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The PASCAL Recognising Textual Entailment Challenge

Ido Dagan, Oren Glickman  
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Ramat Gan, Israel 
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Bernardo Magnini 
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Scientifica e Tecnologica 
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magnini@itc.it

Abstract 

This paper describes the PASCAL Net-

work of Excellence Recognising Textual 

Entailment (RTE) Challenge benchmark
1
. 

The RTE task is defined as recognizing, 

given two text fragments, whether the 

meaning of one text can be inferred (en-

tailed) from the other. This application-

independent task is suggested as capturing 

major inferences about the variability of 

semantic expression which are commonly 

needed across multiple applications. The 

Challenge has raised noticeable attention 

in the research community, attracting 17 

submissions from diverse groups, sug-

gesting the generic relevance of the task. 

1 Introduction 

1.1 Rational 

A fundamental phenomenon of natural language is 

the variability of semantic expression, where the 

same meaning can be expressed by, or inferred 

from, different texts. This phenomenon may be 

considered the dual problem of language ambigu-

ity, together forming the many-to-many mapping 

between language expressions and meanings. 

Many natural language processing applications, 

such as Question Answering (QA), Information 

Extraction (IE), (multi-document) summarization, 

and machine translation (MT) evaluation, need a 

model for this variability phenomenon in order to 

recognize that a particular target meaning can be 

inferred from different text variants.  

Even though different applications need similar 

models for semantic variability, the problem is of-

                                                          
1 http://www.pascal-network.org/Challenges/RTE/

ten addressed in an application-oriented manner 

and methods are evaluated by their impact on final 

application performance. Consequently it becomes 

difficult to compare, under a generic evaluation 

framework, practical inference methods that were 

developed within different applications. Further-

more, researchers within one application area 

might not be aware of relevant methods that were 

developed in the context of another application. 

Overall, there seems to be a lack of a clear frame-

work of generic task definitions and evaluations 

for such "applied" semantic inference, which also 

hampers the formation of a coherent community 

that addresses these problems. This situation might 

be confronted, for example, with the state of affairs 

in syntactic processing, where clear application-

independent tasks, communities (and even standard 

conference session names) have matured. 

The Recognising Textual Entailment (RTE) 

Challenge is an attempt to promote an abstract ge-

neric task that captures major semantic inference 

needs across applications. The task requires to rec-

ognize, given two text fragments, whether the 

meaning of one text can be inferred (entailed) from 

another text. More concretely, textual entailment is 

defined as a directional relationship between pairs 

of text expressions, denoted by T - the entailing 

"Text", and H - the entailed "Hypothesis". We say 

that T entails H if the meaning of H can be inferred 

from the meaning of T, as would typically be inter-

preted by people. This somewhat informal defini-

tion is based on (and assumes) common human 

understanding of language as well as common 

background knowledge. It is similar in spirit to 

evaluation of applied tasks such as Question An-

swering and Information Extraction, in which hu-

mans need to judge whether the target answer or 

relation can indeed be inferred from a given candi-

date  text. 

As in other evaluation tasks our definition of 

textual entailment is operational, and corresponds 
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to the judgment criteria given to the annotators 

who decide whether this relationship holds be-

tween a given pair of texts or not. Recently there 

have been just a few suggestions in the literature to 

regard entailment recognition for texts as an ap-

plied, empirically evaluated, task (Monz and de 

Rijke, 2001; Condoravdi et al., 2003; Dagan and 

Glickman, 2004). Textual entailment is also re-

lated, of course, to formal literature about logical 

entailment and semantic inference. Yet, any at-

tempt to make significant reference to this rich 

body of literature, and to deeply understand the 

relationship between the operational textual en-

tailment definition and relevant formal notions, 

would be beyond the scope of the current challenge 

and this paper. It may be noted that from an ap-

plied empirical perspective, much of the effort is 

directed at recognizing meaning-entailing variabil-

ity at the lexical and syntactic levels, rather than 

addressing relatively delicate logical issues. 

It seems that major inferences, as needed by 

multiple applications, can indeed be cast in terms 

of textual entailment. For example, a QA system 

has to identify texts that entail a hypothesized an-

swer. Given the question "What does Peugeot 

manufacture?", the text "Chrétien visited Peu-

geot’s newly renovated car factory" entails the hy-

pothesized answer form "Peugeot manufactures 

cars". Similarly, for certain Information Retrieval 

queries the combination of semantic concepts and 

relations denoted by the query should be entailed 

from relevant retrieved documents. In IE entail-

ment holds between different text variants that ex-

press the same target relation. In multi-document 

summarization a redundant sentence, to be omitted 

from the summary, should be entailed from other 

sentences in the summary. And in MT evaluation a 

correct translation should be semantically equiva-

lent to the gold standard translation, and thus both 

translations should entail each other. Conse-

quently, we hypothesize that textual entailment 

recognition is a suitable generic task for evaluating 

and comparing applied semantic inference models. 

Eventually, such efforts can promote the develop-

ment of entailment recognition "engines" which 

may provide useful generic modules across appli-

cations. 

1.2 The challenge scope 

As a first step towards the above goal we created a 

dataset of Text-Hypothesis (T-H) pairs of small 

text snippets, corresponding to the general news 

domain (see Table 1). Examples were manually 

labeled for entailment – whether T entails H or not 

– by human annotators, and were divided into a 

Development and Test datasets. Participating sys-

tems were asked to decide for each T-H pair 

whether T indeed entails H or not, and results were 

compared to the manual gold standard. 

The dataset was collected with respect to differ-

ent text processing applications, as detailed in the 

next section. Each portion of the dataset was in-

tended to include typical T-H examples that corre-

spond to success and failure cases of the actual 

ID TEXT HYPOTHESIS TASK ENTAILMENT

1 iTunes software has seen strong sales in Europe.
Strong sales for iTunes in 

Europe.
IR True 

2 
Cavern Club sessions paid the Beatles £15 eve-

nings and £5 lunchtime.

The Beatles perform at Cavern 

Club at lunchtime.
IR True 

3 

American Airlines began laying off hundreds of 

flight attendants on Tuesday, after a federal 

judge turned aside a union's bid to block the job 

losses.

American Airlines will recall 

hundreds of flight attendants as 

it steps up the number of flights 

it operates.

PP False 

4 

The two suspects belong to the 30th Street gang, 

which became embroiled in one of the most noto-

rious recent crimes in Mexico: a shootout at the 

Guadalajara airport in May, 1993, that killed 

Cardinal Juan Jesus Posadas Ocampo and six 

others.

Cardinal Juan Jesus Posadas 

Ocampo died in 1993.
QA True 

Table 1: Examples of Text-Hypothesis pairs
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applications. The collected examples represent a 

range of different levels of entailment reasoning, 

based on lexical, syntactic, logical and world 

knowledge, at different levels of difficulty.  

The distribution of examples in this challenge 

has been somewhat biased to choosing non-trivial 

pairs, and also imposed a balance of True and 

False examples. For this reason, systems perform-

ances in applicative settings might be different 

than the figures for the challenge data, due to dif-

ferent distribution of examples in particular appli-

cations. Yet, the data does challenge systems to 

handle properly a broad range of entailment phe-

nomena. Overall, we were aiming at an explorative 

rather than a competitive setting, hoping that 

meaningful baselines and analyses for the capabili-

ties of current systems will be obtained.   

Finally, the task definition and evaluation 

methodologies are clearly not mature yet. We ex-

pect them to change over time and hope that par-

ticipants' contributions, observations and 

comments will help shaping this evolving research 

direction.  

2 Dataset Preparation and Applica-

tion Settings 

The dataset of Text-Hypothesis pairs was collected 

by human annotators. It consists of seven subsets, 

which correspond to typical success and failure 

settings in different application, as listed below. 

Within each application setting the annotators se-

lected both positive entailment examples (True), 

where T is judged to entail H, as well as negative 

examples (False), where entailment does not hold 

(a 50%-50% split). Typically, T consists of one 

sentence (sometimes two) while H was often made 

a shorter sentence (see Table 1). The full datasets 

are available for download at the Challenge web-

site.
2

In some cases the examples were collected us-

ing external sources, such as available datasets or 

systems (see Acknowledgements), while in other 

cases examples were collected from the Web, fo-

cusing on the general news domain.  In all cases 

the decision as to which example pairs to include 

was made by the annotators. The annotators were 

guided to obtain a reasonable balance of different 

types of entailment phenomena and of levels of 
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difficulty. Since many T-H pairs tend to be quite 

difficult to recognize, the annotators were biased to 

limit the proportion of difficult cases, but on the 

other hand to try avoiding high correlation between 

entailment and simple word overlap. Thus, the ex-

amples do represent a useful broad range of natu-

rally occurring entailment factors. Yet, we cannot 

say that they correspond to a particular representa-

tive distribution of these factors, or of True vs. 

False cases, whatever such distributions might be 

in different settings. Thus, results on this dataset 

may provide useful indications of system capabili-

ties to address various aspects of entailment, but do 

not predict directly the performance figures within 

a particular application. 

It is interesting to note in retrospect that the an-

notators' selection policy yielded more negative 

examples than positive ones in the cases where T

and H have a very high degree of lexical overlap. 

This anomaly was noticed also by Bos and Mark-

ert, Bayer et al. and Glickman et al., and affected 

the design or performance of their systems 

2.1 Application settings 

Information Retrieval (IR): 

Annotators generated hypotheses (H) that may cor-

respond to meaningful IR queries that express 

some concrete semantic relations. These queries 

are typically longer and more specific than a stan-

dard keyword query, and may be considered as 

representing a semantic-oriented variant within IR. 

The queries were selected by examining prominent 

sentences in news stories, and then submitted to a 

web search engine. Candidate texts (T) were se-

lected from the search engine's retrieved docu-

ments, picking candidate texts that either do or do 

not entail the hypothesis. 

Comparable Documents (CD): 

Annotators identified T-H pairs by examining a 

cluster of comparable news articles that cover a 

common story. They examined "aligned" sentence 

pairs that overlap lexically, in which semantic en-

tailment may or may not hold. Some pairs were 

identified on the web using Google news
3
 and oth-

ers taken from an available resource of aligned 

English sentences (see Acknowledgments). The 

motivation for this setting is the common use of 

lexical overlap as a hint for semantic overlap in 

                                                          
3 http://news.google.com
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comparable documents, e.g. for multi-document 

summarization. 

Reading Comprehension (RC): 
This task corresponds to a typical reading compre-

hension exercise in human language teaching, 

where students are asked to judge whether a par-

ticular assertion can be inferred from a given text 

story. The challenge annotators were asked to cre-

ate such hypotheses relative to texts taken from 

news stories, considering a reading comprehension 

test for high school students.  

Question Answering (QA): 
Annotators used the TextMap Web Based Question 

Answering system available online (see Acknowl-

edgments). The annotators were used a resource of 

questions from CLEF-QA (mostly) and TREC, but 

could also construct their own questions. For a 

given question, the annotators chose first a relevant 

text snippet (T) that was suggested by the system 

as including the correct answer. They then turned 

the question into an affirmative sentence with the 

hypothesized answer "plugged in" to form the hy-

pothesis (H). 

For example, given the question, "Who is Ariel 

Sharon?" and taking a candidate answer text "Is-

rael's Prime Minister, Ariel Sharon, visited Pra-

gue" (T), the hypothesis H is formed by turning the 

question into the statement "Ariel Sharon is Is-

rael's Prime Minister", producing a True entail-

ment pair. 

Information Extraction (IE): 
This task is inspired by the Information Extraction 

application, adapting the setting for pairs of texts 

rather than a text and a structured template. For 

this task the annotators used an available dataset 

annotated for the IE relations "kill" and "birth 

place" produced by UIUC (see acknowledgments), 

as well as general news stories in which they iden-

tified manually "typical" IE relations. Given an IE 

relation of interest (e.g. a purchasing event), anno-

tators identified as the text (T) candidate news 

story sentences in which the relation is suspected 

to hold. As a hypothesis they created a straight-

forward natural language formulation of the IE 

relation, which expresses the target relation with 

the particular slot variable instantiations found in 

the text. For example, given the information ex-

traction task of identifying killings of civilians, and 

a text "Guerrillas killed a peasant in the city of 

Flores.", a hypothesis "Guerrillas killed a civilian" 

is created, producing a True entailment pair. 

Machine Translation (MT):  
Two translations of the same text, an automatic 

translation and a gold standard human translation 

(see Acknowledgements), were compared and 

modified in order to obtain T-H pairs. The auto-

matic translation was alternately taken as either T

or H, where a correct translation corresponds to 

True entailment. The automatic translations were 

sometimes grammatically adjusted, being other-

wise grammatically unacceptable. 

Paraphrase Acquisition (PP) 

Paraphrase acquisition systems attempt to acquire 

pairs (or sets) of lexical-syntactic expressions that 

convey largely equivalent or entailing meanings. 

Annotators selected a text T from some news story 

which includes a certain relation, for which a para-

phrase acquisition system produced a set of para-

phrases (see Acknowledgements). Then they 

created one or several corresponding hypotheses 

by applying the candidate paraphrases to the origi-

nal text. Correct paraphrases suggested by the sys-

tem, which were applied in an appropriate context, 

yielded True T-H pairs; otherwise a False example 

was generated. 

2.2 Additional Guidelines 

Some additional annotation criteria and guidelines 

are listed below: 

� Given that the text and hypothesis might 

originate from documents at different 

points in time, tense aspects are ignored.  

� In principle, the hypothesis must be fully 

entailed by the text. Judgment would be 

False if the hypothesis includes parts that 

cannot be inferred from the text. However, 

cases in which inference is very probable 

(but not completely certain) are still judged 

at True. In example #4 in Table 1 one 

could claim that the shooting took place in 

1993 and that (theoretically) the cardinal 

could have been just severely wounded in 

the shooting and has consequently died a 

few months later in 1994. However, this 

example is tagged as True since the con-

text seems to imply that he actually died in 

1993. To reduce the risk of unclear cases, 

annotators were guided to avoid vague ex-

amples for which inference has some posi-

tive probability that is not clearly very 

high.  
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� To keep the contexts in T and H self-

contained annotators replaced anaphors 

with the appropriate reference from pre-

ceding sentences where applicable. They 

also often shortened the hypotheses, and 

sometimes the texts, to reduce complexity.  

2.3 The annotation process 

Each example T-H pair was first judged as 

True/False by the annotator that created the exam-

ple. The examples were then cross-evaluated by a 

second judge, who received only the text and hy-

pothesis pair, without any additional information 

from the original context. The annotators agreed in 

their judgment for roughly 80% of the examples, 

which corresponded to a 0.6 Kappa level (moder-

ate agreement). The 20% of the pairs for which 

there was disagreement among the judges were 

discarded from the dataset. Furthermore, one of the 

organizers performed a light review of the remain-

ing examples and eliminated about additional 13% 

of the original examples, which might have seemed 

controversial. Altogether, about 33% of the origi-

nally created examples were filtered out in this 

process.  

The remaining examples were considered as the 

gold standard for evaluation, split to 567 examples 

in the development set and 800 in the test set, and 

evenly split to True/False examples. Our conserva-

tive selection policy aimed to create a dataset with 

non-controversial judgments, which will be ad-

dressed consensually by different groups. It is in-

teresting to note that few participants have 

independently judged portions of the dataset and 

reached high agreement levels with the gold stan-

dard judgments, of 95% on all the test set (Bos and 

Markert), 96% on a subset of roughly a third of the 

test set (Vanderwende et al.) and 91% on a sample 

of roughly 1/8 of the development set (Bayer et 

al.).  

3 Submissions and Results 

3.1 Submission guidelines 

Submitted systems were asked to tag each T-H pair 

as either True, predicting that entailment does hold 

for the pair, or as False otherwise. In addition, sys-

tems could optionally add a confidence score (be-

tween 0 and 1) where 0 means that the system has 

no confidence of the correctness of its judgment, 

and 1 corresponds to maximal confidence. Partici-

pating teams were allowed to submit results of up 

to 2 systems or runs. 

The development data set was intended for any 

system tuning needed. It was acceptable to run 

automatic knowledge acquisition methods (such as 

synonym collection) specifically for the lexical and 

syntactic constructs present in the test set, as long 

as the methodology and procedures are general and 

not tuned specifically for the test data.  

In order to encourage systems and methods 

which do not cover all entailment phenomena we 

allowed submission of partial coverage results, for 

only part of the test examples. Naturally, the deci-

sion as to on which examples the system abstains 

were to be done automatically by the system (with 

no manual involvement).  

3.2 Evaluation criteria 

The judgments (classifications) produced by the 

systems were compared to the gold standard. The 

percentage of matching judgments provides the 

accuracy of the run, i.e. the fraction of correct re-

sponses. 

As a second measure, a Confidence-Weighted 

Score (cws, also known as Average Precision) was 

computed. Judgments of the test examples were 

sorted by their confidence (in decreasing order), 

calculating the following measure: 

∑
=

−−−−

=

n

i i

iranktoupcorrect

n
cws

1

#1

where n is the number of the pairs in the test set, 

and i ranges over the sorted pairs. 

The Confidence-Weighted Score ranges be-

tween 0 (no correct judgments at all) and 1 (perfect 

classification), and rewards the systems' ability to 

assign a higher confidence score to the correct 

judgments than to the wrong ones. Note that in the 

calculation of the confidence weighted score cor-

rectness is with respect to classification – i.e. a 

negative example, in which entailment does not 

hold, can be correctly classified as false. This is 

slightly different from the common use of average 

precision measures in IR and QA, in which sys-

tems rank the results by confidence of positive 

classification and correspondingly only true posi-

tives are considered correct.  
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3.3 Submitted systems and results 

Sixteen groups submitted the results of their sys-

tems for the challenge data, while one additional 

group submitted the results of a manual analysis of 

the dataset (Vanderwende et al., see below). As 

expected, the submitted systems incorporated a 

broad range of inferences that address various lev-

els of textual entailment phenomena. Table 2 pre-

sents some common (crude) types of inference 

components, which according to our understand-

ing, were included in the various systems. 

The most basic type of inference measures the 

degree of word overlap between T and H, possibly 

including stemming, lemmatization, part of speech 

tagging, and applying a statistical word weighting 

such as idf. Interestingly, a non-participating sys-

tem that operated solely at this level, using a sim-

ple decision tree trained on the development set, 

obtained an accuracy level of 0.568, which might 

reflect a knowledge-poor baseline (Rada Mihalcea, 

personal communication). Higher levels of lexical 

inference considered relationships between words 

that may reflect entailment, based either on statisti-

cal methods or WordNet. Next, some systems 

System description

First Author (Group) 
accu-

racy 
cws 

partial 

coverage 
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d

 

k
n

o
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g
e 

L
o

g
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a
l 

 i
n

fe
re

n
ce

 

Akhmatova (Macquarie)  0.519 0.507   X     X 

0.519 0.515       Andreevskaia (Concordia)  

0.516 0.52     
X X 

  

0.586 0.617    X     Bayer (MITRE)  

0.516 0.503 73%      X X 

0.563 0.593   X  X  X X Bos (Edinburgh & Leeds)  

0.555 0.586   X      

Delmonte (Venice & irst)  0.606 0.664 62%    X X  X 

Fowler (LCC)  0.551 0.56     X  X X 

0.586 0.572        Glickman (Bar Ilan)  

0.53 0.535    
X 

    

0.566 0.575   X X  X   Herrera (UNED)  

0.558 0.571   X      

0.552 0.559   X X     Jijkoun (Amsterdam)  

0.536 0.553   X  X    

0.559 0.607      Kouylekov (irst)  

0.559 0.585   
X X X 

  

0.563 0.592       Newman (Dublin)  

0.565 0.6   
X X 

    

0.495 0.517        Perez (Madrid)  

0.7 0.782 19%  
X 

     

Punyakanok (UIUC)  0.561 0.569      X   

0.563 0.621     Raina (Stanford)  

0.552 0.686    
X X X X 

0.512 0.55       Wu (HKUST)  

0.505 0.536    
X X 

  

0.524 0.557       Zanzotto (Rome-Milan)  

0.518 0.559     
X X 

  

Table 2:Accuracy and cws results for the system submissions, ordered by first author. Partial cover-

age refers to the percentage of examples classified by the system out of the 800 test examples.  

