference corpus than between the

'*The Kappa statistic k [48] is a better measure of inter-annotator agreement which reduces the effect of
chance agreement. It has been used for measuring inter—annotator agreement during the construction of some

semantic annotated corpora [228, 160].
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annotators themselves. Contrary to the intuition that the agreement between human
annotators should be very high in the WSD task, some papers report surprisingly low
figures. For instance, [160] reports an accuracy rate of 56.7% and a Kappa value of
0.317 when comparing the annotation of a subset of the DSO corpus performed by two
independent research groups2®. Similarly, [228] reports values of Kappa near to zero
when annotating some special words for the ROMANSEVAL corpus?'. From this point
of view, the Kappa values of 0.44 and 0.32 achieved by LB in A—A and B-B could be
considered excellent results. Unfortunately, the subset of the DSO corpus and that
used in this report are not the same and, therefore, a direct comparison is not possible.
Furthermore, note that the LB Kappa values when moving from one corpus to another
(A-B and B-A) are extremely low (0.14 and 0.18, respectively).

3.7 Second Experiment

The previous experiment shows that classifiers trained on the A corpus do not work well on
the B corpus, and vice-versa. Therefore, it seems that a tuning process is necessary to make
supervised systems portable.

This second experiment explores the effect of a tuning process consisting of adding to the
original training set a relatively small sample of manually sense tagged examples of the new
domain. The size of this supervised portion varies from 10% to 50% of the available corpus in
steps of 10% (the remaining 50% is kept for testing). This set of experiments will be referred
to as A+%B-B, or conversely, to B+%A-A.

In order to determine to which extent the original training set contributes to accurately
disambiguate in the new domain, we also calculate the results for %A-A (and %B-B), that
is, using only the tuning corpus for training.

Figure 2 graphically presents the results obtained by all methods. Each plot contains the
X+%Y-Y and %Y-Y curves, and the straight lines corresponding to the lower bound MFC,
and to the upper bounds Y=Y and X+Y-Y.

As expected, the accuracy of all methods grows (towards the upper bound) as more tuning
corpus is added to the training set. However, the relation between X4+%Y-Y and %Y-Y reveals
some interesting facts. In plots 2a, 3a, and 1b the contribution of the original training corpus
is null. Furthermore, in plots la, 2b, and 3b a degradation on the accuracy performance
is observed. Summarizing, these six plots show that for Naive Bayes, Exemplar Based, and
SNoW methods it is not worth keeping the original training examples. Instead, a better (but
disappointing) strategy would be simply using the tuning corpus.

However, this is not the situation of LazyBoosting (plots 4a and 4b), for which a moderate
(but consistent) improvement of accuracy is observed when retaining the original training set.
Therefore, LazyBoosting shows again a better behaviour than their competitors.

3.8 Third Experiment

The bad results about the portability of systems could be explained by, at least, two reasons:
1) Corpus A and B have a very different distribution of senses, and, therefore, different a—

20 A Kappa value of 1 indicates perfect agreement, while 0.8 is considered as indicating good agreement [40].

2'ROMANSEVAL is, like SENSEVAL for English, a specific competition between WSD
systems for Romance languages. See  http://www.pl.univ-aix.fr/projects/romanseval  and
http://www.itri.bton.ac.uk/events/senseval.
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A-A
DSO | MFC | NB | EB | SNoW | LB

DSO — 0.57 | 0.67 | 0.70 | 0.69 | 0.72
MFC |-0.17 | — |0.84|0.68| 0.73 | 0.67
NB 0.19 | 002 | — | 080 | 085 | 0.77
EB 0.37 | -0.04 | 0.38 | — 0.79 | 0.79
SNoW | 0.32 | -0.06 | 0.51 | 0.48 — 0.77
LB 0.44 | -0.14 | 0.32 | 0.48 | 0.43 —
A-B
DSO | MFC | NB | EB | SNoW | LB
DSO — 0.37 | 041 | 0.45 | 044 | 0.47
MFC |-026 | — | 0.89]0.64| 0.71 | 0.62
NB -0.12 | 0.04 | — |0.70 | 0.78 | 0.68
EB 0.10 | -0.11 | 0.16 | — 0.70 | 0.70
SNoW | 0.06 | -0.08 | 0.24 | 0.34 — 0.68
LB 0.14 | -0.11 | 0.14 | 0.39 | 0.33 —
B-B
DSO | MFC | NB | EB | SNoW | LB
DSO — 0.47 | 0.57 | 0.58 | 0.57 | 0.59
MFC | -0.20| — |0.78 | 0.65 | 0.62 | 0.57
NB 0.15 |-004| — | 077 | 0.77 | 0.70
EB 0.24 | -0.14 | 0.40 | — 0.71 | 0.71
SNoW | 0.24 | -0.15 | 0.41 | 0.37 — 0.69
LB 0.32 | -0.17 | 0.30 | 0.43 | 0.39 —
B-A
DSO | MFC | NB | EB | SNoW | LB
DSO — 0.38 | 046 | 0.50 | 0.49 | 0.51
MFC |-032 | — |0.81]0.62| 0.56 | 0.52
NB -0.05 | -0.00 | — |0.71 | 0.69 | 0.63
EB 0.11 | -0.18 | 0.18 | — 0.65 | 0.66
SNoW | 0.13 | -0.21 | 0.19 | 0.24 — 0.64
LB 0.18 | -0.22 | 0.11 | 0.32 | 0.30 —

Figure 1: Kappa (x) statistic (below diagonal) and agreement rate (above diagonal) between

all methods in A-A, A-B, B-B and B-A experiments
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priori biases; 2) Examples of corpus A and B contain different information, and, therefore,
the learning algorithms acquire different (and non interchangeable) classification cues from
both corpora.

The first hypothesis is confirmed by observing the bar plots of figure 3, which contain the
distribution of the four most frequent senses of some sample words in the corpora A and B,
respectively. As an example, first and second senses of noun head have a completely opposite
distribution in both corpora A and B (first plot of figure 3).

100 100 100 100
% head [ interest [ line d state
& & & 8

20 20

0 T 0

3l:.:| 0
1 2 3 4

0 fall 0 grow 0 lose 0 strike

n| [
0
2 3 ¢ 2 3 I

Figure 3: Distribution of the four most frequent senses for four nouns (head, interest, line,
state) and four verbs (fall, grow, lose, strike). Black bars = A corpus; Grey bars = B corpus

In order to check the second hypothesis, two new sense-balanced corpora have been gen-
erated from the DSO corpus, by equilibrating the number of examples of each sense between
A and B parts??. In this way, the first difficulty is artificially eliminated and the algorithms
should be portable if examples of both parts were quite similar.

Table 9 shows the results obtained by LazyBoosting on these new corpora.

Accuracy (%)

Method | PoS A+B—A+B | A+B-A | A+B-B A-A B-B A-B B-A
nouns 48.75 48.90 | 48.61 || 48.87 | 48.61 || 48.99 | 48.99
MFC verbs 48.22 48.22 48.22 || 48.22 | 48.22 || 48.22 | 48.22
total 48.55 48.64 48.46 || 48.62 | 48.46 || 48.70 | 48.70
nouns 62.82 64.26 | 61.38 || 63.19 | 60.65 || 53.45 | 55.27
LB verbs 66.82 69.33 | 64.32 | 68.51 | 63.49 || 60.44 | 62.55
total 64.35 66.20 | 62.50 | 65.22 | 61.74 || 56.12 | 58.05

Table 9: Results of LazyBoosting on the sense-balanced corpora

Regarding portability, we observe a significant accuracy decrease of 7 and 5 points from
A-A to B-A, and from B-B to A-B, respectively??. That is, even when the same distribution

22 Again, this is achieved by reducing the size of the largest corpus to the size of the smallest.
28 This difference in accuracy is not as important as in the first experiment, due to the simplification provided
by the balancing of sense distributions.
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of senses is conserved between training and test examples, the portability of the supervised
WSD systems is not guaranteed. As an extreme example, table 10 shows the performance of
LB on the noun state. Note that in this case, LB performs even worse than MFC in the A-B
and B-A columns.

Accuracy (%)
Method | A+B—A+B | A+B-A | A+B-B A-A B-B A-B B-A
MFC 39.00 39.00 | 39.00 || 39.00 | 39.00 || 39.00 | 39.00
LB 51.25 49.00 | 53.50 || 45.50 | 50.50 || 37.83 | 38.50

Table 10: Results of LazyBoosting on noun state (from the sense-balanced corpora).