(The results of the manual analysis by Vanderwende at al. (MSR) are summarized separately in the 

text.)  
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measured the degree of match between the syntac-

tic structures of T and H, based on some distance 

criteria. Finally, few systems incorporated some 

form of "world knowledge", and a few more ap-

plied a logical prover for making the entailment 

inference, typically over semantically enriched 

representations. Different decision mechanisms 

were applied over the above types of knowledge, 

including probabilistic models, probabilistic Ma-

chine Translation models, supervised learning 

methods, logical inference and various specific 

scoring mechanisms. 

Table 2 shows the results for the submitted 

runs. Overall system accuracies were between 50 

and 60 percent and system cws scores were be-

tween 0.50 and 0.70. Since the dataset was bal-

anced in terms of true and false examples, a system 

that uniformly predicts True (or False) would 

achieve an accuracy of 50% which constitutes a 

natural baseline. Another baseline is obtained by 

considering the distribution of results in random 

runs that predict True or False at random. A run 

with cws>0.540 or accuracy>0.535 is better than 

chance at the 0.05 level and a run with cws>0.558

or accuracy>0.546 is better than chance at the 0.01 

level.   

Unlike other system submissions, Vanderwende 

et al. report an interesting manual analysis of the 

test examples. Each example was analyzed as 

whether it could be classified correctly (as either 

True or False) by taking into account only syntac-

tic considerations, optionally augmented by a lexi-

cal thesaurus. An "ideal" decision mechanism that 

is based solely on these levels of inference was 

assumed. Their analysis shows that 37% of the ex-

amples could (in principle) be handled by consid-

ering syntax alone, and 49% if a thesaurus is also 

consulted. 

The Comparable Documents (CD) task stands 

out when observing the performance of the various 

systems broken down by tasks. Generally the re-

sults on the this task are significantly higher than 

the other tasks with results as high as 87% accu-

racy and cws of 0.95. This behavior might indicate 

that in comparable documents there is a high prior 

probability that seemingly matching sentences in-

deed convey the same meanings. We also note that 

that for some systems it is the success on this task 

which pulled the figures up from the insignificance 

baselines.  

Our evaluation measures do not favor specifi-

cally recognition of positive entailment. A system 

which does well in recognizing when entailment 

does not hold would do just as well in terms of ac-

curacy and cws as a system tailored to recognize 

true examples. In retrospect, standard measures of 

precision, recall and f in terms of the positive (en-

tailing) examples would be appropriate as addi-

tional measures for this evaluation. In fact, some 

systems recognized only very few positive entail-

ments (a recall between 10-30 percent). Further-

more, all systems did not perform significantly 

better than the f=0.67 baseline of a system which 

uniformly predicts true. 

4 Conclusions 

The PASCAL Recognising Textual Entailment 

(RTE) Challenge is an initial attempt to form a ge-

neric empirical task that captures major semantic 

inferences across applications. The high level of 

interest in the challenge, demonstrated by the sub-

missions from 17 diverse groups and noticeable 

interest in the research community, suggest that 

textual entailment indeed captures highly relevant 

tasks for multiple applications. 

The results obtained by the participating sys-

tems may be viewed as typical for a new and rela-

tively difficult task (cf. for example the history of 

MUC benchmarks). Overall performance figures 

for the better systems were significantly higher 

than some baselines. Yet, the absolute numbers are 

relatively low, with small, though significant, dif-

ferences between systems. Interestingly, system 

complexity and sophistication of inference did not 

correlate fully with performance, where some of 

the best results were obtained by rather naïve lexi-

cally-based systems. The fact that quite sophisti-

cated inference levels were applied by some 

groups, with 5 systems using logical provers, pro-

vide an additional indication that applied NLP re-

search is progressing towards deeper semantic 

analyses. Further refinements are needed though to 

obtain sufficient robustness for the Challenge types 

of data. Further detailed analysis of systems per-

formance, relative to different types of examples 

and entailment phenomena, are likely to yield fu-

ture improvements. 

Being the first benchmark of its types there are 

several lessons for future similar efforts. Most no-

tably, further efforts can be made to create "natu-



8

ral" distributions of Text-Hypothesis examples. 

For example, T-H pairs may be collected directly 

from the data processed by actual systems, consid-

ering their inputs and candidate outputs. An addi-

tional possibility is to collect a set of candidate 

texts that might entail a given single hypothesis, 

thus reflecting typical ranking scenarios. Data col-

lection settings may also be focused on typical 

"core" semantic applications, such as QA, IE, IR 

and summarization. Overall, we hope that future 

similar benchmarks will be carried out and will 

help shaping clearer frameworks, and correspond-

ing research communities, for applied research on 

semantic inference.  
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Diana Pérez and Enrique Alfonseca

Department of Computer Science
Universidad Autónoma de Madrid

Madrid, 28049, Spain
{diana.perez, enrique.alfonseca}@uam.es

Abstract

The BLEU algorithm has been applied to

many different fields. In this paper, we

explore a new possible use: the auto-

matic recognition of textual entailments.

BLEU works at the lexical level by com-

paring a candidate text with several refer-

ence texts in order to calculate how close

the candidate text is to the references. In

this case, the candidate would be the text

part of the entailment and the hypothesis

would be the unique reference. The al-

gorithm achieves an accuracy around 50%

that proves that it can be used as a baseline

for the task of recognising entailments.

1 Introduction

In the framework of the Pascal Challenges, we are

now in the position of tackling a new application:

the automatic recognition of textual entailments. It

is, without doubt, a complex task that, as it is first

approached in this event, needs both a preliminary

study to find out which are the best techniques that

can be applied, and the development of new tech-

niques specifically designed for it. Another issue is

to study if a combination of shallow techniques is

able to face this problem, or whether it will be nec-

essary to go into deeper techniques. If so, it will

be interesting to know what the advantages of deep

analyses are, and how the results differ from just us-

ing shallow techniques.

In the current situation, textual entailment is de-

fined as the relation between two expressions, a text

(T), and something entailed by T, called an entail-

ment hypothesis (H). Our approach consists in us-

ing the BLEU algorithm (Papineni et al., 2001), that

works at the lexical level, to compare the entailing

text (T) and the hypothesis (H). Next, the entailment

will be judged as true or false according to BLEU’s

output.

Once the algorithm is applied, we have seen that

the results confirm the use of BLEU as baseline

for the automatic recognition of textual entailments.

Furthermore, they show how a shallow technique

can reach around a 50% of accuracy.

The article is organised as follows: Section 2 ex-

plains how BLEU works in general, next Section 3

details the application of this algorithm for recog-

nising entailments and gives the results achieved us-

ing the development and test sets. Finally, Section 4

ends with a discussion about the contribution that

BLEU can make to this task and as future work, how

far it can be improved to increase its accuracy.

2 The BLEU Algorithm

The BLEU (BiLingual Evaluation Understudy) algo-

rithm was created by (Papineni et al., 2001) as a

procedure to rank systems according to how well

they translate texts from one language to another.

Basically, the algorithm looks for n-gram coinci-

dences between a candidate text (the automatically

produced translation) and a set of reference texts (the

human-made translations).

The pseudocode of BLEU is as follows:

• For several values of N (typically from 1 to 4),

calculate the percentage of n-grams from the
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candidate translation which appears in any of

the human translations. The frequency of each

n-gram is limited to the maximum frequency

with which it appears in any reference.

• Combine the marks obtained for each value of

N, as a weighted linear average.

• Apply a brevity factor to penalise short candi-

date texts (which may have n-grams in common

with the references, but may be incomplete).

If the candidate is shorter than the references,

this factor is calculated as the ratio between the

length of the candidate text and the length of

the reference which has the most similar length.

It can be seen from this pseudocode that BLEU is

not only a keyword matching method between pairs

of texts. It takes into account several other factors

that make it more robust:

• It calculates the length of the text in comparison

with the lengths of reference texts. This is be-

cause the candidate text should be similar to the

reference texts (if the translation has been well

done). Therefore, the fact that the candidate

text is shorter than the reference texts is con-

sidered an indicative of a poor quality transla-

tion and thus, BLEU penalises it with a Brevity

Penalty factor that lowers the score.

• The measure of similarity can be considered as

a precision value that calculates how many of

the n-grams from the candidate appear in the

reference texts. This value has been modified,

as the number of occurrences of an n-gram in

the candidate text is clipped at the maximum

number of occurrences it has in the reference

texts. Therefore, an n-gram that is repeated

very often in the candidate text will not incre-

ment the score if it only appears a few times in

the references.

• The final score is the result of the weighted sum

of the logarithms of the different values of the

precision, for n varying from 1 to 4. It is not

interesting to try higher values of n since co-

incidences longer than four-grams are very un-

usual.

BLEU’s output is always a number between 0 and

1. This value indicates how similar the candidate

and reference texts are. In fact, the closer the value

is to 1, the more similar they are. (Papineni et al.,

2001) report a correlation above 96% when com-

paring BLEU’s scores with the human-made scores.

This algorithm has also been applied to evaluate text

summarisation systems (Lin and Hovy, 2003) and to

help in the assessment of open-ended questions (Al-

fonseca and Pérez, 2004).

3 Application of BLEU for recognising

textual entailments

For recognising entailments using BLEU, the first

decision is to choose whether the candidate text

should be considered as the text part of the entail-

ment (T) or as the hypothesis (and, as a consequence

whether the reference text should be considered as

the H or the T part). In order to make this choice,

we did a first experiment in which we considered

the T part as the reference and the H as the candi-

date. This setting has the advantage that the T part

is usually longer than the H part and thus the refer-

ence would contain more information that the candi-

date. It could help the BLEU’s comparison process

since the quality of the references is crucial and in

this case, the number of them has been dramatically

reduced to only one (when in the rest of the appli-

cations of BLEU the number of references is always

higher).

Then, the algorithm was applied according to its

pseudocode (see Section 2). The output of BLEU

was taken as the confidence score and it was also

used to give a TRUE or FALSE value to each entail-

ment pair. We performed an optimisation procedure

for the development set that chose the best thresh-

old according to the percentage of success of cor-

rectly recognised entailments. The value obtained

was 0.157. Thus, if the BLEU’s output is higher than

0.157 the entailment is marked as TRUE, otherwise

as FALSE.

The results achieved are gathered in Table 1. Be-

sides, in order to confirm that this setting was truly

better, we repeated the experiment this time choos-

ing the T part of the entailment as the candidate and

the H part as the reference. The results are shown in

Table 2. In this case, the best threshold has been 0.1.
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Task NTE A NTR NFR NTW NFW

CD 98 77% 39 36 12 11

IE 70 44% 16 15 20 19

MT 54 52% 18 10 17 9

QA 90 41% 9 28 17 36

RC 103 51% 30 23 28 22

PP 82 57% 22 25 18 17

IR 70 44% 10 21 14 25

Total 567 53% 144 158 126 139

Table 1: Results for the development sets consid-

ering the T part of the entailment as the reference

text (threshold = 0.157). Columns indicate: task id;

number of entailments (NTE); accuracy (A); num-

ber of entailments correctly judged as true (NTR);

number of entailments correctly judged as false

(NFR); number of entailments incorrectly judged as

true (NTW); and, number of entailments incorrectly

judged as false (NFW).

This is the value that has been fixed as threshold for

the test set.

It is important to highlight that the average cor-

relation achieved was 54%. Moreover, it reached a

72% accuracy for the Comparable Document (CD)

task as it could be expected since Bleu’s strength re-

lies on making comparisons among texts in which

the lexical level is the most important. For exam-

ple, the snippet of the development test with iden-

tifier 583, whose T part is “While civilians ran for

cover or fled to the countryside, Russian forces were

seen edging their artillery guns closer to Grozny,

and Chechen fighters were offering little resistance”

and H part is “Grozny is the capital of Chechnya”,

is an ideal example case for BLEU. This is because

only the word Grozny is present both in the T and

H texts. BLEU will mark it as false since there is no

n-gram co-occurrence between both texts.

On the other hand, BLEU cannot deal examples

in which the crucial point to correctly recognise the

entailment is at the syntactical or semantics level.

For example, those cases in which the T and H parts

are the same except for just one word that reverses

the whole meaning of the text. For example, the

snippet 148 of the development set, whose T part

is “The Philippine Stock Exchange Composite In-

dex rose 0.1 percent to 1573.65” and the H part is

Task NTE A NTR NFR NTW NFW

CD 98 72% 40 31 17 10

IE 70 50% 23 12 23 12

MT 54 52% 21 7 20 6

QA 90 50% 22 23 22 23

RC 103 50% 33 19 32 19

PP 82 60% 25 24 19 14

IR 70 41% 8 21 14 27

Total 567 54% 172 137 147 111

Table 2: Results for the development sets consider-

ing the T part of the entailment as the candidate text

(threshold = 0.1). Columns indicate: task id; num-

ber of entailments (NTE); accuracy (A); number of

entailments correctly judged as true (NTR); number

of entailments correctly judged as false (NFR); num-

ber of entailments incorrectly judged as true (NTW);

and, number of entailments incorrectly judged as

false (NFW).

“The Philippine Stock Exchange Composite Index

dropped.” This is a very difficult case for BLEU.

It will be misleading since BLEU would consider

that both T and H are saying something very sim-

ilar, while in fact, the only words that are different

in both texts, “rose” and “dropped”, are antonyms,

making the entailment FALSE.

It can also be seen how the results contradict the

insight that the best setting would be to have the T

part as the reference text. In fact, the results are not

so much different for both configurations. A possi-

ble reason for this could be that all cases when BLEU

was misled into believing that the entailment was

true (because the T and H parts have many n-grams

in common except the one that is the crucial to solve

the entailment) are still problematic. It should be no-

ticed that BLEU, irrespectively of the consideration

of the texts as T or H, cannot deal with these cases.

The results for the test set confirm the same con-

clusions drawn for the development tests. In fact,

for the first run in which BLEU was used for all the

tasks, it achieved a 52% confidence-weighted score

and a 50% accuracy. See Table 3 for details.

As can be seen, not only the overall performance

continues being similar to accuracy obtained with

the development test. Also the best task for the test

set keeps being the CD. To highlight this fact, we
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TASK CWS A

CD 0.7823 0.7000

IE 0.5334 0.5000

MT 0.2851 0.3750

QA 0.3296 0.4231

RC 0.4444 0.4571

PP 0.6023 0.4600

IR 0.4804 0.4889

TOTAL 0.5168 0.4950

Table 3: Results for the test set (threshold = 0.1).

Columns indicate: task id; confidence-weighted

score or average precision (CWS); and, the accuracy

(A).

implemented a preliminary step of the algorithm in

which there was a filter for the CD snippets, and only

they were processed by BLEU. In this way, we cre-

ated a second run with the CD set that achieved a

CWS of 78% and a 70% accuracy. This high result

indicates that, although, in general, BLEU should

only be considered as a baseline for recognising tex-

tual entailments, in the case of CD, it can be used as

a stand-alone system.

4 Conclusion and future work

Some conclusions can be drawn from the experi-

ments previously described:

• BLEU can be used as a baseline for the task of

recognising entailments, considering the candi-

date text as T and the reference text as the H

part of the entailment, since it has achieved an

accuracy above 50%.

• BLEU’s results depend greatly on the task con-

sidered. For example, for the Comparable Doc-

uments (CD) task it reaches its maximum value

(77%) and for Information Retrieval (IR) the

lowest (41%).

• BLEU has a slight tendency to consider a hy-

pothesis as TRUE. In 319 out of 567 pairs,

BLEU said the entailment was true. Out of

these, it was right in 172 cases, and it was

wrong in 147 cases. On the other hand, there

were only 111 false negatives.

It is also interesting to observe that, although the

origin of BLEU is to evaluate MT systems, the re-

sults for the MT task are not specially higher. The

reason for that could be that BLEU is not being

used here to compare a human-made translation to

a computer-made translation, but two different sen-

tences which contain an entailment expression, but

which are not alternative translations of the same

text in a different language.

The main limit of BLEU is that it does not use

any semantic information and, thus, sentences with

many words in common but with a different mean-

ing will not be correctly judged. For instance, if T is

“The German officer killed the English student” and

H is “The English students killed the German Offi-

cer”, BLEU will consider the entailment hypothesis

as TRUE, while it is FALSE.

It would be interesting, as future work, to com-

plement the use of BLEU with some kind of syntac-

tic processing and some treatment of synonyms and

antonyms. For example, if BLEU were combined

with a parser translating all sentences from passive

to active and allowed the comparison by syntactic

categories such as subject, direct object, indirect ob-

ject, etc., it would be able to recognise more entail-

ments.
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Abstract 

We describe our submission to the 
PASCAL Recognizing Textual Entail-
ment Challenge which attempts to isolate 
the set of T-H pairs whose categorization 
can be accurately predicted based solely 
on syntactic cues. Two human annotators 
examined each pair, showing that a sur-
prisingly large proportion of the data – 
37% of the test items – can be handled 
with syntax alone, while adding informa-
tion from a general-purpose thesaurus in-
creases this to 49%.     

1 Introduction 

The data set made available by the PASCAL Rec-
ognizing Textual Entailment Challenge provides a 
great opportunity to focus on a very difficult task, 
determining whether one sentence (the hypothesis, 
H) is entailed by another (the text, T). 

Our goal was to isolate the class of T-H 
pairs whose categorization can be accurately pre-
dicted based solely on syntactic cues. Human an-
notators made this judgment; we wanted to abstract 
away from the analysis errors that any specific 
parsing system would inevitably introduce. This 
work is part of a larger ablation study aimed at 
measuring the impact of various NLP components 
on entailment and paraphrase. 

We have chosen to provide a partial submis-
sion that addresses the following question: what 
proportion of the entailments in the PASCAL test 

set could be solved using a robust parser?  We are 
encouraged that other entrants chose to focus on 
different baselines, specifically those involving 
lexical matching and edit distance.  Collectively, 
these baselines should establish what the minimal 
system requirements might be for addressing the 
textual entailment task. 

2 Details of MSR submission 

Various parsers providing constituent level analy-
sis are now available to the research community, 
and state-of-the-art parsers have reported accuracy 
of between 89% and 90.1% F-measure (Collins 
and Duffy, 2002, Henderson 2004, and see Ringger 
et al., 2004, for a non-treebank parser).  There are 
also efforts to produce parsers that assign argument 
structure (Gildea and Jurafsky, 2002, and for ex-
ample, Hacioglu et al., 2004).  With these devel-
opments, we feel that syntax can be defined 
broadly to include such phenomena as argument 
assignment, intra-sentential pronoun anaphora 
resolution, and a set of alternations to establish 
equivalence on structural grounds. 

In order to establish a baseline for the en-
tailment task that reflects what an idealized parser 
could accomplish, regardless of what any specific 
parser can do, we annotated the test set as follows. 
Two human annotators evaluated each T-H pair, 
deciding whether the entailment was: 

• True by Syntax,  

• False by Syntax,  

• Not Syntax,  

• Can’t Decide   
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Additionally, we allowed the annotators to indicate 
whether recourse to information in a general pur-
pose thesaurus entry would allow a pair to be 
judged True or False.  Both annotators were skilled 
linguists, and could be expected to determine what 
an idealized syntactic parser could accomplish.  
We should note at this point that it could prove 
impossible to automate the judgment process de-
scribed in this paper; the rules-of-thumb used by 
the annotators to make True of False judgments 
may turn out to be incompatible with an opera-
tional system. 

We found that 37% of the test items can be 
handled by syntax, broadly defined; 49% of the 
test items can be handled by syntax plus a general 
purpose thesaurus.  The results of this experiment 
are summarized in table 1: 

 Without thesaurus Using thesaurus 

True 78 (10%) 147 (18%) 

False 217 (27%) 244 (31%) 

Not syntax 505 (63%) 409 (51%) 

Table 1: Summary of MSR partial submission; Run1 is 
without thesaurus, Run2 is with thesaurus  

Overall, inter-annotator agreement was 72%.  
Where there were disagreements, the annotators 
jointly decided which judgment was most appro-
priate in order to annotate all test items.  Of the 
disagreements, 60% were between False and Not-
Syntax, and 25% between True and Not-Syntax; 
the remainder of the differences were either anno-
tation errors or where one or both chose Can’t De-
cide.  This confirms our anecdotal experience that 
it is easier to decide when syntax can be expected 
to return True, and that the annotators were uncer-
tain when to assign False.  In some cases, there are 
good syntactic clues for assigning False, which is 
why we designed the evaluation to force a choice 
between True, False, and Not-Syntax.  But in many 
cases, it is the absence of syntactic equivalence or 
parallelism rather than a violation that results in a 
judgment of False, and most of the disagreements 
centered on these cases. 

3 Results of Partial Submission  

Our test results are not comparable to those of 
other systems, since obviously, our runs were pro-
duced by human annotators.  In this section, we 
only want to briefly call attention to those test 

items where there was a discrepancy between our 
adjudicated human annotation and those provided 
as gold standard. It is worth mentioning that we 
believe the task is well-defined; for the 295 test 
items returned in Run1 of our submission, 284 
matched the judgment provided as gold standard, 
so that our inter-annotator agreement with the test 
set is 96%. 

In Run1 (using an idealized parser, but no the-
saurus), there were 11 discrepancies.  Of the 3 
cases where we judged the test item to be True but 
the gold standard for the item is False, one is 
clearly an annotation error (despite having two an-
notators!) and two are examples of strict inclusion, 
which we allowed as entailments but the data set 
does not (test items 1839 and 2077); see (1).  

(1) (pair id="2077", value="FALSE", task="QA")

<T> They are made from the dust of four of 
Jupiter’s tiniest moons. 

<H> Jupiter has four moons.  

More difficult to characterize as a group are the 
8 cases where we judged the test item to be False 
but the gold standard for the item is True (although 
5/8 are from the QA section)  The test items in 
question are: 1335, 1472, 1487, 1553, 1584, 1586, 
1634, and 1682.  It does appear to us that more 
knowledge is needed to judge these items than sim-
ply what is provided in the Text and Hypothesis, 
and these items should be removed from the data 
set accordingly since pairs for which there was 
disagreement among the judges were discarded.  
Item 1634 is a representative example. 

(2) (pair id="1634", value="TRUE", task="IE")

<T> William Leonard Jennings sobbed loudly 
as was charged with killing his 3-year-old son, 
Stephen, who was last seen alive on Dec. 12, 1962. 

<H> William Leonard Jennings killed his 3-
year-old son, Stephen. 

4 Requirements for a syntax-based system 

There are many examples where predicate-
argument assignment will give clear evidence for 
the judgment.  (3a) and (3b) provide a good illus-
tration: 

(3)  <T> Latvia, for instance, is the lowest-ranked 
team in the field but defeated World Cup semifi-



15

nalist Turkey in a playoff to qualify for the final 16 
of Euro 2004. 

(3a) <H> Turkey is defeated by Latvia. 
(pair id="1897", value="TRUE", task="IE") 

(3b) <H> Latvia is defeated by Turkey. 
(pair id="1896", value="FALSE", task="IE") 

4.1 Syntactic Alternations 

By far the most frequent alternation between Text 
and Hypothesis that a system needs to identify is 
an appositive construction promoted to main 
clause.  This alternation accounted for 
approximately 24% of the data. 

(4) (pair id="760", value="TRUE", task="CD")

<T> The Alameda Central, west of the Zocalo, 
was created in 1592. 

<H> The Alameda Central is west of the Zo-
calo.

Examples of other alternations that need to be 

identified are: nominalization → tensed clause 

(Schroeder’s election → Shroeder was elected),

shown in (5), and finite → non-finite construction 

(where he was surfing → while surfing), shown in 
(6).

(5) (pair id="315", value="TRUE", task="IR")

<T> The debacle marked a new low in the ero-
sion of the SPD’s popularity, which began shortly 
after Mr Schroeder’s election in 1998. 

<H> Schroeder was elected in 1998.  

(6) (pair id="1041", value="TRUE", task="RC")

<T> A 30-year-old man has been killed in a 
shark attack at a surfing beach near Perth in West 
Australia where he was surfing with four other 
people. 

<H> A 30-year-old man was killed in a shark 
attack while surfing.  

4.2 Establishing False Entailment 

We found two main categories of T-H pairs that 
we judged to be False: False, where there was a 
violation of a syntactic nature, and False, where 
there was no syntactic structure shared by the T-H 
pair.  Although we can annotate this by hand, we 
are unsure whether it would be possible to create a 

system to automatically detect the absence of syn-
tactic overlap, though the main verb in the Hy-
pothesis should be the initial area of focus. 

Examples of judging False by violation of syn-
tax are those in which the Subject and Verb align 
(with or without thesaurus), but the Object does 
not, as in (7): 

(7) (pair id="103", value="FALSE", task="IR")

<T> The White House ignores Zinni’s opposi-
tion to the Iraq War. 

<H> White House ignores the threat of attack.  

The following examples illustrate an absence of 
shared syntactic structure in the major argument 
positions.  In (8), the entailment is judged False 
since baby girl is not the subject of any verb of 
buying, nor is ambulance the object of any verb of 
buying; additionally, there is no mention of buying

in T at all.  In (9), the entailment is judged False 
because there is no mention of Douglas Hacking in 
the Text, nor any mention of physician. While a 
system using lexical matching might well rule the 
second example False, there are enough lexical 
matches in the former that a system using syntax is 
likely required. 

(8) (pair id="2179", value="FALSE", task="RC")

<T> An ambulance crew responding to an 
anonymous call found a 3-week-old baby girl in a 
rundown house Monday, two days after she was 
snatched from her mother at a Melbourne shopping 
mall. 

<H> A baby girl bought an ambulance at a 
Melbourne shopping mall.  

(9) (pair id="2169", value="FALSE", task="CD")

<T> Scott and Lance Hacking talked with their 
younger brother at the hospital July 24. 

<H>Douglas and Scott Hacking are physicians.  

5 Interesting “Not Syntax” Examples 

The number of examples that can be handled using 
syntax, broadly defined, is significant, but more 
than 50% were judged to be outside the realm of 
syntax, even allowing for the use of a thesaurus. 
Some test items exhibited phrasal-level synonymy, 
which the annotators did not expect would be 
available in a general purpose thesaurus.  Consider, 
X bring together Y and Y participate in X in (10): 
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(10) (pair id="287", value="TRUE", task="IR")

<T> The G8 summit, held June 8-10, brought 
together leaders of the world’s major industrial 
democracies, including Canada, France, Germany, 
Italy, Japan, Russia, United Kingdom, European 
Union and United States. 

<H>Canada, France, Germany, Italy, Japan, 
Russia, United Kingdom and European Union par-
ticipated in the G8 summit.  

There are some examples with apparent alterna-
tion, but the alternation cannot be supported by 
syntax.  Consider three-day and last three days in 
the following example: 

(11) (pair id="294", value="TRUE", task="IR")

<T> The three-day G8 summit will take place 
in Scotland. 

<H> The G8 summit will last three days. 

In other cases, the annotators considered that there 
were too many alternations and thesaurus replace-
ments necessary to confidently say that syntax 
could be used.  Consider the following example, 
where more than half has to align with many, say-

ing aligns with thinking, and not worth fighting

aligns with necessary.

(12) (pair id="306", value="TRUE", task="IR")

<T> The poll, for the first time, has more than 
half of Americans, 52 percent, saying the war in 
Iraq was not worth fighting.  

<H> Many Americans don’t think the war in 
Iraq was necessary. 

6 Discussion and Conclusion 

Our goal is to contribute a baseline consisting of a 
system which uses an idealized parser, broadly 
defined, that can detect alternations, and optionally 
has access to a general purpose thesaurus.  In order 
to explore what is possible, in principle, we used 
two human annotators and resolved their dis-
agreements to produce a partial submission.  It is 
interesting to note that the task is well-defined; for 
the 295 test items returned in our submission 
(without thesaurus), 284 matched the judgment 
provided as gold standard, so that our inter-
annotator agreement is 96%. 

  A syntax-based system can account for 
37% of the test items, and, with the addition of 
information from a general purpose thesaurus, 
49%.  This finding is promising, though we expect 
the numbers to decrease subject to an implementa-
tion with a real-world parser and set of matching 
rules.  We also are keen to compare our baseline 
results with those obtained by the systems using 
lexical matching and edit distance, as we expect 
that some of the items that can be handled by syn-
tax alone could also be accounted for by these sim-
pler methods. 
 We hope that the challenge workshop is 
well served by offering these baselines, as it is 
clear to us that more than half of the test items rep-
resent an opportunity to work on very interesting 
entailment and paraphrase problems. 
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Abstract

This paper summarizes ITC-irst participa-

tion in the PASCAL challenge on Recog-

nizing Textual Entailment (RTE). Given a

pair of texts (the text and the hypothesis),

the core of the approach we present is a

tree edit distance algorithm applied on the

dependency trees of both the text and the

hypothesis. If the distance (i.e. the cost

of the editing operations) among the two

trees is below a certain threshold, empir-

ically estimated on the training data, then

we assign an entailment relation between

the two texts.

1 Introduction

The problem of language variability (i.e. the fact

that the same information can be expressed with dif-

ferent words and syntactic constructs) has been at-

tracting a lot of interest during the years and it poses

significant issues in front of systems aimed at natural

language understanding. The example below shows

that recognizing the equivalence of the statements

came in power, was prime-minister and stepped in

as prime-minister is a challenging problem.

� Ivan Kostov came in power in 1997.

� Ivan Kostov was prime-minister of Bulgaria

from 1997 to 2001.

� Ivan Kostov stepped in as prime-minister 6

months after the December 1996 riots in Bul-

garia.

While the language variability problem is well

known in Computational Linguistics, a general uni-

fying framework has been proposed only recently in

(Dagan and Glickman 2004). In this approach, lan-

guage variability is addressed by defining the notion

of entailment as a relation that holds between two

language expressions (i.e. a text T and an hypothesis

H) if the meaning of H as interpreted in the context

of T, can be inferred from the meaning of T. The

entailment relation is directional as the meaning of

one expression can entail the meaning of the other,

while the opposite may not.

For our participation in the Pascal RTE Challenge

we designed a system based on the intuition that the

probability of an entailment relation between T and

H is related to the ability to show that the whole

content of H can be mapped into the content of T.

The more straightforward the mapping can be estab-

lished, the more probable is the entailment relation.

Since a mapping can be described as the sequence

of editing operations needed to transform T into H,

where each edit operation has a cost associated with

it, we assign an entailment relation if the overall cost

of the transformation is below a certain threshold,

empirically estimated on the training data.

The paper is organized as follows. Section 2

presents the Tree Edit Distance algorithm we have

adopted and its application to dependency trees.

Section 3 describes the system which participated at

the RTE challenge and in Section 4 we present and

discuss the results we have obtained.
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2 Tree Edit Distance on Dependency Trees

We adopted a tree edit distance algorithm applied to

the syntactic representations (i.e. dependency trees)

of both T and H. A similar use of tree edit distance

has been presented by (Punyakanok et al. 2004) for a

Question Answering system, showing that the tech-

nique outperforms a simple bag-of-word approach.

While the cost function presented in (Punyakanok

et al. 2004) is quite simple, for the RTE challenge

we tried to elaborate more complex and task specific

measures.

According to our approach, T entails H if there

exists a sequence of transformations applied to T

such that we can obtain H with an overall cost be-

low a certain threshold. The underlying assumption

is that pairs between which an entailment relation

holds have a low cost of transformation. The kind

of transformations we can apply (i.e. deletion, in-

sertion and substitution) are determined by a set of

predefined entailment rules, which also determine a

cost for each editing operation.

We have implemented the tree edit distance algo-

rithm described in (Zhang and Shasha 1990) and ap-

plied to the dependency trees derived from T and

H. Edit operations are defined at the level of single

nodes of the dependency tree (i.e. transformations

on subtrees are not allowed in the current implemen-

tation). Since the (Zhang and Shasha 1990) algo-

rithm does not consider labels on edges, while de-

pendency trees provide them, each dependency rela-

tion R from a node A to a node B has been re-written

as a complex label B-R concatenating the name of

the destination node and the name of the relation.

All nodes except the root of the tree are relabeled in

such way. The algorithm is directional: we aim to

find the better (i.e. less costly) sequence of edit op-

eration that transform T (the source) into H (the tar-

get). According to the constraints described above,

the following transformations are allowed:

� Insertion: insert a node from the dependency

tree of H into the dependency tree of T. When

a node is inserted it is attached with the depen-

dency relation of the source label.

� Deletion: delete a node N from the dependency

tree of T. When N is deleted all its children are

attached to the parent of N. It is not required to

Figure 1: System architecture

explicitly delete the children of N as they are

going to be either deleted or substituted on a

following step.

� Substitution: change the label of a node N1 in

the source tree into a label of a node N2 of the

target tree. Substitution is allowed only if the

two nodes share the same part-of-speech. In

case of substitution the relation attached to the

substituted node is changed with the relation of

the new node.

3 System Architecture

The system is composed by the following modules,

showed in Figure 1: (i) a text processing module, for

the preprocessing of the input T/H pair; (ii) a match-

ing module, which performs the mapping between T

and H; (iii) a cost module, which computes the costs

of the edit operations.

3.1 Text processing module

The text processing module creates a syntactic rep-

resentation of a T/H pair and relies on a sentence

splitter and a syntactic parser. For sentence split-

ting we used the Maximum entropy sentence split-

ter MXTerm (Ratnaparkhi 1996). For parsing we

used Minipar, a principle-based English parser (Lin

1998) which has high processing speed and good

precision.

3.2 Matching module

The matching module finds the best sequence of edit

operations between the dependency trees obtained

from T and H. It implements the edit distance al-

gorithm described in Section 2. The module makes
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requests to the cost module to receive the cost of the

edit operations needed to transform T into H.

3.3 Cost module

The cost module returns the cost of an edit operation

between tree nodes. To estimate such cost, we define

a weight of each single word representing its rele-

vance through the inverse document frequency (idf),

a measure commonly used in Information Retrieval.

If N is the number of documents in a text collection

and N� is the number of documents of the collection

that contain word w then the idf of this word is given

by the formula:

���
	���
������ �����
� � (1)

The weight of the insertion operation is the idf of

the inserted word. The most frequent words (e.g.

stop words) have a zero cost of insertion. In the

current version of the system we are still not able

to implement a good model that estimates the cost

of the deletion operation. In order not to punish

pairs with short contents of T we set the cost of

deletion to 0. To determine the cost of substitu-

tion we used a dependency based thesaurus available

at http://www.cs.ualberta.ca/l̃indek/downloads.htm.

For each word, the thesaurus lists up to 200 most

similar words and their similarities. The cost of a

substitution is calculated by the following formula:

������� ��
 ��� 
 � ��� �"! � ��
 � ��#$�&%$' � �"()��
 �* � 
 � �&� (2)

where

 � is the word from T that is being re-

placed by the word

 � from H and � �"()��
 �*� 
 � � is

the similarity between

 � and


 � in the thesaurus

multiplied by the similarity between the correspond-

ing relations. The similarity between relations is

stored in a database of relation similarities obtained

by comparing dependency relations from a parsed

local corpus. The similarities have values from 1

(very similar) to 0 (not similar). If there is no simi-

larity, the cost of substitution is equal to the cost of

inserting the word w2.

3.4 Global Entailment Score

The entailment score of a given pair is calculated in

the following way:

�,+*-/.10 ��2 �43 �5� 0 �6��2 �43 �
0 �6� �43 � (3)

where 0 �6��2 �43 � is the function that calculates the

edit distance cost and 0 �7� �43 � is the cost of insert-

ing the entire tree H. A similar approach is pre-

sented in (Monz and de Rijke 2001), where the en-

tailment score of two document
�

and
�98

is calcu-

lated by comparing the sum of the weights (idf) of

the terms that appear in both documents to the sum

of the weights of all terms in
� 8

.

To define the threshold that separates the positive

from the negative examples we used the training set

provided by the task organizers.

4 Results and Discussion

Table 1 shows the results obtained by the system on

the two runs we submitted. The first run used the

edit-distance approach on all the subtasks, while the

second run used the edit distance for the Comparable

Documents (CD) subtask task and and a linear se-

quence of words for the rest of the tasks. We decided

to do the second run because we wanted to evalu-

ate the real impact of using deep syntactic analysis.

Results are slightly better for the first run both in

the cws (0.60 against 0.58) and recall (0.64 against

0.50).

A relevant problem we encountered, affecting

about 30% of the pairs, is that the parser repre-

sents in a different way occurrences of similar ex-

pressions, making harder to apply edit transforma-

tions. For instance, “Wal-Mart” and “Wal-Mart

Stores inc.” have different trees, being “Mart” the

governing node in the first case and the governed

node in the second. The problem could be addressed

by changing the order of the nodes in T which is

however complex because it introduces changes in

the tree edit-distance algorithm. Another solution,

which we intend to explore in the future, is the in-

tegration of specialized tools and resources for han-

dling named entities and acronyms. In addition, for

about 20% of the pairs, the parser did not produce

the right analysis either for T or for H.

Another drawback of the tree-edit distance ap-

proach is that it is not able to observe the whole tree,

but only the subtree of the processed node. For ex-

ample, the cost of the insertion of a subtree in H
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run measure CD IE MT QA RC PP IR Overall

1 accuracy 0.78 0.48 0.50 0.52 0.52 0.52 0.47 0.55

cws 0.89 0.50 0.55 0.49 0.53 0.48 0.51 0.60

precision 0.55

recall 0.64

2 accuracy 0.78 0.53 0.49 0.48 0.54 0.48 0.47 0.55

cws 0.89 0.53 0.53 0.42 0.58 0.43 0.50 0.58

precision 0.56

recall 0.50

Table 1: ITC-irst results at PASCAL-RTE

could be smaller if the same subtree is deleted from

T in prior or later stage.

The current implementation of the system does

not use resources (e.g. WordNet, paraphrases in

(Lin and Pantel 2001), entailment patters as acquired

in (Szpektor et al. 2004)) that could significantly

wide the application of entailment rules and, conse-

quently, improve performances. We estimated that

for about 40% of the the true positive pairs the sys-

tem could have used entailment rules found in en-

tailment and paraphrasing resources. As an exam-

ple, the pair 565:

T - Soprano’s Square: Milan, Italy,

home of the famed La Scala opera house,

honored soprano Maria Callas on Wednes-

day when it renamed a new square after

the diva.

H - La Scala opera house is located in

Milan, Italy.

could be successfully solved using a paraphrase

pattern such as Y home of X : �<; X is located in Y,

which can be found in (Lin and Pantel 2001). How-

ever, in order to use this kind of entailment rules, it

would be necessary to extend the “single node” im-

plementation of tree edit distance to address editing

operations among subtrees.

Our participation in the RTE challenge served as

a first test of our system. In the future, we plan to

expand the system by searching for solutions for the

mentioned problems and introducing entailment and

paraphrasing resources.
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Abstract

The UNED-NLP Group 1 Recognizing

Textual Entailment System is based on the

use of a broad-coverage parser to extract

dependency relations and a module which

obtains lexical entailment relations from

WordNet. The work aims at comparing

whether the matching of dependency trees

substructures give better evidence of en-

tailment than the matching of plain text

alone.