These results imply that examples have to be largely different from one corpus to another.
After the training process, LB provides as output an ordered set of rules based on the most
relevant attributes. By studying the weak rules generated by LB from both corpora, we could
observe the difference between them.

e The type of features used in the rules were significantly different between corpora, and,
additionally, there were very few rules that apply to both sets. For corpus B, topical
rules (i.e. those referring to topical context) seem to be more important than for corpus
A. In the 50 firsts rules, corpus B has 30 topical rules and corpus A 20. Restricting
to the 20 firsts rules, corpus B has 10 topical rules while corpus A has only 3. Not
surprisingly, there are 34 of the 50 firsts rules learned from corpus A that do not appear
in those learned from corpus B.

e The sign of the predictions of many of these common rules was somewhat contradictory
between corpora. See, for instance, the two rules presented in table 11, acquired from
corpus A and B respectively, which account for the collocation state court. For each rule
and each sense there are two real numbers, which are the rule outputs when the feature
holds in the example and when it does not, respectively. The sign of real numbers is
interpreted as a prediction as to whether the sense should or should not be assigned to
the example. The magnitude of the prediction is interpreted as a measure of confidence
in the prediction. Therefore, according to the first rule, the presence of the collocation
state court gives positive evidence to the sense number 3 and negative to the rest of
senses. On the contrary, according to the second rule the presence of such collocation
would contribute to sense number 5 and negatively to all the rest (including sense
number 3).

Senses

Feature 0 1 2 3 4 5
rule 1 | A | state court | -0.5064 | -1.0970 | -0.6992 | 1.2580 | -1.0125 | -0.4721
0.0035 | 0.0118 | 0.0066 | -0.0421 | 0.0129 | 0.0070
rule 2 | B | state court | -0.0696 | -0.2988 | -0.1476 | -1.1580 | -0.5095 | 1.2326
-0.0213 | 0.0019 | -0.0037 | 0.0102 | 0.0027 | -0.0094

Table 11: Example of WeakRule: it is referred to the collocation state court.

It has to be noted that these rules are completely coherent with the senses assigned to
the examples containing state court in both corpora, and therefore, the contradiction comes
from the different information that characterize examples of both corpora.
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3.9 Conclusions

This work has pointed out some difficulties regarding the portability of supervised WSD
systems, a very important issue that has been paid little attention up to the present. The
main conclusion that can be extracted is that to assure the portability of systems, a process of
tuning to the new domain is required (at least if the learning—testing corpora differ so as BC
and WSJ do). This result is in contradiction with the idea of “robust broad-coverage WSD”
introduced by [158], in which a supervised system trained on a large enough corpora (say a
thousand examples per word) should provide accurate disambiguation on any corpora (or, at
least significantly better than MFS). Consequently, it is our belief that a number of issues
regarding portability, tuning, knowledge acquisition, etc., should now be thoroughly studied
before stating that the supervised ML paradigm is able to resolve a realistic WSD problem.

Regarding the ML algorithms tested, the contribution of this work consist of empirically
demonstrating that the LazyBoosting algorithm outperforms other three state-of-the-art su-
pervised ML methods for WSD. Furthermore, this algorithm is proven to have better properties
when is applied to new domains.

Further work is planned to be done in the following directions:

e Studying the problem of obtaining a representative enough training corpus, clarifying
what is exactly meant by enough and representative. Note that in current approaches to
WSD each word is treated as a different classification problem. Therefore, the collection
of a representative corpus should take into account the particularities of each word in
order to decide the number of examples needed to learn, the most useful attributes, and
80 on.

e Due to the fact that most of the knowledge learned from a domain is not applicable
when changing to a new domain, further investigation is needed on tuning strategies,
specially on those using non-supervised algorithms.

e Extensively evaluate LazyBoosting on the WSD task. This would include taking into
account additional/alternative attributes and testing the algorithm in other corpora
—specially on sense-tagged corpora automatically obtained from Internet using non-
supervised methods [112, 145].

e [t is known that mislabelled examples resulting from annotation errors tend to be hard
examples to classify correctly, and, therefore, tend to have large weights in the final
distribution. This observation allows both to identify the noisy examples and use Lazy-
Boosting as a way to improve data quality. Preliminary experiments have been already
carried out in this direction on the DSO corpus.

e The inspection of the rules learned by LazyBoosting could provide evidence about similar
behaviours of a—priori different senses. We think that this type of knowledge could be
useful to perform clustering of too fine-grained or artificial senses.
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A Technical Details

A.1 SNoW in Detail

SNoW [89] stands for Sparse Network of Winnows. It is a on-line learning system which has
the Winnow algorithm as the basic component. This method has not been applied to WSD
before. For this reason it will be described in more detail.