1 Introduction

The system of the UNED-NLP Group which has

taken part in the 2005 PASCAL 2 Recognizing Tex-

tual Entailment Challenge is a proposal towards the

resolution of the Recognizing Textual Entailment

(RTE) problem. The present approach explores the

possibilities of matching between dependency trees

of text and hypothesis. System’s components are the

following:

1. A dependency parser, based on Lin’s Minipar

(Lin, 1998), which normalizes data from the

corpus of text and hypothesis pairs, accom-

plishes the dependency analysis and creates

into memory appropriated structures to repre-

sent it.

1Natural Language Processing and Information Re-
trieval Group at the Spanish Distance Learning University.
http://nlp.uned.es/

2Pattern Analysis, Statistical Modelling and
Computational Learning Network of Excellence.
http://www.pascal-network.org/

2. A lexical entailment module, which takes the

information given by the parser and returns hy-

pothesis’ nodes entailed by the text.

3. A matching evaluation module, which searches

for paths into hypothesis’ dependency tree,

conformed by the lexically entailed nodes.

Section 2 shows how lexical entailment is accom-

plished. Section 3 presents the methodology fol-

lowed to evaluate matching between dependency

trees. Section 4 describes some experiments and

their results. Finally, some conclusions are given.

2 Lexical Entailment

After the dependency parsing, a module of lexical

entailment is applied over the nodes of both text and

hypothesis. The output of this module is a list of

pairs (T,H) where T is a node in the text’s depen-

dency tree whose lexical unit entails the lexical unit

of the node H in the hypothesis’ dependency tree.

This entailment at the word level considers Word-

Net relations, detection of WordNet multiwords and

negation, as follows:

2.1 Synonymy and Similarity

The lexical unit T entails the lexical unit H if they

can be synonyms according to WordNet or if there is

a relation of similarity between them. Some exam-

ples were found in the PASCAL Challenge training

corpus such as, for example: discover and reveal,

obtain and receive, lift and rise, allow and grant,

etcetera.
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2.2 Hyponymy and WordNet Entailment

Hyponymy and entailment are relations between

WordNet synsets having a transitive property. The

entailment predicate between two synsets was im-

plemented according to these relations as the search-

ing of a path from synset ST to synset SH , in

which hyponymy and WordNet entailment relations

between intermediate synsets are considered in the

direction from ST to SH . Then, the lexical unit T

entails the lexical unit H if there is a path from one

synset of T to one synset of H. Some examples af-

ter processing the training corpus of PASCAL Chal-

lenge are: glucose entails sugar (i.e. glucose is a

hyponym of sugar), crude entails oil, death entails

kill.

2.3 Multiwords

The recognition of multiwords cannot be a previous

to lemmatization and parsing step, so a pre and a

post processing must be performed in order to avoid

errors in the processing. For example, the recogni-

tion of the multiword came down requires the previ-

ous obtention of the lemma come, because the mul-

tiword present in WordNet is come down.

The variation of multiwords is not due only to

lemmatization. Sometimes there are some char-

acters that change as, for example, a dot in an

acronym or a proper noun with different wordings.

For this reason, a fuzzy matching between can-

didate and WordNet multiwords was implemented

using the Levenshtein’s edit distance (1965). If

the two strings differ in less than 10%, then the

matching is permitted. For example, the multiword

Japanise capital in hypothesis 345 of the training

corpus is translated into the WordNet multiword

Japanese capital, allowing the entailment between

Tokyo and it. Some other examples of entailment af-

ter multiword recognition are, regarding synonymy,

blood glucose and blood sugar, Hamas and Is-

lamic Resistance Movement, Armed Islamic Group

and GIA and, regarding hyponymy, war crime en-

tails crime, melanoma entails skin cancer.

2.4 Negation and Antonymy

Negation is detected after searching leaves with a

negation relation in the dependency tree. This nega-

tion relation is then propagated to its ancestors until

the head. For example, Figures 1 and 2 show an

excerpt of the dependency trees for the training ex-

amples 74 and 78 respectivelly. Negation at node 11

of text 74 is propagated to node 10 (neg(will)) and

node 12 (neg(change)). Negation at node 6 of text

78 is propagated to node 5 (neg(be)).

Entailment is not possible between a lexical unit

and its negation. For example, before considering

negation, node 5 in text 78 (be) entails node 4 in

hypothesis 78 (be). Now, this entailment is not pos-

sible.

Text 74: ...minister says his country will not change its plan...

7: says

����

HHHH

6: minister 12: change

����

HHHH

9: country

8: his

10: will

11: not

14: plan

13: its

Hypothesis 74: South Korea continues to send troops

3: continues

��� HHH
2: Korea

1: South

5: send

�� HH
4: to 6: troops

Figure 1: Dependency trees for pair 74 from training

corpus.

Text 78: Clinton’s new book is not big seller here

5: is

��������

�
��

@
@@

PPPPPPPP

4: book

�� HH
1: Clinton

2: ’s

3: new

6: not 8: seller

7: big

9: here

Hypothesis 78: Clinton’s book is a big seller

4: is

��� HHH
3: book

1: Clinton

2: ’s

7: seller

�� HH
5: a 6: big

Figure 2: Dependency trees for pair 78 from training

corpus.

The entailment between nodes affected by nega-

tion is implemented considering the antonymy rela-

tion of WordNet, and applying the previous process-

ing to them (sections 2.1, 2.2, 2.3). For example,
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since node 12 in text 74 is negated (neg(change)),

the antonyms of change are considered in the entail-

ment relations between text and hypothesis. Thus,

neg(change) in text entails continue in the hypoth-

esis because the antonym of change, stay, is a syn-

onym of continue.

3 Matching between Dependency Trees

Dependency trees give a structured representation

for every text and hypothesis. Matching between de-

pendency trees can give an idea about how semanti-

cally similar are two text snippets; this is because a

certain semantic information is implicitly contained

into dependency trees. The technique used to eval-

uate matching between dependency trees is inspired

in Lin’s proposal (Lin, 2001). The initial idea was

to use a very simple matching algorithm, focused

on searching for all the branches starting at any leaf

from hypothesis’ tree and showing a matching with

any branch from text’s tree. Hence, a hypothesis’

matching branch is defined as the one whose all

nodes show a lexical entailment with nodes from a

branch of the correspondent text.

The existence or not of an entailment relation

from a text to its correspondent hypothesis was de-

termined by means of their similarity. Similarity

between text and hypothesis is defined as the pro-

portion of hypothesis’ nodes pertaining to match-

ing branches. From the results obtained against

the training corpus, it was empirically determined

a threshold for that similarity value. Best accuracy

for the system was obtained when 50% was assigned

as threshold value. Hence, it was said that a text en-

tailed a hypothesis if hypothesis’ dependency tree

showed a percentage of matching nodes greater or

equal than 50%. If that percentage was less than

50% it was said that no entailment existed from text

to hypothesis.

4 Experiments

Along the development time of the proposed system

some experiments were accomplished in order to ob-

tain feedback about succesive improvements made

to it. For this purpose, several baseline systems –

whose results against the training corpus were com-

pared – were developed.

4.1 Baselines

Two different baselines were generated in order

to analyse the behaviour of the proposed system

against the training corpus. Since lexical entailment

is previous to matching between dependency trees,

two more simple systems were developed to obtain

the mentioned baselines:

• Baseline system I calculated the ratio of words

from the hypothesis which appeared into the

text.

• Baseline system II computed the ratio of lem-

mas from the hypothesis which are entailed by

any lemma from the text.

In all cases the classification threshold was 50%, as

explained in section 3.

4.2 Results over the Training Corpus

The proposed system and the baselines show similar

results. Accuracy, calculated for every type of appli-

cation setting, ranges between 46.67% and 55.56%,

except for comparable documents (CD), showing

76.29%, 71.13% and 80.41% accuracy for baseline

system I, baseline system II and proposed system,

respectively. The overall results are 54.95%, 55.48%

and 56.36% accuracy for baseline system I, baseline

system II and proposed system, respectively.

4.3 Official Results at the Challenge

Since up to two runs were admitted for submission,

it was decided to prepare a third baseline to compare

the system against the test corpus. For this base-

line system III, queries to WordNet were not used

but only coincidence between lemmas from text and

hypothesis. Hence, one of the submitted runs was

generated by this latter baseline system.

The proposed system was refined for its run

against the test corpus. This last implementation

searched for subject or object relations along hy-

pothesis’ matching branches, requiring also a match-

ing between these relations.

Accuracy, calculated for every type of application

setting, ranges between 42.55% and 55.83%, except

for CD, showing 79.33% and 78.67% accuracy for

baseline system III and proposed system, respec-

tively. The overall results are 55.75% and 54.75%
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accuracy for baseline system III and proposed sys-

tem, respectively.

The behaviour of both systems is similar to the

ones executed against the training corpus. However,

consideration of subject and object relations cause a

slight decrease of accuracy.

5 Analysis and Conclusions

Results show that a matching-based approach (as

shown here) is not enough to tackle appropriately

the problem except, perhaps, for CD tasks.

The analysis of cases shows that a high lexical

overlap does not mean a semantic entailment and a

low lexical overlap does not mean different seman-

tics. Both lexical and syntactic issues to be improved

have been detected.

Some kind of paraphrasing between n-grams

would be useful; for example, in pair 963 of the

training corpus is necessary to detect the equiva-

lence between same-sex and gay or lesbian; or, in

pair 1284, come into conflict with and attacks must

be detected as equivalent. Previous work has been

developed; for example, Szpektor et al. (2004)

propose a web-based method to acquire entailment

relations; Barzilay and Lee (2003) use multiple-

sentence alignment to learn paraphrases in an un-

supervised way; Hermjakob et al. (2002) show

how WordNet can be extended as a reformulation

resource; Pang et al. (2003) represent paraphrases

as word lattices; Tomuro (2003) studies the case of

question paraphrases.

Other problem is that, in certain cases, a high

matching between hypothesis’ nodes and text’s

nodes is given but, simultaneously, hypothesis’

branches match with disperse text’s branches; then,

syntactic relations between subestructures of the text

and the hypothesis must be analyzed in order to de-

termine the existence of an entailment. This fact

suggests to accomplish an in-depth treatment of syn-

tactic relations.

3Text 96: The Massachusetts Supreme Judicial Court has
cleared the way for lesbian and gay couples in the state to marry,
ruling that government attorneys “failed to identify any consti-
tutionally adequate reason” to deny them the right.
Hypothesis 96: U.S. Supreme Court in favor of same-sex mar-
riage

4Text 128: Hippos do come into conflict with people quite
often.
Hypothesis 128: Hippopotamus attacks human.

Hence, it is observed that for RTE is necessary

to tackle a wide set of linguistic phenomena in a

specific way, at the lexical level and at the syntac-

tic level.
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Abstract

In this paper we define a measure for tex-

tual entailment recognition based on the

graph matching theory applied to syntac-

tic graphs. We describe the experiments

carried out to estimate measure’s param-

eters with SVM and we report the results

obtained on the Textual Entailment Chal-

lenge development and testing set.

1 Introduction

Graph distance/similarity measures are widely rec-

ognized to be powerful tools for matching problems

in computer vision and pattern recognition appli-

cations (Bunke and Shearer, 1998). Objects to be

matched (two images, patterns, etc.) are represented

as graphs, turning the recognition problem into a

graph matching task. As hypothesis (H) and text (T)

may be seen as two syntactic graphs we can reduce

the textual entailment (Dagan and Glickman, 2004)

recognition problem to a graph similarity measure

estimation even if textual entailment has particular

properties: a) unlike the classical graph problems, is

not symmetric; b) node similarity can not be reduced

to the label level (e.g. token similarity); c) similarity

should be estimated considering also linguistically

motivated graph transformations (e.g., nominaliza-

tion and passivization).

In principle, textual entailment is a transitive ori-

ented relation holding in one of the following cases:

1. T semantically subsumes H (e.g., in H:[The

cat eats the mouse] and T:[the cat devours the

mouse], eat generalizes devour).

2. T syntactically subsumes H (e.g., in H:[The cat

eats the mouse] and T:[the cat eats the mouse in

the garden], T contains a specializing preposi-

tional phrase).

3. T directly implies H (e.g., H:[The cat killed the

mouse], T:[the cat devours the mouse]).

Taking this into account we define a measure

E(XDGT ,XDGH) for the entailment relation based

on XDGT and XDGH , i.e., the syntactic represen-

tation of the two sentences T and H . We work un-

der two simplifying assumptions: H is supposed to

be a sentence describing completely a fact in an as-

sertive or negative way and H should be a simple

S-V-O sentence. Our measure has to satisfy the fol-

lowing properties: (a) having a range between 0 and

1, assigning higher values to couples that are more

likely in entailment relation, and a specific orien-

tation, E(XDGT ,XDGH) 6= E(XDGH ,XDGT );
(b) the overlap between XDGT and XDGH has to

describe if a subgraph of XDGT implies the graph

XDGH . Linguistic transformations (such as nomi-

nalization, passivization, and argument movement),

as well as negation, must be also considered, as they

can play a very important role.

2 Basic Definitions

For the syntactic representation we rely on the ex-

tended dependency graph (XDG) (Basili and Zan-

zotto, 2002). An XDG = (C,D) is basically a

dependency graph whose nodes C are constituents

and whose edges D are the grammatical relations

among the constituents. Constituents are lexicalised
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syntactic trees with explicit syntactic heads and po-

tential semantic governors (gov). Dependencies in

D represent typed and ambiguous relations among

a constituent, the head, and one of its modifiers.

Ambiguity is represented using plausibility (be-

tween 0 and 1).

Having the formalism it is possible to define how

two structurally similar graphs are one subsump-

tion of the other. Given XDGH = (CH , DH)
and XDGT = (CT , DT ), XDGH is in a isomor-

phic subsumption relation with XDGT (XDGH �
XDGT ), if two bijective functions fC and fD exist

respectively related to the constituents C and the de-

pendencies D (fC : CT → CH and fD : DT →
DH ). They describe the oriented relation of sub-

sumption between nodes and edges of H and T . Iso-

morphic subsumption will capture textual entailment

cases 1 and 3, that is, circumstances in which each

node and edge of H has a correspondent in T , and

vice-versa.

We denote with XDG′
T ⊆ XDGT a subgraph

of XDGT . A subgraph subsumption isomorphism

between XDGH and XDGT , written as XDGH ⊑
XDGT , holds if it exists XDG′

T ⊆ XDGT so that

XDGH � XDG′
T . Subgraph subsumption iso-

mophism correspond to textual entailment case 2,

i.e, when there are nodes/edges of T not mapped in

H , but all nodes/edges of H are mapped in T . In-

deed, as the text entailment definition suggests, T

can contain more information than H .

To tackle the problem of distortions in the syn-

tactic and semantic interpretation, we can imagine

an entailment measure based on the maximal sub-

graph XDG′
H of XDGH (hereafter maximal com-

mon subsumer subgraph, mcss) that is in a subgraph

subsumption isomorphism relation with XDGT , i.e.

XDG′
H ⊑ XDGT . The measure should consider

both the distance between XDG′
H and XDGH and

the generalisation steps necessary to draw the rela-

tion XDG′
H ⊑ XDGT .

3 A Rule-based Similarity Measure

To settle the measure the first problem is to extract

XDG′
T , i.e., the maximal subgraph of XDGT that

is in a subgraph isomorphism relation with XDGH ,

through the definition of the functions fC (Sec.3.1)

and fD (Sec.3.2).

3.1 Node subsumption

To find the mcss graph, we need to check that

XDG′
H ⊆ XDGH and XDG′

T ⊆ XDGT are in

the isomorphic relation XDG′
H � XDG′

T . This

is possible if the selection process of the subsets of

the graphs nodes guarantees the possibility of defin-

ing the function fC . This procedure should try to

map each constituent of XDGH to its most similar

constituent in XDGT . If this is done, the bijective

function fC is derived by construction. The mapping

process is based on the notion of anchors, defined as

a = (ch, ct, sm), holding an hypothesis and a text

constituent (ch and ct), and the degree of semantic

similarity sm ∈ [0, 1] between the two. The set of

anchors A for an entailment pair contains an anchor

for each one of the hypothesis constituents having a

correspondences in the text T . For example in the

entailment pair of Fig. 1, fC produces the mapping

pairs [The red cat - The carmine cat], [killed - de-

vours], [the mouse - the mouse].

To determine the best set A, it is necessary to de-

fine the semantic similarity sm. If ch is a noun or a

prepositional phrase, similarity is evaluated as:

sm(ch, ct) = α ∗ sim(govch, govct) + (1 − α) ∗ simsub(ch, ct)

where gov is the constituent governor, α is an

empirically evaluated parameter used to weight

the importance of the governor, and simsub takes

into account similarity among the all the other

subcostituents of ch and ct. This latter is defined as:

simsub(ch, ct) =

∑

sh∈Sch

max
st∈Sct

sim(sh, st)

|Sch|

where Sch and Sct are the set of remaining sim-

ple constituents respectively of ch and ct. Finally,

sim expresses the similarity among two simple con-

stituents (set to 1 if simple constituents have the

same surface or stem); otherwise, a semantic sim-

ilarity weight β ∈(0,1) is assigned looking at pos-

sible WordNet relations (synonymy, entailment and

generalization).

When ch is a verb phrase a different analysis oc-

curs. In fact, a verb anchor can assume different lev-

els of similarity, according to the semantic value of

its modal. For example must go-could go should get

a lower similarity than must go-should go. A verb

phrase is thus composed by its governor gov and its
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Figure 1: An example of entailment couple in the XDG formalism. Solid lines express grammatical relations

D (with type and plausibility); dotted lines express anchors ai between H and T constituents.

modal constituents mod. The overall similarity is

thus:

sm(ch, ct) = γ ∗ sim(govch, govct)+ (1− γ) ∗ dist(modch, modct)

where dist∈[0, 1] is empirically derived as the se-

mantic distance between two modals (e.g., must is

nearer to should than to could) (classified as generic

auxiliaries, auxiliaries of possibility and auxiliaries

of obligation). Specific cases of syntactic variations,

such as active/passive alternation and nominaliza-

tion are properly treated.

3.2 Edge subsumption

The anchor set A represents the nodes of the mcss.

We will use fD to derive the edges of the mcss.

As XDG edges represent syntactic dependencies

among constituents, for each anchor a ∈ A the

syntactic structure of ch and ct is checked, and a

related syntactic similarity ss(ch, ct) ∈ [0, 1] is

evaluated. In order to obtain ss, it must be firstly

defined the set of edges Ech coming out from ch

(in Figure 1 example, Ekilled = {V sog, V obj})

and the corresponding set of connected nodes lch
(e.g. lkilled = {[the red cat], [the mouse]}).

In the same way, Ect and lct are defined (e.g.

Edevour = {V sog, V obj, V PP} and lct =
{[the carmine cat], [the mouse], [in the garden]}).

AL is defined as the set of anchors that contain

overlapping linked constituents, that is, con-

stituents linked with the same syntactic dependency

to ch and ct respectively (for example, a =
([the red cat], [the carmine cat], 0.95) ∈ AL, as

the two constituents are both linked to killed and

devour via a V sog edge). ss is defined as:

ss(ch, ct) =

∑

a∈AL

sma

|lch|

Syntactic similarity, defined by fD, will cap-

ture how much similar the syntactic structure ac-

companied to two constituents (i.e., the edges of

the graphs) are, by considering both their syntactic

properties (i.e., the common dependencies) and the

semantic properties of the constituents to which they

are linked (i.e., the similarity sma of the anchor of

the linked constituents).

3.3 Graph Similarity Measure

Both semantic (sm) and syntactic (ss) similarity

(derived respectively from fC and fD) must be taken

into consideration to evaluate the overall graph sim-

ilarity measure, as the former captures the notion of

node subsumption, and the latter the notion of edge

subsumption. For each pair (ch, ct) belonging to the

set of anchors A a global similarity is evaluated as:

S(ch, ct) = δ ∗ sm(ch, ct) + (1 − δ) ∗ ss(ch, ct)

where δ is a manually tuned parameter. The over-

all graph similarity is thus estimated as the average

similarity of the anchors a ∈ A over total number of

anchors:

E(XDGT ,XDGH) =

∑

A

S(ch, ct)

|A|

It is possible to predict if an entailment rela-

tion holds between H and T couple, verifyng

E(XDGT ,XDGH) against a manually tuned thresh-

old t.

4 Applying SVM to Evaluate Parameters

As clear from the previous sections, our measure de-

pends on many parameters (α, β, γ, and δ). These

parameters may be evaluated by a machine learning

algorithm such as SVM. Due to the basic assumption

that H should be a S-V -O sentence, feature spaces

can be easily set. In order to comparatively evalu-

ate the importance of different features we defined

these feature sets: the features G related to the graph

equivalence measure, i.e. G = { Ssim, Ssimsub, Sss,

Vsm, Vss, Osim, Osimsub, Oss }; the features A re-

lated to the number of commonly anchored depen-

dencies within constituents to the graph equivalence



28

D1 D3 D4 D5 D6
L 51.16(±3.98) - - - -
L,T ,G β = 0.5 - 55.28(±2.44) 56.14(±2.51) 56.40(±2.71) 56.72(±2.92)
L,T ,G β = 1 - 56.37(±2.45) 57.14(±2.94) 57.37(±3.45) 57.12(±3.56)
L,T ,G,A β = 1 - - 57.20(±3.01) 57.42(±3.36) 57.12(±3.38)

Table 1: Preliminary analysis on the develpment set using SVM

measure, i.e. A = { |lch|, |lct|}; T that are the fea-

tures related to the textual entailment subtasks (CD,

MT, etc.) Feature values are defined in Sec. 3. A

final and less complex feature set is L that repre-

sents the percentage of H tokens and of H lemmas

in common with T .

5 Results and preliminary evaluation

Before submitting the two runs of the two systems

we estimated the parameters over the development

set. For the first system referred as rule-based we

set the parameters at the best value, i.e. α = 0.85,

γ = 0.85, and δ = 0.5. Moreover, the threshold for

predicting a true entailment relation has been set to

t = 0.65. For the second system referred as SVM-

based the experiments reported in Tab. 1 have been

carried out. The table reports the accuracy of the

classifier over the different parameterizations. Rows

represent different feature spaces and when neces-

sary the value of the parameter β. Columns rep-

resent different degree of the SVM type 1 polyno-

mial kernel. For these preliminary experiments α

and γ have been set respectively to 1 and 0.85. This

preliminary setting of α, β, and γ seems to be in

contrast with the aim of using SVM to estimate the

measure parameters, but it is necessary to establish

the initial set A of anchors over with values of the

features may be computed. These experiments have

been made in 3-fold cross validation repeated 10

times. The development set has been randomly di-

vided 10 times (with a pseudo-random function and

with 10 fix seeds). The results are reported as mean

and standard deviation over 30 runs. All the feature

spaces are better than the baseline feature space L.

We submitted the system that had the best result in

this investigation.

Results over the competition test set are reported

in Table 5. As expected by the preliminary anal-

ysis over the two development set results are not

extremely high. Some trend has been somehow re-

measure rule-based SVM-based

cws 0.5574 0.5591
accuracy 0.5245 0.5182
precision 0.5265 0.5532

recall 0.4975 0.1950
f 0.5116 0.2884

rule-based SVM-based
TASK cws accuracy cws accuracy

CD 0.8381 0.7651 0.7174 0.6443
IE 0.4559 0.4667 0.4632 0.4917

MT 0.5914 0.5210 0.4961 0.4790
QA 0.4408 0.3953 0.4571 0.4574
RC 0.5167 0.4857 0.5898 0.5214
PP 0.5583 0.5400 0.5768 0.5000
IR 0.4405 0.4444 0.4882 0.4889

Table 2: Competition results

spected. The precision of the SVM-based is higher

than the precision of the rule-based approach. How-

ever, it loses many points with respect to the prelim-

inary evaluations, more than the expected standard

deviation. The recall of the method is instead in line

with the preliminary experiments. On this final set

the accuracy of the rule-based approach has been

higher of the SVM-based approach as happened on

the development set. Further analysis are needed to

better explain these results.
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Semantic entailment is the problem of determining if the

meaning of a given sentence entails that of another. This is

a fundamental problem in natural language understanding that

provides a broad framework for studying language variability

and has a large number of applications. We present a prin-

cipled approach to this problem that builds on inducing re-

representations of text snippets into a hierarchical knowledge

representation along with a sound inferential mechanism that

makes use of it to prove semantic entailment.

1 General Description of Our Approach

Given two text snippets S (source) and T (target)

(typically, but not necessarily, S consists of a short

paragraph and T , a sentence) we want to determine

if S|=T , which we read as “S entails T ” and, infor-

mally, understand to mean that most people would

agree that the meaning of S implies that of T . Some-

what more formally, we say that S entails T when

some representation of T can be “matched” (modulo

some meaning-preserving transformations to be de-

fined below) with some (or part of a) representation

of S, at some level of granularity and abstraction.

The approach consists of these components:

KR: A Description Logic based hierarchical

knowledge representation, EFDL, into which we re-

represent the surface level text representations, aug-

mented with induced syntactic and semantic parses

and word and phrase level abstractions.

KB: A knowledge base consisting of syntactic and

semantic rewrite rules, written in EFDL.

Subsumption: An extended subsumption algo-

rithm which determines subsumption between

EFDL expressions (representing text snippets or

rewrite rules). “Extended” here means that the basic

unification operator is extended to support several

word level and phrase level abstractions.

First a set of machine learning based resources are

used to induce the representation for S and T . The

entailment algorithm then proceeds in two phases:

(1) it incrementally generates new representations of

the original representation of the source text S and

(2) it makes use of an (extended) subsumption algo-

rithm to check whether any of the alternative repre-

sentations of the source entails the representation of

the target T . The subsumption algorithm is used in

both phases in slightly different ways.

Figure 1 provides an example of the representa-

tion of two text snippets along with a sketch of the

extended subsumption to decide the entailment.

2 Hierarchical Knowledge Representation

Our semantic entailment approach relies heavily

on a hierarchical representation of natural language

sentences, defined formally over a domain D =
〈V,A, E〉 which consists of a set V of typed ele-

ments, a set A of attributes of elements, and a set E
of relations among elements. We use a Description-

Logic inspired language, Extended Feature Descrip-

tion Logic (EFDL), an extension of (Cumby and

Roth, 2003). As described there, expressions in the

language have an equivalent representation as con-

cept graphs, and we refer to the latter representation

here for comprehensibility.

Nodes in the concept graph represent elements

– words or (multiple levels of) phrases. Attributes

of nodes represent properties of elements. Exam-

ples of attributes include {LEMMA, WORD, POS,

MAINVERB, PHTYPE, PHHEAD, NETYPE, SRLTYPE

{ARG0, . . . ARGM}, NEG}. The first three are word
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Figure 1: Example of Re-represented Source & Target pairs as concept graphs. The original source sentence S generated several
alternatives including S′

1 and the sentence in the figure (S′
2). Our algorithm was not able to determine entailment of the first

alternative (as it fails to match in the extended subsumption phase), but it succeeded for S′
2. The dotted nodes represent phrase

level abstractions. S′
2 is generated in the first phase by applying the following chain of inference rules: #1 (genitives): “Z’s W →

W of Z”; #2: “X put end to Y’s life → Y die of X”. In the extended subsumption, the system makes use of WordNet hypernymy
relation (“lung cancer” IS-A “carcinoma”) and NP-subsumption rule (“Jazz singer Marion Montgomery’” IS-A “singer”). The
rectangles encode the hierarchical levels (H0, H1, H2) at which we applied the extended subsumption. Also note that in the current
experiments we don’t consider noun plurals and verb tenses.

level, the next three are phrase level, NETYPE is the

named entity of a phrase, SRLTYPE is the set of se-

mantic arguments as defined in PropBank (Kings-

bury et al., 2002) and NEG is a negation attribute.

Relations (roles) between two elements are repre-

sented by labeled edges between the corresponding

nodes. Examples of roles include: {BEFORE, ID,

MOD, {ARG0, . . . ARGM}}; BEFORE indicates the

order between two individuals, ID and MOD repre-

sent a contains relation between a word and a phrase

where the word, respectively, is or is not the head.

Concept graphs are used both to describe sentence

representations and rewrite rules. Details are omit-

ted here; we just mention that the expressivity of

these differ - the body and head of rules are simple

chain graphs, for inference complexity reasons. Re-

stricted expressivity is an important concept in De-

scription Logics (Baader et al., 2003), from which

we borrow several ideas and nomenclature.

Concept graph representations are induced via

state of the art machine learning based resources that

include a tokenizer, a lemmatizer, a part-of-speech

tagger, a syntactic parser, a semantic parser, a named

entity recognizer, and a name coreference system.

Rewrite rules were filtered from a large collection

of paraphrase rules developed in (Lin and Pantel,

2001) and compiled into our language; a number of

non-lexical rewrite rules were generated manually.

Currently, our knowledge base consists of approxi-

mately 300 inference rules.

The most significant aspect of our knowledge rep-

resentation is its hierarchy. It is defined over a set

of typed elements that are partitioned into several

classes in a way that captures levels of abstraction

and is used by the inference algorithm to exploit

these inherent properties of the language. The hier-

archical representation provides flexibility – rewrite

rules can depend on a level higher than the lexical

one, as in: [W/PHTYPE=NP] of [Z/PHTYPE=NP] → Z’s W.

Most importantly, it provides a way to abstract over

variability in natural language by supporting infer-

ence at a higher than word level, and thus supports

the inference process in recovering from inaccura-

cies in lower level representations. Consider the fol-

lowing example in which processing at the semantic

parse level exhibits identical structure, despite sig-

nificant lexical level differences.

S: “[The bombers]/A0 managed [to enter [the embassy build-
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ing]/A1]/A1.”1

T: “[The terrorists]/A0 entered [the edifice]/A1.”

On the other hand, had the phrase failed to en-

ter been used instead of managed to enter , a NEG

attribute associated with the main verb would pre-

vent this inference. Note that failure of the seman-

tic parser to identify the semantic arguments A0 and

A1 will not result in a complete failure of the infer-

ence, as described in the next section: it will result

in a lower score at this level that the optimization

process can compensate for (in the case that lower

level inference occurs).

3 Inference Model and Algorithm

An exact subsumption approach that requires the

representation of T be entirely embedded in the rep-

resentation of S′

i is unrealistic. Natural languages

allow words to be replaced by synonyms, modi-

fier phrases to be dropped, etc., without affecting

meaning. We define below our notion of extended

subsumption, computed given two representations,

which is designed to exploit the hierarchical repre-

sentation and capture multiple levels of abstractions

and granularity of properties represented at the sen-

tence, phrase, and word-level.

Nodes in a concept graph are grouped into differ-

ent hierarchical sets denoted by H = {H0, . . . , Hj}
where a lower value of j indicates higher hierarchi-

cal level (more important nodes). This hierarchical

representation is derived from the underlying con-

cept graph and plays an important role in the defi-

nitions below. We say that S′

i entails T if T can be

unified into S′

i. The significance of definitions below

is that we define unification so that it takes into ac-

count both the hierarchical representation and mul-

tiple abstractions.

Let V (T ), E(T ), V (S′

i), and E(S′

i) be the sets of

nodes and edges in T and S′

i, respectively. Given a

hierarchical set H , a unification is a 1-to-1 mapping

U = (UV , UE) where UV : V (T ) 7→ V (S′

i), and

UE : E(T ) 7→ E(S′

i) satisfying:

1.∀(x, y) ∈ U : x and y are in the same hierarchical

level.

2.∀(e, f) ∈ UE : their sinks and sources must be

unified accordingly. That is, for n1, n2, m1, and

1
The verbs “manage” and “enter” share the semantic argument “[the bombers]/A0”.

m2 which are the sinks and the sources of e and f

respectively, (n1, m1) ∈ UV and (n2, m2) ∈ UV .

Let U(T, S′

i) denote the space of all unifications

from T to S′

i. In our inference, we assume the ex-

istence of a unification function G determining the

cost of unifying pairs of nodes or pairs of edges.

G may depend on language and domain knowledge,

e.g. synonyms, name matching, and semantic rela-

tions. When two nodes or edges cannot be unified, G

returns infinity. This leads to the definition of unifi-

ability.

Definition 3.1 Given a hierarchical set H , a unifi-
cation function G, and two concept graphs S′

i and

T , we say that T is unifiable to S′

i if there exists a

unification U from T to S′

i such that the cost of uni-
fication defined by

D(T, S
′
i) = min

U∈U(T,S′

i
)

X
Hj

X
(x,y)∈U|x,y∈Hj

λjG(x, y)

is finite, where λj are some constants s.t. the cost

of unifying nodes at higher levels dominates those of

the lower levels.

Because top levels of the hierarchy dominate

lower ones, nodes in both graphs are checked for

subsumption in a top down manner. The levels and

corresponding processes are:

Hierarchy set H0 corresponds to sentence-

level nodes, represented by the verbs in the text. The

inherent set of attributes is {PHTYPE, MAINVERB,

LEMMA}. In order to capture the argument structure

at sentence-level, each verb in S′

i and T has a set of

edge attributes {ARGi, PHTYPEi}, where ARGi and

PHTYPEi are the semantic role label and phrase type

of each argument i of the verb considered.

For each verb in S′

i and T , check if they have the

same attribute set and argument structure at two ab-

straction levels:

1) The semantic role level (SRL attributes). eg:

ARG0 verb ARG1 : [Contractors]/ARG0 build [houses]/ARG1

for $100,000.

2) The syntactic parse level (parse tree labels). Some

arguments of the verb might not be captured by the

semantic role labeler (SRL); we check their match

at the syntactic parse level. eg: NP verb NP PP : [Con-

tractors]/NP build [houses]/NP [for $100,000]/ PP.

At this level, if all nodes are matched (modulo

functional subsumption), the cost is 0, otherwise it

is infinity.
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Hierarchy set H1 corresponds to phrase-level

nodes and represents the semantic and syntactic ar-

guments of the H0 nodes (verbs). If the phase-level

nodes are recursive structures, all their constituent

phrases are H1 nodes. For example, a complex noun

phrase consists of various base-NPs. Base-NPs have

edges to the words they contain.

The inference procedure recursively matches the

corresponding H1 nodes in T and S′

i until it finds a

pair whose constituents do not match. In this situ-

ation, a Phrase-level Subsumption algorithm is ap-

plied. The algorithm is based on subsumption rules

that are applied in a strict order (as a decision list)

and each rule is assigned a confidence factor.

The algorithm makes sure two H1 nodes have the

same PHTYPE, but allows other attributes such as

NETYPE to be optional. Each unmatched attribute

results in a uniform cost.

Hierarchy set H2 corresponds to word-level

nodes. The attributes used here are: {WORD,

LEMMA, POS}. Unmatched attributes result in a uni-

form cost.

We solve the subsumption problem by formulat-

ing an equivalent Integer Linear Programming (ILP)

problem of which details is omitted. Despite the fact

that this optimization problem is NP hard, commer-

cial packages have very good performance on sparse

problems such as this one (Xpress-MP, ).

4 Experimental Evaluation

The system needs to establish a confidence threshold

to decide, for each example, if the entailment is true

of false. The system searches for the optimal thresh-

old per task on the development set. It took about

50 minutes to run the system on the development set

and 2 hours on the test. Table 1 shows the system’s

accuracy on the development set.

All Task
CD IE IR MT PP QA RC

System 64.8 74.0 35.0 62.0 87.5 63.8 84.0 49.0

Test 56.1 77.3 50.0 52.2 53.3 50.0 50.0 51.4

Table 1: System’s performance obtained for each experiment
on the Pascal corpora and its subtasks.

Below are three examples highlighting some in-

teresting aspects of the entailment system. In the

first example, the system fails to produce the cor-

rect answer due to its inability to identify the verbal

paraphrase in the long sentence. However, it suc-

cessfully captures some hard entailment pairs such

as those in examples 2 and 3.
S1: “As oil prices soared to new heights after a terrorist at-

tack in Saudi Arabia, the nation’s influential oil minister tried

to reassure markets yesterday that OPEC would do its best to

provide adequate supplies.”

T1: “As oil prices soared after a terrorist attack in Saudi Ara-

bia, the nation’s oil minister tried to reassure markets that

OPEC will try to provide adequate supplies.”

S2: “A male gorilla escaped from his cage in the Berlin zoo and
sent terrified visitors running for cover, the zoo said yesterday.”

T2: “A gorilla escaped from his cage in a zoo in Germany.”

S3: “The recent G8 summit, which was first held on July 13-16,
1975, took place on Sea Island on June 8-10.”

T3: “The recent G8 summit took place on July 13-16, 1975.”

In the second example, the system takes advan-

tage of the functional subsumption and identifies

the PART-OF semantic relation between “Berlin” and

“Germany”. The system correctly classifies the third

pair as negative as it fails to match the date after it

passes the argument structure test.
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Abstract 

This paper proposes a general probabilis-

tic setting that formalizes the notion of 

textual entailment. In addition we de-

scribe a concrete model for lexical en-

tailment based on web co-occurrence 

statistics in a bag of words representation.  

1 Introduction 

This paper describes the Bar-Ilan system partici-

pating in the Recognising Textual Entailment 

Challenge
1
. We first propose a general probabilis-

tic setting that formalizes the notion of textual en-

tailment. We then describe a model, derived from 

the proposed probabilistic setting, for lexical en-

tailment based on web co-occurrence statistics in a 

bag of words representation. 

Although our proposed lexical system is rela-

tively simple, as it doesn’t rely on syntactic or 

other deeper analysis, it nevertheless achieved an 

overall accuracy of 59% and an average precision 

of 0.57. The system did particularly well on Com-

parable Documents (CD) task achieving an accu-

racy of 83%. The results suggest that the proposed 

probabilistic framework is a promising basis for 

improved implementations that incorporate richer 

information. 

2 Probabilistic Textual Entailment 

2.1 Motivation 

In many intuitive cases, the textual entailment rec-

ognition task may be perceived as being determi-

nistic (Dagan and Glickman, 2004). For example, 

given the hypothesis h1 = "Harry was born in 

                                                          
1 http://www.pascal-network.org/Challenges/RTE/

Iowa" and a candidate text t1 that includes the sen-

tence "Harry's birthplace is Iowa", it is clear that t1

does (deterministically) entail h1, and humans are 

likely to have high agreement regarding this deci-

sion. In many other texts, though, entailment infer-

ence is uncertain and has a probabilistic nature. For 

example, a text t2 that includes the sentence "Harry 

is returning to his Iowa hometown to get married." 

does not deterministically entail the above h1 since 

Harry might have moved to Iowa as a child. Yet, it 

is clear that t2 does add substantial information 

about the correctness of h1. In other words, the 

probability that h1 is indeed true given the text t2

ought to be significantly higher than the prior 

probability of h1 being true. More specifically, we 

might say that the probability p of h1 being true 

should be estimated based on the percentage of 

cases in which someone's reported hometown is 

indeed his/her birthplace. Accordingly, we would-

n't accept t2 as a definite assessment for the truth of 

h1. However, in the absence of other definite in-

formation, t2 may partly satisfy our information 

need for an assessment of the probable truth of h1, 

with p providing a confidence probability for this 

inference.  

In the next section we propose a concrete prob-

abilistic setting that formalizes the above rational. 

2.1 A Probabilistic Setting 

Let T denote a space of possible texts, and t T a 

specific text. 