Winnow Algorithm

Winnow [123] is a linear threshold algorithm for 2-class problems with binary (i.e., 0/1-valued)
input features. It classifies a new example z into positive class if

» wg>06, VfEF

and into negative class otherwise. In this formulation, F' is the set of active features of z (i.e.
those that have value 1), wy is the weight associated to input feature f and 6 is the threshold
parameter. Winnow is an online algorithm; it accepts examples one-at-a-time and updates
the weights w; as necessary.

Winnow initializes its weights wy to 1. It then accepts a new training example (z,y), where
y is the class of =, and applies the threshold rule to compute the predicted class y’. Winnow
is a mistake—driven algorithm, that is, it updates its hypotheses only when a mistake is made.
If the predicted class is correct (y = y’), Winnow does nothing. However, if the predicted
class is wrong, Winnow updates its weights as follows. If 3’ is negative and y positive, then
the weights of active features are promoted (informally, they were too low):

VfEF, wf+ a- wy

where a is a number greater than 1 called promotion parameter. If y' is positive and y
negative, then the weights corresponding active features are demoted (informally, they were
too high):

VieEF, wy+ B -wy

where 3 is a positive number lower than 1 called demotion parameter.

Snow Architecture

In the SNoW architecture there is a Winnow node for each class, which learns to separate
that class from all the rest. Figure 4 shows the SNoW architecture learned to disambiguate
between the two senses of age presented in table 6.

Initially, there are no connections between features and classes. During the training step,
examples are processed sequentially. FEach training example is a positive example for the
class it belongs and negative for the rest. A key point that allows a fast learning is that the
Winnow nodes are not connected to all features but only to those that are “relevant” for their
class (i.e. those that appear in at least one training example of that class). For instance,
in figure 4, the features “w4q = average” and “wyy = 42”7 are connected only to the first
node (and “wyo = nuclear” only to the second node), while feature “wy; = of” is connected
to both winnow nodes because it appears in examples of both classes. These connections
between features and classes are created dynamically as the learning examples are processed.
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Figure 4: SNoW Architecture

In [62] the training step is repeated several times so as to better adjust the weights of the
network. In order to clarify this, these training step repetitions are equivalent to the Neural
Network learning epochs. However, the utility of that retraining step is dubious, given that it
is not even mentioned in some papers in which SNoW is applied [189, 89]. Retraining implies
to add a new parameter to the system, “when to stop”. In [62] the training process finishes
when:

1. no mistakes are made on the training examples; or
2. a maximum number of epochs is achieved (say 50).

When classifying a new example, SNoW is similar to a neural network which takes the
input features and outputs the class with the highest activation.

Table 12 shows the particular parameter values used in the following experiments?4. These
values have been empirically determined and they are those that lead to better accuracy of
the algorithm in the WSD task.

SNoW is proven to perform very well in high dimensional domains, where both, the training
examples and the target function reside very sparsely in the feature space [188], such as text
categorization [62] or context-sensitive spelling correction [89].

A.2 AdaBoost.MH in Detail

This section describes the Schapire and Singer’s AdaBoost.MH algorithm for multiclass multi-
label classification, using exactly the same notation given by the authors in [198, 196].

2YWhen a new connection between a feature and a class is activated its weight is initialized to the value "0%",
which is the threshold value divided by the number of active features of the current example.
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Parameter Value

Promotion («) 1.5
Demotion (/3) 0.8
Threshold (6) 1
Initial weights "67"
Number of training epochs 1

Table 12: SNoW Parameter Values

As already said, the purpose of boosting is to find a highly accurate classification rule
by combining many weak hypotheses (or weak rules), each of which may be only moderately
accurate. It is assumed that there exists a separate procedure called the WeakLearner for
acquiring the weak hypotheses. The boosting algorithm finds a set of weak hypotheses by
calling the weak learner repeatedly in a series of T rounds. These weak hypotheses are then
combined into a single rule called the combined hypothesis.

Let S = {(x1,Y1),..., (Xm, Yim)} be the set of m training examples, where each instance
x; belongs to an instance space X and each Y; is a subset of a finite set of labels or classes ).
The size of Y is denoted by k& = |Y|.