Meanings are captured in our model by hypothe-

ses and their truth values. Let H denote the set of 

all possible hypotheses. A hypothesis h ∈ H is a 

propositional statement which can be assigned a 

truth value. For now it is assumed that h is repre-

sented as a textual statement, but in principle other 

representations for h may fit our framework as 

well. (For example, h might be syntacti-

cally/semantically annotated and possibly include 

Prolog-style existentially quantified variables). 
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A semantic state of affairs is captured by a pos-

sible world w: H → {0, 1}, which is defined as a 

mapping from H to {0=False, 1=True}, represent-

ing the set of w’s concrete truth value assignments 

for all possible propositions. Accordingly, W de-

notes the set of all possible worlds. 

A Generative Model 

We assume a probabilistic generative model for 

texts and possible worlds. In particular, we assume 

that texts are generated within the context of some 

state of affairs, represented by a possible world. 

Thus, whenever the source generates a text t, it 

generates also hidden truth assignments that consti-

tute a possible world w. The hidden w is perceived 

as a "snapshot" of the (complete) state of affairs in 

the world within which t was generated. 

The probability distribution of the source, over 

all possible texts and truth assignments T × W, is 

assumed to reflect only inferences that are based 

on the generated texts. That is, we assume that the 

distribution of truth assignments is not bound to 

reflect the state of affairs in any "real" world, but 

only the inferences about propositions' truth that 

are related to the text. In particular, the probability 

for generating a true hypothesis h that is not related 

at all to the corresponding text is determined by 

some prior probability P(h), which is not bound to 

reflect h's prior in the "real" world. For example, 

h="Paris is the capital of France" might have a 

prior smaller than 1 and might well be false when 

the generated text is not related at all to Paris. In 

fact, we may as well assume that P(h) = 1 only for 

logical tautologies. On the other hand, we assume 

that the probability of h being true (generated 

within w) would be higher than the prior when the 

corresponding t does contribute information that 

supports h's truth. 

We define two types of events over the probabil-

ity space for T × W: 

I) For a hypothesis h, we denote as Trh the random 

variable whose value is the truth value assigned to 

h in the world of the generated text. Correspond-

ingly, Trh=1 is the event of h being assigned a truth 

value of 1 (True). 

II) For a text t, we use t to denote also the event 

that the generated text is t (as usual, it is clear from 

the context whether t denotes the text or the corre-

sponding event). 

Textual entailment relationship 

We say that t probabilistically entails h (denoted as 

t⇒h) if t increases the likelihood of h being true, 

that is, if P(Trh = 1| t) > P(Trh = 1) -- or equiva-

lently if the pointwise mutual information, 

I(Trh=1,t), is greater than 1. 

Entailment confidence 

Once knowing that t⇒h, we are further interested 

in a probabilistic confidence value for h being true 

given t, which corresponds to P(Trh = 1| t). 

3 Lexical Entailment Models 

The proposed setting above provides the necessary 

grounding for probabilistic modeling of textual 

entailment. As modeling the full extent of the tex-

tual entailment problem is a long term research 

goal, we focus here on identifying when the lexical 

elements of a textual hypothesis h are inferred 

from a given text t, even if the relations between 

these concepts may not be entailed from t.

To model lexical entailment we first assume that 

the meanings of the individual (content) words in a 

hypothesis h={u1, …, um} can be assigned truth 

values. A possible interpretation for these truth 

values, common in formal semantics tradition, is 

that lexical concepts are assigned existential mean-

ings. For example, for a given text t, Tracquired=1 if 

it can be inferred in t’s state of affairs that an ac-

quisition event exists (occurred). It is important to 

note though that this is one possible interpretation. 

We only assume that truth values are defined for 

lexical items, but do not explicitly annotate or 

evaluate this sub-task.  

Given this setting, a hypothesis is assumed to 

be true if and only if all its lexical components are 

true. When estimating the entailment probability 

we assume that the truth probability of a term in a 

hypothesis h is independent of the truth of the 

other terms in h, obtaining:  

∏
=

=Ρ==Ρ

m

i

uh tTrtTr
i

1

)|1()|1( (1) 

In order to estimate P(Tru=1|v1, …, vn) for a 

given word u and text t={v1, …, vn}, we further 

assume that the majority of the probability mass 

comes from a specific entailing word in t: 

)|1(max)|1( vutvu TTrtTr =Ρ==Ρ
∈ (2) 

where Tv denotes the event that a generated text 

contains the word v. This corresponds to expecting 

that each word in h will be entailed from a specific 
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word in t (rather than from the accumulative con-

text of t as a whole). Alternatively, one can view 

(2) as inducing an alignment between the terms in 

h to the terms in the t, somewhat similar to align-

ment models in statistical MT (Brown et al., 1993).  

Thus we propose estimating the entailment 

probability based on lexical entailment probabili-

ties from (1) and (2) as follows: 

∏∈ ∈
=Ρ==Ρ

hu vutvh TTrtTr )|1(max)|1( (3) 

3.1 Web-based Estimation of Lexical 

Entailment Probabilities 

We perform unsupervised empirical estimation of 

the lexical entailment probabilities, P(Tru=1|Tv), 

based on word co-occurrence frequencies from the 

web. Following our proposed probabilistic model 

(cf. Section  2.1), we assume that the web is a 

sample generated by a language source. Each 

document represents a generated text and a 

(hidden) possible world. Given that the possible 

world of the text is not observed we do not know 

the truth assignments of hypotheses for the 

observed texts. We therefore further make the sim-

plest assumption that all hypotheses stated verba-

tim in a document are true and all others are false 

and hence P(Tru=1|Tv) = P(Tu |Tv). This simple co-

occurrence probability, which we denote as lexical 

entailment probability – lep(u,v), is easily esti-

mated based on maximum likelihood counts: 

v

vu
vu

n

n
TTvulep

,
)|(),( ≈Ρ≈ (4) 

where nv is the number of documents containing 

word v and nu,v is the number of documents con-

taining both u and v. The corresponding counts 

were achieved by performing queries to a web 

search engine.   

The lexical entailment probability is derived from 

(4) and (5) above as follows: 

∏ ∈ ∈==
hu tvh vuleptTrP ),(max)|1( (5) 

4 Experimental Setting 

The text and hypotheses of all pairs in develop-

ment set and test set where tokenized by the fol-

lowing simple heuristic – split at white space and 

remove any preceding or trailing of these charac-

ters: ([{)]}"'`.,;:-!?.  A stop list was applied to re-

move frequent tokens. Counts were obtained using 

the AltaVista search engine
2
, which supplies an 

estimate for the number of results (web-pages) for 

a given one or two token query.     

We empirically tuned a threshold, λ, on the the 

estimated entailment probability to decide if en-

tailment holds on not. For a pair <t,h>, we tag an 

example as true (i.e. entailment holds) if p= P(Trh

= 1| t) > λ, and as false otherwise. We assigned a 

confidence of p to the positive examples (p>λ) and 

a confidence of 1-p to the negative ones.   

The threshold was tuned on the on the 567 an-

notated text-hypothesis example pairs in the devel-

opment set. The optimal (best cws) threshold was λ

=0.005 with a resulting cws of 0.57 and accuracy 

of 56%. This threshold was used to tag and assign 

confidence scores to the 800 pairs of the test set. 

4.1 Results 

The resulting accuracy on the test set was of 59% 

and the resulting confidence weighted score was of 

0.57. Both are statistically significantly better then 

chance at the 0.01 level.  

4.2 Analysis  

Table 1 lists the accuracy and cws when computed 

separately for each task. As can be seen by the ta-

ble the system does well on the CD and MT tasks, 

and quite poorly (not better than chance) on the 

RC, PP, IR and QA tasks.    

task accuracy cws 
Comparable Documents (CD) 0.8333 0.8727

Machine Translation (MT) 0.5667 0.6052 

Information Extraction (IE) 0.5583 0.5143 

Reading Comprehension (RC) 0.5286 0.5142 

Paraphrase (PP) 0.5200 0.4885 

Information Retrieval (IR) 0.5000 0.4492 

Question Answering (QA) 0.4923 0.3736 

Table 1: accuracy and cws by task 

It seems as if the success of the system is attributed 

almost solely to its success on the CD and MT 

tasks. Indeed it seems as if there is something 

common to these two tasks, which differentiates 

them from the others - in both tasks high overlap of 

content words (or their meanings) tend to corre-

spond to entailment.   

Success and failure cases 

The system misclassified 331 out of the 800 test 

examples. The vast majority of these mistakes 

                                                          
2 http://www.av.com 



36

(75%) were false positives – pairs the system 

tagged as true but annotated as false. It is also in-

teresting to note that the false negative errors were 

more common among the MT and QA tasks while 

the false positive errors were more typical to the 

other tasks. An additional observation from the 

recall-precision curve (Figure 1), is that high sys-

tem confidence actually corresponds to false en-

tailment. This is attributed to an artifact of this 

dataset by which examples with high word overlap 

between the text and hypothesis tend to be biased 

to negative examples.   
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Figure 1: precision recall curve of system 

In an attempt to ‘look under the hood’ we exmined 

at the underlying alignment preformed by our sys-

tem on a sample of examples. Figure 2 illustrates a 

typical alignment. Though some of the entailing 

words correspond to what we believe to be the cor-

rect alignment (e.g. voter → vote, japan’s → japa-

nese), the system also finds many dubious lexical 

pairs (e.g.  turnout  → half, percent → less). Obvi-

ously, co-occurrence within documents is only one 

factor in estimating the entailment between words. 

This information should be combined with other 

statistical criteria that capture complementary no-

tions of entailment, as addressed in (Geffet and 

Dagan, 2004), or with lexical resources such as 

WordNet.  

In an additional experiment we tried using as a 

confidence score a weighted average of the lexical 

probabilities (rather than the product in Equation 

1) using the token’s idf as a weight, following the 

weighting scheme which was applied to direct 

word overlap in (Monz and de Rijke, 2001). This 

method resulted in comparable but slightly lower 

accuracy of 56%.         

5 Conclusions 

This paper described the Bar-Ilan system partici-

pating in the Recognising Textual Entailment 

Challenge. We proposed a general probabilistic 

setting that formalizes the notion of textual entail-

ment. In addition we described a model for lexical 

entailment based on web co-occurrence statistics in 

a bag of words representation. Although our pro-

posed lexical system is relatively simple, as it 

doesn’t rely on syntactic or other deeper analysis; 

it nevertheless achieved encouraging results. The 

results suggest that the proposed probabilistic 

framework is a promising basis for improved im-

plementations incorporating deeper types of infor-

mation. 
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Abstract

The PASCAL Challenge’s textual entailment recog-
nition (RTE) task presents intriguing opportunities
to test various implications of the strong language
universal constraint posited by Wu’s (1995, 1997)
Inversion Transduction Grammar (ITG) hypothe-
sis. The ITG Hypothesis provides a strong induc-
tive bias, and has been repeatedly shown empiri-
cally to yield both efficiency and accuracy gains
for numerous language acquisition tasks. Since
the RTE challenge abstracts over many tasks, it in-
vites meaningful analysis of the ITG Hypothesis
across tasks including information retrieval, compa-
rable documents, reading comprehension, question
answering, information extraction, machine transla-
tion, and paraphrase acquisition. We investigate two
new models for the RTE problem that employ sim-
ple generic Bracketing ITGs. Experimental results
show that, even in the absence of any thesaurus to
accommodate lexical variation between the Text and
the Hypothesis strings, surprisingly strong results for
a number of the task subsets are obtainable from the
Bracketing ITG’s structure matching bias alone.

1 Introduction

The Inversion Transduction Grammar or ITG formalism,

which historically was developed in the context of trans-

lation and alignment, hypothesizes strong expressive-

ness restrictions that constrain paraphrases to vary word

order only in certain allowable nested permutations of

arguments—even across different languages (Wu, 1997).

The textual entailment recognition (RTE) challenge pro-

vides opportunities for meaningful analysis of the ITG

Hypothesis across a broad range of application domains.

The strong inductive bias imposed by the ITG Hy-

pothesis has been repeatedly shown empirically to yield

1The author would like to thank the Hong Kong Re-
search Grants Council (RGC) for supporting this research
in part through grants RGC6083/99E, RGC6256/00E, and
DAG03/04.EG09, and Marine Carpuat for invaluable assistance
in preparing the datasets and stoplist.

both efficiency and accuracy gains for numerous lan-

guage acquisition tasks, across a variety of language pairs

and tasks. Zens and Ney (2003) show that ITG con-

straints yield significantly better alignment coverage than

the constraints used in IBM statistical machine transla-

tion models on both German-English (Verbmobil corpus)

and French-English (Canadian Hansards corpus). Zhang

and Gildea (2004) find that unsupervised alignment using

Bracketing ITGs produces significantly lower Chinese-

English alignment error rates than a syntactically super-

vised tree-to-string model (Yamada and Knight, 2001).

With regard to translation rather than alignment accu-

racy, Zens et al. (2004) show that decoding under ITG

constraints yields significantly lower word error rates and

BLEU scores than the IBM constraints.

The present studies on the RTE challenge are mo-

tivated by the following observation: the empirically

demonstrated suitability of ITG paraphrasing constraints

across languages should hold, if anything, even more

strongly in the monolingual case.

The simplest class of ITGs, Bracketing ITGs, are par-

ticularly interesting in applications like the RTE chal-

lenge, because they impose ITG constraints in language-

independent fashion, and in the simplest case do not re-

quire any language-specific linguistic grammar or train-

ing. In Bracketing ITGs, the grammar uses only a sin-

gle, undifferentiated non-terminal (Wu, 1995). The key

modeling property of Bracketing ITGs that is most rel-

evant to the RTE challenge is that they assign strong

preference to candidate Text-Hypothesis pairs in which

nested constituent subtrees can be recursively aligned

with a minimum of constituent boundary violations. Un-

like language-specific linguistic approaches, however, the

shape of the trees are driven in unsupervised fashion by

the data. One way to view this is that the trees are

hidden explanatory variables. This not only provides

significantly higher robustness than more highly con-

strained manually constructed grammars, but also makes

the model widely applicable across languages in econom-

ical fashion without a large investment in manually con-



38

structed resources.

Formally, ITGs can be defined as the restricted sub-

set of syntax-directed transduction grammars or SDTGs

Lewis and Stearns (1968) where all of the rules are ei-

ther of straight or inverted orientation. Ordinary SDTGs

allow any permutation of the symbols on the right-hand

side to be specified when translating from the input lan-

guage to the output language. In contrast, ITGs only

allow two out of the possible permutations. If a rule is

straight, the order of its right-hand symbols must be the

same for both language. On the other hand, if a rule is

inverted, then the order is left-to-right for the input lan-

guage and right-to-left for the output language. Since

inversion is permitted at any level of rule expansion, a

derivation may intermix productions of either orientation

within the parse tree. The ability to compose multiple lev-

els of straight and inverted constituents gives ITGs much

greater expressiveness than might seem at first blush.

Moreover, for reasons discussed by Wu (1997), ITGs

possess an interesting intrinsic combinatorial property of

permitting roughly up to four arguments of any frame to

be transposed freely, but not more. This matches supris-

ingly closely the preponderance of linguistic verb frame

theories from diverse linguistic traditions that all allow

up to four arguments per frame. Again, this property

emerges naturally from ITGs in language-independent

fashion, without any hardcoded language-specific knowl-

edge. This further suggests that ITGs should do well

at picking out Text-Hypothesis pairs where the order of

up to four arguments per frame may vary freely between

the two strings. Conversely, ITGs should do well at re-

jecting pairs where (1) too many words in one sentence

find no correspondence in the other, (2) frames do not

nest in similar ways in the candidate sentence pair, or

(3) too many arguments must be transposed to achieve an

alignment—all of which would suggest that the sentences

probably express different ideas.

As an illustrative example, in common similarity mod-

els, the following pair of sentences (found in actual data

arising in our experiments below) would receive an inap-

propriately high score, because of the high lexical simi-

larity between the two sentences:

Chinese president Jiang Zemin arrived in Japan

today for a landmark state visit .

_ý� � / 0 å, Z ý�¿î � �M -ý

ý¶;- .

(Jiang Zemin will be the first Chinese national

president to pay a state vist to Japan.)

However, the ITG based model is sensitive enough

to the differences in the constituent structure (reflecting

underlying differences in the predicate argument struc-

ture) so that our experiments show that it assigns a low

score. On the other hand, the experiments also show that

it successfully assigns a high score to other candidate bi-

sentences representing a true Chinese translation of the

same English sentence, as well as a true English transla-

tion of the same Chinese sentence.

We investigate two new models for the RTE problem

that employ simple generic Bracketing ITGs, both with

and without a stoplist. The experimental results show

that, even in the absence of any thesaurus to accommo-

date lexical variation between the Text and the Hypoth-

esis strings, surprisingly strong results for a number of

the task subsets are obtainable from the Bracketing ITG’s

structure matching bias alone.

2 Experimental Method

Each Text-Hypothesis pair of the test set was scored via

the biparsing algorithm described in Wu and Fung (2005)

which is essentially similar to the dynamic programming

approach of Wu (1997). As mentioned earlier, biparsing

for ITGs can be accomplished efficiently in polynomial

time, rather than the exponential time required for classi-

cal SDTGs.

The ITG scoring model can also be seen as a variant

of the approach described by Leusch et al. (2003), which

allows us to forego training to estimate true probabilities;

instead, rules are simply given unit weights (with caveats

discussed in the Results section). The ITG scores can be

interpreted as a generalization of classical Levenshtein

string edit distance, where inverted block transpositions

are also allowed. Even without probability estimation,

Leusch et al. found excellent correlation with human

judgment of similarity between translated paraphrases.

We evaluated two different versions of the Bracketing

ITG based RTE models.

In the basic version, all words of the vocabulary are

included among the lexical transductions, allowing exact

word matches between the Text and the Hypothesis.

The second version excludes a list of 172 words from

a stoplist from the lexical transductions. The motivation

for this model was to discount the effect of words such

as “the” or “of” since, more often than not, they could be

irrelevant to the RTE task.

No significant training was performed with the avail-

able development sets. Rather, the aim was to establish

foundational baseline results, to see in this first round of

RTE experiments what results could be obtained with the

simplest versions of the ITG models.

The RTE test set consists of 300 Text-Hypothesis string

pairs, selected from various sources by human collectors.

Each string pair is labeled according to the task category

that the data was drawn from. These labels divide the data

into seven task subsets, which we analyze individually

below. While the collectors were attempting to build a

representative dataset, it is difficult to make claims about
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distributional neutrality, due to the arbitrary nature of the

example selection process.

3 Results

Across all subsets overall, the basic model produced a

confidence-weighted score of 54.97% (better than chance

at the 0.05 level). All examples were labeled, so preci-

sion, recall, and f-score are equivalent; the accuracy was

51.25%.

Surprisingly, the stoplisted model produced worse

results. The overall confidence-weighted score was

53.61%, and the accuracy was 50.50%. We discuss the

reasons below in the context of specific subsets.

As one might expect, the Bracketing ITG models per-

formed better on the subsets more closely approximat-

ing the tasks for which Bracketing ITGs were designed:

comparable documents (CD), paraphrasing (PP), and in-

formation extraction (IE). We will discuss some impor-

tant caveats on the machine translation (MT) and reading

comprehension (RC) subsets. The subsets least close to

the Bracketing ITG models are information retrieval (IR)

and question answering (QA).

3.1 Comparable Documents (CD)

The CD task definition can essentially be characterized as

recognition of noisy word-aligned sentence pairs. Among

all subsets, CD is perhaps closest to the noisy word align-

ment task for which Bracketing ITGs were originally de-

veloped, and indeed produced the best results for both

of the Bracketing ITG models. The basic model pro-

duced a confidence-weighted score of 79.88% (accuracy

71.33%), while the stoplisted model produced an essen-

tially unchanged confidence-weighted score of 79.83%

(accuracy 70.00%).

The results on the RTE Challenge datasets closely re-

flect the larger-scale findings of Wu and Fung (2005),

who demonstrate that an ITG based model yields far

more accurate extraction of parallel sentences from quasi-

comparable non-parallel corpora than previous state-of-

the-art methods. Wu and Fung’s results also use the eval-

uation metric of uninterpolated average precision (i.e.,

confidence-weighted score).

Note also that we believe the results here are artificially

lowered by the absence of any thesaurus, and that signifi-

cantly further improvements would be seen with the addi-

tion of a suitable thesaurus, for reasons discussed below

under the MT subsection.

3.2 Paraphrase Acquisition (PP)

The PP task is also close to the task for which Brack-

eting ITGs were originally developed. For the PP task,

the basic model produced a confidence-weighted score of

57.26% (accuracy 56.00%), while the stoplisted model

produced a lower confidence-weighted score of 51.65%

(accuracy 52.00%). Unlike the CD task, the greater

importance of function words in determining equivalent

meaning between paraphrases appears to cause the degra-

dation in the stoplisted model.

The effect of the absence of a thesaurus is much

stronger for the PP task as opposed to the CD task. In-

spection of the datasets reveals much more lexical vari-

ation between paraphrases, and shows that cases where

lexis does not vary are generally handled accurately by

the Bracketing ITG models. The MT subsection below

discusses why a thesaurus should produce significant im-

provement.

3.3 Information Extraction (IE)

The IE task presents a slight issue of misfit for the

Bracketing ITG models, but yielded good results any-

how. The basic Bracketing ITG model attempts to align

all words/collocations between the two strings. How-

ever, for the IE task in general, only a substring of the

Text should be aligned to the Hypothesis, and the rest

should be disregarded as “noise”. We approximated this

by allowing words to be discarded from the Text at lit-

tle cost, by using parameters that impose only a small

penalty on null-aligned words from the Text. (As a rea-

sonable first approximation, this characterization of the

IE task ignores the possibility of modals, negation, quo-

tation, and the like in the Text.)

Despite the slight modeling misfit, the Bracketing ITG

models produced good results for the IE subset. The basic

model produced a confidence-weighted score of 59.92%

(accuracy 55.00%), while the stoplisted model produced

a lower confidence-weighted score of 53.63% (accuracy

51.67%). Again, the lower score of the stoplisted model

appears to arise from the greater importance of function

words in ensuring correct information extraction, as com-

pared with the CD task.

3.4 Machine Translation (MT)

One exception to expectations is the machine translation

subset, a task for which Bracketing ITGs were devel-

oped. The basic model produced a confidence-weighted

score of 34.30% (accuracy 40.00%), while the stoplisted

model produced a comparable confidence-weighted score

of 35.96% (accuracy 39.17%).

However, the performance here on the machine trans-

lation subset cannot be directly interpreted, for two rea-

sons.

First, the task as defined in the RTE Challenge datasets

is not actually crosslingual machine translation, but rather

evaluation of monolingual comparability between an au-

tomatic translation and a gold standard human transla-

tion. This is in fact closer to the problem of defining a

good MT evaluation metric, rather than MT itself. Leusch

et al. (2003 and personal communication) found that
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Bracketing ITGs as an MT evaluation metric show ex-

cellent correlation with human judgments.

Second, no translation lexicon or equivalent was used

in our model. Normally in translation models, includ-

ing ITG models, the translation lexicon accommodates

lexical ambiguity, by providing multiple possible lexi-

cal choices for each word or collocation being translated.

Here, there is no second language, so some substitute

mechanism to accommodate lexical ambiguity would be

needed.

The most obvious substitute for a translation lexicon

would be a monolingual thesaurus. This would allow

matching synonomous words or collocations between the

Text and the Hypothesis. Our original thought was to in-

corporate such a thesaurus in collaboration with teams fo-

cusing on creating suitable thesauri, but time limitations

prevented completion of these experiments. Based on our

own prior experiments and also on Leusch et al.’s expe-

riences, we believe this would bring performance on the

MT subset to excellent levels as well.

3.5 Reading Comprehension (RC)

The reading comprehension task is similar to the infor-

mation extraction task. As such, the Bracketing ITG

model could be expected to perform well for the RC sub-

set. However, the basic model produced a confidence-

weighted score of just 49.37% (accuracy 47.14%), and

the stoplisted model produced a comparable confidence-

weighted score of 47.11% (accuracy 45.00%).

The primary reason for the performance gap between

the RC and IE domains appears to be that RC is less

news-oriented, so there is less emphasis on exact lexical

choices such as named entities. This puts more weight on

the importance of a good thesaurus to recognize lexical

variation. For this reason, we believe the addition of a

thesaurus would bring performance improvements simi-

lar to the case of MT.

3.6 Information Retrieval (IR)

The IR task diverges significantly from the tasks for

which Bracketing ITGs were developed. The basic model

produced a confidence-weighted score of 43.14% (ac-

curacy 46.67%), while the stoplisted model produced a

comparable confidence-weighted score of 44.81% (accu-

racy 47.78%).

Bracketing ITGs seek structurally parallelizable sub-

strings, where there is reason to expect some degree of

generalization between the frames (heads and arguments)

of the two substrings from a lexical semantics standpoint.

In contrast, the IR task relies on unordered keywords, so

the effect of argument-head binding cannot be expected

to be strong.

3.7 Question Answering (QA)

The QA task is extremely free in the sense that ques-

tions can differ significantly from the answers in both

syntactic structure and lexis, and can also require a

significant degree of indirect complex inference us-

ing real-world knowledge. The basic model pro-

duced a confidence-weighted score of 33.20% (accuracy

40.77%), while the stoplisted model produced a signifi-

cantly better confidence-weighted score of 38.26% (ac-

curacy 44.62%).

Aside from adding a thesaurus, to properly model the

QA task, at the very least the Bracketing ITG models

would need to be augmented with somewhat more lin-

guistic rules that include a proper model for wh- words in

the Hypothesis, which otherwise cannot be aligned to the

Text. In the Bracketing ITG models, the stoplist appears

to help by normalizing out the effect of the wh- words.

4 Conclusion

The most serious omission in our experiments with

Bracketing ITG models was the absence of any thesaurus

model, allowing zero lexical variation between the Text

and Hypothesis. This forced the models to rely entirely

on the Bracketing ITG’s inherent tendency to optimize

structural match between hypothesized nested argument-

head substructures. What we find highly interesting is

the perhaps surprisingly large effect obtainable from this

structure matching bias alone, which already produces

good results on a number of the subsets.

We plan to remedy the absence of a thesaurus as the

obvious next step. This can be expected to raise perfor-

mance significantly on all subsets.
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Abstract

We describe MITRE’s two submissions to

the RTE Challenge, intended to exemplify

two different ends of the spectrum of pos-

sibilities. The first submission is a tradi-

tional system based on linguistic analysis

and inference, while the second is in-

spired by alignment approaches from ma-

chine translation. We also describe our

efforts to build our own entailment cor-

pus. Finally, we discuss our investiga-

tions and reflections on the strengths and

weaknesses of the evaluation itself.

1 Background

The MITRE Corporation has a long-standing inter-

est in both cutting-edge and practical approaches to

text understanding. We believe that progress in

task-independent text understanding requires an

evaluation that pushes the research forward appro-

priately, and a substantial portion of our effort has

been devoted to an in-depth exploration of using

standard reading comprehension tests for this pur-

pose (Hirschman et al., 1999). We have discov-

ered, however, that the availability of such corpora

is limited, their construction is expensive, and

reading comprehension tests in general tend to be

limited in their diagnostic ability.

In this context, the RTE (Recognizing Textual

Entailment) Challenge appeals to us due to its gen-

erality, its simple structure, and the possibility that

it might be significantly less expensive to develop

the appropriate test corpora and sufficient training

corpora, for those systems that require such. We

also suspect that RTE techniques will be applicable

to a broad range of problems.

For the challenge, MITRE developed two sys-

tems. We hypothesize that a successful RTE sys-

tem will include elements of traditional approaches

based on explicit linguistic analysis and inference,

alongside robust, statistical approaches that lever-

age a range of simple, reliably extractable features.

To clarify the shortcomings of each approach

alone, and to help focus on how they might support

each other, we implemented a system at each end

of the continuum. System 1 is our traditional sys-

tem, and System 2 is our statistical system.

2 System 1

System 1 is a baseline traditional system con-

structed using explicit modeling of linguistic

analysis. The system processes both the Hypothe-

sis and the Text using a MITRE-built tokenizer and

sentence segmenter, the Ratnaparkhi (1996) POS

tagger, the University of Sussex’s Morph morpho-

logical analyzer (Minnon et al., 2001), the CMU

Link Grammar parser (Sleator & Temperley,

1993), and a MITRE-built dependency analyzer

and Davidsonian logic generator. The Text and

Hypothesis are then compared using the University

of Rochester’s EPILOG event-oriented probabilis-

tic inference engine (Schubert & Hwang, 2000).

Very little additional semantic knowledge is ex-

ploited, beyond a few added inference rules and

simple word lists for semantic classification. Due

to its currently impoverished knowledge base, the

system fails to prove entailment for virtually all of
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the RTE data, and thus labels almost all of the data

as non-entailing.

The results of System 1 on the test set are shown

in Figure 1. Due to parse failures and other prob-

lems, the system failed to convert 213 of the 800

test pairs into the event logic, and so we made a

partial submission for the other 587 test pairs.

During development, pairs marked true were

slightly more accurate than pairs marked false.

This led us to a simplistic confidence scheme of

1.0 for true results and 0.5 for false results

System 1 currently has just two rules. One is in-

tended to handle certain modals, e.g., can run does

not entail run. This rule has no effect on the test

set. The other rule handles some appositive cases.

This other rule accounts for 2 of the correctly la-

beled Trues and 1 of the incorrectly labeled Trues.

Partly because System 1 has very few inference

rules, about half of the correctly marked true pairs

were pairs where the hypothesis is a simple subset

of the text (e.g., Rover is a big dog entails Rover is

a dog). However, this subset property of the infer-

ence engine also caused 6 of the 10 pairs incor-

rectly marked true; Rover is not a dog should not

entail Rover is a dog, but System 1 thinks it does,

due in part to our flat semantic representation (our

modal rule was an attempt to address a small sub-

set of these cases).

As we continue to work on this problem, we

plan to exploit multiple potential sources of addi-

tional information: both explicit information

sources like WordNet (Fellbaum, 1998) and infor-

mation extracted from large background corpora

such as Gigaword (Graff, 2003). We’re also plan-

ning to synthesize this approach with the radically

different approach found in System 2.

3 System 2

Statistical machine translation models inspire

MITRE’s second RTE system. These models are

designed to find correspondences between pairs of

sentences, and we believe that they can provide a

stable starting point for capturing information

needed to predict entailment. System 2 treats en-

tailment data as an aligned translation corpus, and

performs its prediction based on a combination of

metrics intended to measure translation quality.

All but one of these metrics come from libparis,

a library of string similarity metrics assembled by

MITRE. Some of these metrics are inspired by

MT evaluation, and some are standard string-

matching algorithms (Gusfield, 1997). Addition-

ally, we used an MT alignment score, on which we

now focus our discussion.

Statistical MT explicitly models the probability

that a sentence F in a source language will trans-

late to a target language sentence E. Following

Brown et al. (1993), most statistical MT models

decompose this probability into many probabilities

relating individual word-pairs in the two sentences.

There are also mechanisms in the models for ex-

plaining spurious words in the source and target,

which align with nothing.

Figure 2 shows an alignment example from the

training data described below. We see that most of

the source words either align with their identical

counterparts or disappear. Additionally, sur-

rounded aligns with engulf, and Bushehr with Iran.

In general, we only hope that the MT models cap-

ture this sort of synonymy and paraphrase; we do

not expect that these simple word associations can

represent any complicated inference.

MT models must be trained from a corpus of F-

E pairs, typically larger by orders of magnitude

than the development set provided for the RTE

evaluation. For this volume of data, we turned to

the Gigaword newswire corpus (Graff, 2003), hy-

pothesizing that newspaper headlines are often en-

System 1 System 2

Pairs processed 587 800

Correctly T 11/285 231/400

Labeled F 292/302 238/400

Accuracy 0.52 0.59

Precision 0.52 0.59

Recall 0.04 0.58

F-measure 0.07 0.58

CWS 0.50 0.62

Figure 1: System results

Floods caused by Monday 's torrential rains surrounded two villages in the southern part of Bushehr province today…

Floods Engulf Two Villages In Southern Iran

Figure 2: GIZA++ alignment for a training pair
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tailed by the corresponding lead paragraph. We

hoped that this noisy corpus would be a suitable

training set for learning RTE alignments.

To test our hypothesis, we manually judged ap-

proximately 1000 of the lead-headline pairs from

Gigaword for entailment (see Section 4 for a dis-

cussion of inter-annotator reliability). From this

sample, we estimate that 60% of the headlines in

the Gigaword corpus are entailed by the lead para-

graph. We attempted to refine the data to acquire a

smaller but less noisy corpus by training a docu-

ment classifier (SVMlight: Joachims, 2002) to

identify articles that exhibited the lead-entails-

headline quality. Like those classifiers used to

predict genre or topic, this training included the

entire articles with bag-of-words features. We ex-

perimented with active learning techniques, and

finally derived a 100,000-document subset of Gi-

gaword with approximately 75% lead-entails-

headline purity.

We used the GIZA++ toolkit (Och & Ney,

2003) to induce alignment models on the paired

leads and headlines from the Gigaword subset.

Some indicative word correspondences found by

the model are shown in Figure 3. When applied to

our (held-out) manually judged Gigaword data,

these models could predict headline entailment

with roughly 80% accuracy (compared to the base

rate of 60% in that development set).

Unfortunately the alignment scores alone were

next to useless for the RTE development data, pre-

dicting entailment correctly only slightly above

chance. This is presumably because the negative

instances in the RTE data are designed to have

substantial conceptual overlap between the text and

hypothesis, while the negative Gigaword instances

frequently have little overlap.

At this point, we combined the alignment mod-

els with the libparis metrics described earlier. We

first trained an SVM classifier on the RTE devel-

opment data, using these features, but cross-

validation experiments showed this to be unprom-

ising as well—the data appeared to be far from

linearly separable. In the end, we combined all the

features using a simple k-nearest-neighbor classi-

fier that chose, for each test pair, the dominant

truth value among the five nearest neighbors in the

development set. Results are shown in Figure 1.

4 The Corpus and the Evaluation

The RTE evaluation, while promising, faces a

number of challenges as it matures.

First is the issue of the feasibility of the task.

Based on our investigations, the task appears to be

quite difficult for humans. When tested on 10

pairs from each of the seven application scenarios

in the dev2 training set, our human judge achieved

an agreement rate of 91% (64/70) compared to the

given truth values. While this number might seem

impressive, it is less so when one considers that the

training data was already considerably simplified

from a real-world application. According to the

Task Definition, the T-H pairs were hand-crafted,

and any pairs “for which there was disagreement

among the judges were discarded.” Thus, the 91%

agreement is somewhat troubling.

We also attempted to determine the degree to

which paraphrases played a role. Two of our re-

searchers independently reviewed all the TRUE

entailments of the dev2 set, and determined that

94% (131/140) were mere paraphrases (John mur-

dered Bill ! Bill was killed by John), as opposed

to classic entailments (Bill is dead). During this

process, we uncovered many cases where we dis-

agreed with the given truth value on the grounds of

synonymy (e.g., in bloody clothes ! covered in

blood). We also identified potential disagreements

about the extent to which world knowledge is al-

lowed to play a role. For instance, pair 102 (do-

mestic threat ! threat of attack) is more

convincing if one understands the implications of

al Qaeda and September 11, 2001 mentioned in the

text.

In the process of building our own training cor-

pus (see Section 3), we conducted additional inter-

judge studies. Even after one trial phase and with

a supplementary set of guidelines in hand, the

judges achieved only 81% inter-annotator agree-

ment. While a portion of this disagreement is due

differing equal

heroism gallantry

spaceflight spacecraft

railmen railworkers

procrastination timing

hirsute hair

engulf surround

outplay defeats

mountaineer climber

Figure 3: A subset of the top word
alignments acquired by GIZA++
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to the messiness of the data (e.g., bylines and date

lines mis-zoned into the headlines), the more egre-

gious difficulty was that our judges found they had

irreconcilable differences in meaning interpreta-

tion. For example, in the following lead-headline

pair, one judge did not think that safe operation

entailed (meant the same thing as) operates

smoothly, and one did.

• As of Saturday, Shanghai's Hongqiao Airport

has performed safe operation for some 2,600

consecutive days, setting a record in the country.

• Shanghai's Hongqiao Airport Operates Smoothly

It’s hard to imagine how annotation guidelines

would resolve this disagreement. This leads us,

obviously, to wonder how an evaluation like this

might be designed to ensure more consistent hu-

man judgment. It also suggests that if the organiz-

ers pre-clean the development corpus in future

RTE evaluations as they did for this evaluation, it

would be quite useful for them to report the per-

centage of pairs eliminated.

In addition to the challenges of interannotator

agreement, it isn’t clear what a “representative”

corpus would look like. The RTE development

corpus is clearly constructed to stress-test a range

of legitimate and illegitimate inferences, but it is

not clear how to balance these. It is unclear ex-

actly how this technology will be used, and so it is

equally unclear which issues might be more vs.

less important to represent in an evaluation. Even

in the cases where RTE data has been drawn from

“naturally occurring” corpora, such as multiple,

parallel translations, it’s unclear how RTE tech-

nology would be applied to those corpora.

5 Conclusion and Future Work

It’s been said, about difficult challenges like RTE,

that one should be aware of the temptation to climb

a tree in order to get to the moon (Dreyfus, 1979);

i.e., short-term solutions can be initially superior,

but are frequently dead ends. MITRE’s two entries

illustrate this dilemma quite clearly. System 1 is

the rocket ship with nothing inside: fiendishly dif-

ficult to get off the ground, and unable to fly until a

wide number of things work fairly well. System 2,

on the other hand, is a tree. Our challenge, as we

move forward, is to figure out how to leverage the

strengths and potential of both.
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Can Shallow Predicate Argument Structures Determine
Entailment?

Alina Andreevskaia, Zhuoyan Li and Sabine Bergler

Abstract

The CLaC Lab’s system for the PAS-
CAL RTE challenge explores the po-
tential of simple general heuristics and
a knowledge-poor approach for recog-
nising paraphrases, using NP corefer-
ence, NP chunking, and two parsers
(RASP and Link) to produce Predicate
Argument Structures (PAS) for each of
the pair components. WordNet lexical
chains and a few specialised heuristics
are used to establish semantic similar-
ity between corresponding components
of the PAS from the pair. We dis-
cuss the results and potential of this
approach.

1 Introduction

Establishing entailment relationships between
two statements is important for many NLP tasks
(Szpektor et al., 2004) and the problem has
attracted considerable interest in the research
community. Most current work relies on the
analysis of corpora - single or parallel - using
machine learning and statistical methods (Lin
and Pantel, 2001), (Chklovski and Pantel, 2004),
(Dagan and Glickman, 2004), (Shinyama and
Sekine, 2004), (Barzilay and Lee, 2003) to in-
duce entailment-specific knowledge. In contrast,
we approach the textual entailment problem us-
ing general mechanisms and strategies based
uniquely on simplified predicate argument struc-
ture (PAS) and lexical chains (built using Word-
Net (WN) (Fellbaum, 1998)). This paper de-

scribes the results we achieved with this sim-
ple approach and suggests extensions to improve
system performance.

2 System overview

The CLaC Lab’s system for the PASCAL tex-
tual entailment challenge is based on systems
our laboratory developed for text summariza-
tion. The environment is implemented in
the GATE architecture (Cunningham et al.,
2002) and provides tagging, NP chunking, and
knowledge-poor fuzzy NP coreference resolution
(Bergler et al., 2003), (Bergler et al., 2004),
(Witte and Bergler, 2003). The flexible GATE
architecture allows for the creation of modular
components that can be used in different com-
binations depending on the task. For the pur-
poses of the textual entailment resolution we
extended the coreference system to incorporate
verb groups, added full parsing, and included a
few specialized heuristics for particular problems
that were encountered in the PASCAL RTE
challenge development set.