The pseudo—code of AdaBoost.MH is presented in figure 5.2°

AdaBoost.MH maintains an mxk matrix of weights as a distribution D over examples and
labels. The goal of the WeakLearner algorithm is to find a weak hypothesis with moderately low
error with respect to these weights. Initially, the distribution D; is uniform, but the boosting
algorithm updates the weights on each round to force the weak learner to concentrate on the
pairs (examples,label) which are hardest to predict.

procedure AdaBoost. MH (in: S = {(x;,Y;)}2,)

### S is the set of training examples
### Initialize distribution Dy (for all 4,1 <i<m, and all [, 1 <1 < k)
Dy (i,1) = 1/(mk)
for t:=1to T do
### Get the weak hypothesis hy : A XY - R
hy = WeakLearner (X, D;);
### Update distribution D, (for all 4,1 <i<m, and all [, 1 <[ < k)
Dt+1(i7 l) _ Dt(i7 Z)GXP(—ZY{U]ht(M, l))
t
### Z, is a normalization factor (chosen so that D;1; will be a distribution)

end-for -
return the combined hypothesis: f(x,[) = Z hy(x,1)
end AdaBoost.MH t=1

Figure 5: The AdaBoost.MH algorithm

25The general formulation of AdaBoost.MH takes into account an additional parameter a;. However, the
way in which the WeakLearner will be defined implies that a; must be set to 1 [196], and so it has no effect.
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More precisely, let D; be the distribution at round ¢, and h; : X X Y — R the weak rule
acquired according to D;. The sign of hs(x,1) is interpreted as a prediction of whether label
I should be assigned to example x or not. The magnitude of the prediction |h;(x,1)| is
interpreted as a measure of confidence in the prediction. In order to understand correctly the
updating formula this last piece of notation should be defined. Thus, given Y C Y and [€ ),
let Y[I] be +1 if I€Y and -1 otherwise.

Now, it becomes clear that the updating function increases (or decreases) the weights
Dy (i,1) for which h; makes a good (or bad) prediction, and that this variation is proportional
to |he(x,1)].

Note that WSD is not a multi-label classification problem since a unique sense is expected
for each word in context. In our implementation, the algorithm runs exactly in the same way
as explained above, except that sets Y; are reduced to a unique label, and that the combined
hypothesis is forced to output a unique label, which is the one that maximizes f(z,).

Up to now, it only remains to be defined the form of the WeaklLearner. Schapire and
Singer [198] prove that the Hamming loss of the AdaBoost.MH algorithm on the training
set?6 is at most Hle Zy, where Z; is the normalization factor computed on round ¢. This
upper bound is used in guiding the design of the WeakLearner algorithm, which attempts to
find a weak hypothesis h; that minimizes:

Zy = ZZ Dt(i7 l)exp(_Yimht(Xv l)) :

=1 1ey

Weak Hypotheses for WSD

As in [2], very simple weak hypotheses are used to test the value of a boolean predicate
and make a prediction based on that value. The predicates used, which are described in
section 3.5, are of the form “f = v”, where f is a feature and v is a value (e.g.: “previous_word
= hospital’). Formally, based on a given predicate p, our interest lies on weak hypotheses h
which make predictions of the form:

hix, 1) = { co if p holds in x

cy; otherwise

where the cj;’s are real numbers.

For a given predicate p, and bearing the minimization of Z; in mind, values c;; should be
calculated as follows. Let X; be the subset of examples for which the predicate p holds and
let Xy be the subset of examples for which the predicate p does not hold. Let [x], for any
predicate m, be 1 if 7 holds and 0 otherwise. Given the current distribution Dy, the following
real numbers are calculated for each possible label [, for j€{0,1}, and for be {41, —1}:

Wit=3 DiliDxi € X; AYill] =]
=1

That is, Wia (IVzll) is the weight (with respect to distribution D;) of the training examples
in partition X; which are (or not) labelled by I.

26j.e. the fraction of training examples i and labels ! for which the sign of f(x;,1) differs from Y;[I].
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As it is shown in [198], Z; is minimized for a particular predicate by choosing:

11
W
11
W,

)

cil = §1n(

These settings imply that:

Z=2 5 Y ywiw?,

je{0,1}ley

Thus, the predicate p chosen is that for which the value of Z; is smallest.

Very small or zero values for the parameters VVb]l cause c;; predictions to be large or
infinite in magnitude. In practice, such large predictions may cause numerical problems to
the algorithm, and seem to increase the tendency to overfit. As suggested in [196], smoothed
values for c;; have been used.
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