2.1 Main strategy

Two main types of information were used to as-
sess the relatedness between the two parts of the
pair: PAS and lexical chains. We use simplified
shallow PASs that cover only the verb, its sub-
ject and object (if there was one) as in Figure 1.

PASs were extracted using the results of two
parsers - the Link parser (Sleator and Temper-
ley, 1993) and RASP parser (Briscoe and Car-
roll, 2002). One of these two parsers can be
set as default, the second to be used only when
the default parser doesn’t produce a parse. If
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Original Sentence:

<h>Two-thirds of the Scottish police force
will be deployed at the happening.</h>

Constructed PAS:

<s:[Two-thirds of the Scottish police
force] v:[will be deployed] a:[<p:[at] a:[the
happening]>]>

Figure 1: Predicate argument structure

both parsers are given equal priority the sys-
tem chooses for each sentence the parser that
produces more PASs. Lexical chains were built
using WN synsets. Different thresholds were
tested. The smaller values mean closer relation-
ships, 0 being the distance between members of
the same synset.

Algorithm CLaC PASCAL
(∗ true: entailment detected, false otherwise )
1. Use the coreference resolution system to

produce coference chains both for t and h
separately and for the pair as a unit

2. for each pair
3. for each sentence
4. Extract Noun Phrases and Verb

Groups
5. Select a parse among parses from two

parsers with weighted scheme
6. Determine the PAS based on the pars-

ing, NP chunking and verb grouping
results

7. Apply cardinality filter
8. for each numeric value from h
9. if there is no corresponding cardinal-

ity value in t
10. then return false

11. Apply Predicate Argument Structure com-
parison

12. Transform passive constructions into ac-
tive ones

13. for each PAS pair
14. Compute WN distance for verbs in t

and h
15. if WN distance <= threshold
16. if both PASs are in comparable

structures1

1comparable structure means they both have sub-

17. if there is coreference
between corresponding
parts2

18. then return true

19. Apply Be-Heuristic
20. if h contains the pattern “X is Y” and

X∈h and X’∈t and {X, X ′} belong to
the same inter-sentence coreference chain
and Y∈h and Y’∈t and {Y, Y ′} be-
long to the same inter-sentence corefer-
ence chain and X’ corefers with Y’

21. then return true

22. return false

The algorithm favors precision over recall,
therefore all entailment values are set to FALSE
unless the system finds compelling evidence to
the contrary.

Analysis of the development data allowed us
also to develop some additional heuristics to
handle specific cases. For example, we have im-
plemented a be-heuristic for h-sentences of type
“X is Y” that uses coreference chains in t and be-
tween t and h to decide whether X is Y given the
data in t. The development data contains many
examples of this kind in the QA task, but the
phenomenon was less frequent in the test data.
Another heuristic consists in comparing num-
bers in two parts of the pair to ensure that cases
like pair 768 (Figure 2) from the development set
do not produce false positives. This heuristic
is applied as an initial filter before coreference
chains are built.

<t>A small bronze bust of Spencer Tracy sold
for £174,000.</t>
<h>A small bronze bust of Spencer Tracy made
£180,447.</h>

Figure 2: Cardinality filtering example

2.2 Results

We submitted two runs, Table 1 presents the
results of both runs, where RASP was the main
parser and the Link parser used only as back-
up, RUN1 used a WN distance threshold of 1.

ject(s) and/or argument(s)
2e.g. subjects and/or arguments of the two PASs be-

ing compared
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The second run used a WN threshold of 3. Our

Task RUN1

P R A Cws

All 0.57 0.15 0.52 0.51

CD 0.89 0.32 0.64 0.64

IE 0.56 0.08 0.51 0.55

MT 0.40 0.10 0.47 0.43

QA 0.23 0.04 0.45 0.47

RC 0.52 0.17 0.51 0.48

PP 0.50 0.28 0.50 0.54

IR 0.62 0.11 0.52 0.49

Task RUN2

P R A Cws

All 0.55 0.18 0.52 0.52

CD 0.81 0.34 0.63 0.63

IE 0.64 0.12 0.52 0.57

MT 0.37 0.10 0.47 0.43

QA 0.31 0.08 0.45 0.49

RC 0.44 0.17 0.48 0.47

PP 0.50 0.36 0.50 0.56

IR 0.64 0.16 0.53 0.49

Table 1: Results over the different categories

conservative strategy lead to a low number of
true-positives: 72 true-positives of 400 in the
gold standard in RUN2.

3 Analysis and observation

Our main interest in participating in the PAS-
CAL RTE challenge was to experiment with
simple general purpose tools such as a corefer-
ence resolution system and a parser for textual
entailment recognition.

The performance of our system is low, as ex-
pected, but comparable to the results shown by
other systems. Most correct TRUE assignments
occur when PASs are properly extracted and
there is considerable similarity between PASs of
t and h. This explains also the difference be-
tween our results for different tasks. CD, for in-
stance, gave the highest precision (0.89 in Run1,
0.92 when WN distance=1 and parsers have
equal weight), since pairs are mostly made up of
sentences of similar structure (Figure 3) while
QA consistently gave the worst results (preci-
sion below 0.30 and accuracy below 0.50), since

it includes answers derived from statements of
a totally different structure (Figure 3). In gen-
eral, most of our false negatives are due to not
recognising similarity between two syntactically
different sentences. More sophisticated PASs
that include additional constituents, such as ad-
juncts, and specialized heuristics geared towards
frequent syntactic patterns in the data, as we did
for the be-heuristic would address these issues.

<t>In terms of music, the National Philhar-
monic Orchestra draws large crowds.</t>
<h>The National Philharmonic orchestra
draws large crowds.</h>

Figure 3: Correctly processed pair

<t>Working with fellow Canadians Charles
Best and James Collip, Banting determined that
insulin was the key to treating diabetes.</t>
<h>Banting conducted research of
diabetes.</h>

Figure 4: False negative

The parser influences the system’s perfor-
mance (Table 2), best results are obtained when
the choice between the Link and RASP parsers
depends on the number of PASs produced, thus
increasing the chances to find comparable PASs
in t and h parts of the pair. Making PASs more
complex by including prepositional phrases and
adjuncts can eliminate such false positives as in
Figure 5.

<t>The 69-page report is also the first major
product of the Betsy Lehman Center for Patient
Safety and Medical Error Reduction.</t>
<h>The 69-page report is the first major prod-
uct of medical errors.</h>

Figure 5: False positive

Table 3 illustrates the influence of the WN dis-
tance threshold when both parsers have equal
priority and the one producing more parses is
preferred. Increasing the WN distance threshold
leads to increased recall but reduced precision
since more PASs are considered semantically re-
lated.
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Setting P R A Cws

Equal priority .59 .13 .52 .52

RASP/Link .55 .13 .52 .51

Link/RASP .58 .12 .52 .51

Table 2: Post-competition runs, WN distance=0

P R A Cws

WD= 0 .59 .13 .52 .52

WD= 1 .56 .15 .52 .52

WD= 2 .55 .16 .51 .52

WD= 3 .52 .18 .51 .52

Table 3: Influence of WN distance threshold
(WD)

4 Conclusion

The PASCAL RTE challenge gave us an oppor-
tunity to create and test a system that we con-
sider as a baseline system for our future work
on event coreference and analysis of compara-
ble documents. Our simple approach based on
basic PASs and coreference resolution produced
the precision sightly below 0.6 (up to 0.92 for
the CD task). At the same time, the recall was
fairly low - 0.18 (best value being 0.36 for PP
task). These numbers can be improved be ap-
plying more sophisticated PASs and by creating
additional heuristics to deal with specific pat-
terns.
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Abstract
The system for semantic evaluation

VENSES (Venice Semantic Evaluation

System) is organized as a pipeline of two

subsystems: the first is a reduced version

of GETARUN, our system for Text

Understanding. The output of the system is

a flat list of head-dependent structures

(HDS) with Grammatical Relations (GRs)

and Semantic Roles (SRs) labels. The

evaluation system is made up of two main

modules: the first is a sequence of

linguistic rule-based subcalls; the second is

a quantitatively based measurement of

input structures. VENSES measures

semantic similarity which may range from

identical linguistic items, to synonymous

or just morphologically derivable. Both

modules go through General Consistency

checks which are targeted to high level

semantic attributes like presence of

modality, negation, and opacity operators,

temporal and spatial location checks.

Results in cws, accuracy and precision are

homogenoues for both training and test

corpus and fare higher than 60%.

1. Introduction

The system for semantic evaluation VENSES

(Venice Semantic Evaluation System) is organized

as a pipeline of two subsystems: the first is a reduced

version of GETARUN, our system for Text

Understanding; the second is the semantic evaluator

which was previously created for Summary and

Question evaluation and has now been thoroughly

revised for the new more comprehensive RTE task.

The reduced GETARUN is composed of the usual

sequence of submodules common in Information

Extraction systems, i.e. a tokenizer, a multiword and

NE recognition module, a PoS tagger based on finite

state automata; then a multilayered cascaded RTN-

based parser which is equipped with an interpretation

module that uses subcategorization information and

semantic roles processing. Eventually, the system is

equipped with a pronominal binding module that

works for lexical personal, possessive and reflexive

pronouns, which are substituted by the heads of their

antecedents - if available. The output of the system is

a flat list of head-dependent structures (HDS) with

Grammatical Relations (GRs) and Semantic Roles

(SRs) labels. Notable additions to the usual

formalism is the presence of a distinguished

Negation relation; we also mark modals and

progressive mood. All other non semantic elements

like auxiliaries and determiners are erased.

The evaluation system uses a strategy of

rewards/penalties for T/H pairs where text entailment

is interpreted in terms of semantic similarity: the

closest the T/H pairs are in semantic terms the more

probable is their entailment. Rewards in terms of

scores are assigned for each "similar" semantic

element; penalties on the contrary can be expressed

in terms of scores or they can determine a local

failure and a consequent FALSE decision.

The evaluation system accesses the output of

GETARUN which sits on files and is totally

independent of it. It is made up of two main

Modules: the first is a sequence of linguistic rule-

based subcalls; the second is a quantitatively based

measurement of input structures. The latter is

basically a count of heads, dependents, GRs and

SRs, scoring only similar elements in the H/T pair.

Similarity may range from identical linguistic items,

to synonymous or just morphologically derivable. As

to GRs and SRs they are scored higher according to

whether they belong to the subset of core relations

and roles, i.e. obligatory arguments, or not, that is

adjuncts. Both Modules go through General

Consistency checks which are targeted to high level

semantic attributes like presence of modality,

negation, and opacity operators, the latter ones as

expressed either by the presence of discourse

markers of conditionality or by a secondary level

relation intervening between the main predicate and

a governing higher predicate belonging to the class

of non factual verbs. Two other general consistency

calls regard temporal and spatial location checks

which must be identical or entailed in one another, if

present – but see below.

Linguistic rule-based subcalls are organized into a

sequence of calls going from rules containing

axiomatic-like paraphrase HDSs which are ranked

higher, to rules stating conditions for similarity

according to the scale of argumentality which are

ranked lower. All rules address HDSs, GRs and SRs.

Both Modules strive for True assessments: however,

Calls 1 are then followed by Calls 2 which can



50

output True or False according to general

consistency or scoring. Modifying the scoring

function may thus vary the final result dramatically:

it may contribute more True decisions if relaxed, so

it needs fine tuning. More experimentation is needed

on much bigger data set to achieve a more general

definition of this function.

2. An A-As Hybrid Parser

Our parser has been presented in detail lately in a

number of papers and has achieved 90% recall on

Greval Corpus and 89% recall on the XEROX-700

corpus, limited only this latter test to SUBJ/OBJ

GRs. As in most robust parsers, we use a sequence or

cascade of transducers: however, in our approach,

since we intend to recover sentence level structure,

the process goes from partial parses to full sentence

parses. Sentence and then clause level parsing are

crucially responsible for the right assignment of

Arguments and Adjuncts (hence A-As) to a

governing predicate head. This is paramount in our

scheme which aims at recovering predicate-argument

structures, besides performing a compositional

semantic translation of each semantically headed

constituent.

The first transducer receives the input sentence

split by previous processors, which is

recursively/iteratively turned into a set of non-

sentential level syntactic constituents - some of

which can incorporate a PP headed by "of". Non-

sentential level constituents, can be interspersed by

heads which are subordinate clause markers, like

subordinating conjuctions, or parentheticals - by

punctuation, indirect interrogative clauses - by

interrogative pronouns. The final output is a list of

headed syntactic constituents which comprise the

usual set of semantically translatable constituents,

i.e., ADJP, ADVP, NP, PP, VC (Verb Cluster).

The task of the following transducer is that of

creating clauses: we assume that at each sentence

level only one VCluster (hence VC) can appear: we

define the VC as IBAR indicating that there must be

a finite or tensed verb included in it. VCs containing

non-tensed verbal elements are all defined

separately.

The third pass is intended to produce an

improvement on the sentence-level full parse, by

transducing each constituent label into a

corresponding grammatical function label. The rules

are taken from the inventory of LFG theory and

follow its rules and principles. All attachment

decisions are taken at this level of computation. In

particular both PP and Relative Clauses are attached

locally according to preferences and best match (but

see Delmonte 2002). Finally the fourth pass has the

task of splitting complex sentences into simplex

ones, or clauses.

The output of the four transducers is passed to the

algorithm that takes care of the creation of predicate-

argument structures which has the additional task of

taking into due account interclausal relations. To do

that, semantic indices of governing predicates are

used to assert dependencies between two adjacent

clauses. This may also apply to a main clause and a

clause-like adjunct like a gerundive or a participial.

Lexical information is accessed to confirm or modify

previous decisions, particularly as regards OBLiques

which will be interpreted as Adjuncts or Argument at

this level of interpretation. We also assert Semantic

Roles on the basis of lexical information (see

Delmonte 1990).

To be compliant with usual Dependency Structure

inventory of GRs which we also had to use for

evaluation purposes, we eventually turn all

predicative labels – NCOMP, ACOMP, PCOMP,

VCOMP – into XCOMP. Also OBLiques are turned

into IOBJect, unless they represent the passive agent

by-adjunct which is assigned the GR label

ARG_MOD. Then we produce flat Head-Dependent

Structures.

We don’t have space here to describe the Pronominal

Binding module which however accesses Referential

Heads at clause level and establishes possible

antecedent-pronoun candidate lists which are then

weighted and the best one chosen (but see Delmonte,

Bianchi 1991).As an example consider Snippet 820

reported here below:

T. Clinton's new book is not big seller here.

H. Clinton's book is a big seller.

Whose structure is computed respectively as follows:

T.
be(adj-locative, here).

seller(ncmod, big).

book(ncmod-specif, 'Clinton-s_').

be(xcomp-prop, seller).

be(subj- theme_bound, book).

be(neg, not).

H.
seller(ncmod, big).

book(ncmod-specif, 'Clinton-s_').

be(xcomp-prop, seller).

be(subj-theme_bound, book).

The presence of the negation operator in the T

portion of the snippet will prevent the evaluator from

assessing to TRUE even though the relevant HD

structures are identical.

3. The Semantic Evaluator (SE)

As said above, the SE is organized into two main

modules: a quantitatively based module, and a

sequence of rule-based subcalls where scoring is also

taken into account when needed, to increase

confidence in the decision process. The two modules

must then undergo general consistency checks which

have the task to ascertain the presence of possible
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mismatches at semantic level. In particular, these

checks take care of the following semantic items:

- presence of spatiotemporal locations

relatively to the same governing predicate, or a

similar one as has been computed from previous

modules;

- presence of opacity operators like discourse

markers for conditionality having scope over the

governing predicate under analysis;

- presence of quantifiers and other

referentiality related determiners attached to the

same nominal head in the T/H pair under analysis

and chosen as relevant one by previous

computation;

- presence of antonyms in the T/H pair at the

level of governing predicates;

- presence of predicates belonging to the

class of “doubt” expressing verbs, governing the

relevant predicate shared by the T/H pair.

In some cases the General Consistency Checks have

to be suspended: in particular whenever both T/H

pairs contain opacity operators and negation, as for

instance in,

Snippet no. 1014

The thick atmosphere of Titan makes it difficult for

even the largest telescopes on Earth to see anything

clearly.

Telescopes on Earth cannot see Titan clearly.

3.1 The Rule-Based Module

This Module is organized as a sequence of rule-

based calls which start from exceptional cases down

to default cases. Exceptional cases of Semantic

Similarity are those constituted by definition-like H

sentences, or simple paraphrases of the meaning

expressed by the main predicate of the T text.

Generally speaking, every time one such rule is fired,

the T/H pair contains a conceptually complex lexical

predicate and its paraphrase in conceptually simple

components.

Examples of such cases are constituted by pairs like

the following:

a. interview --> conduct an interview

b. pressurise  --> apply pressure

c. treat --> receive treatment (provide)

d. fire ! send letter of dismissal

where both a. and b. were actually present in

WordNet while c. did not figure with the same

predicates but rather with the one in brackets; d. was

totally absent.

Definitions and paraphrases are looked up at first in

the definitions made available by WordNet. In case

of failure a list of some 50 manually made up

axiomatic rules are accessed. Each such rule

addresses main predicates in the T/H pair, together

with presence of semantically relevant dependent if

needed, and whenever the concept expressed by the

lexically complex predicate requires it. Together

with the predicates, the rules select relevant GRs and

SRs when needed. In addition, more restrictions are

introduced on additional arguments or adjuncts.

Eventually, as is the case with all the rules, penalties

are explored in terms of semantic operators of the

main predicate like negation, modality and opacity

inducing verbs which must either absent or be

identical in the T/H pair.

The linguistically-based Module is organized into a

sequence of five subcalls where the T/H pairs are

checked for semantic similarity starting from

sameness of main predicates to semantic

approximate match.

The first subcall requires the presence of same HDs

as main predicates with core arguments, i.e. the ones

which have been computed as subject, object,

indirect object, arg_mod (passive “by” agent

adjunct), xcomp. Nonconflicting SRs are checked in

all subcalls: i.e. subject-agent are allowed to match

with arg_mod-agent and subject-theme_affected with

object-theme_affected but not viceversa. These

matches take care of what are usually referred to as

lexical alternations for verb sucategorization frames,

and lexical rules in LFG terms which encompass

such syntactic phenomena as passive,

intransitivization, ergativization, dative shift, etc.

The second subcall requires the presence of same

HDs as a combination of main head and main

dependent and at least another identical HD structure

within the core argument subset. Other subcalls

included in this group check nominalization

derivational relations intervening between main

predicate of T and H, which in one case is checked

with edit distance measures.

The third subcall takes as input a list of “light-verbs”

in semantic terms, i.e. verbs including “be”, “have”,

“appear”, and other similar copulative and locational

verbs – like “live”, “hold”, “take_place”,

“participate”, etc. - which are used to either make a

definition, assert a property of the subject,

individuate a location of the subject etc. These verbs

are matched against main predicates and core

arguments of the T portion, which must be identical

to H. Quantitative measures are added to confirm the

choice. Notable exceptions are sentences containing

“be_born” predication which require specific

constructions on the other member of the T/H pair.

The fourth subcall takes as input at least one

identical main predicate HD non argument structure

and one additional core argument or adjunct

structure. Quantitative measures are added to

confirm the choice.

The fifth subcall looks for different main predicates

with core arguments which however must be non

antonyms, non negative polarity and be synonyms.

In addition, there must be at least another important

identical non argument HD structure shared.

Quantitative measures are added to confirm the

choice. One such case is represented by

Snippet no. 1639
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Lennon was murdered by Mark David Chapman

outside the Dakota on Dec. 8, 1980.

Mark David Chapman killed Lennon.

Differently from what happens in real opposite

meaning snippets where the SE considers SRs which

must also be opposite, as in snippet 933,

Crude Oil Prices Slump

Oil prices drop

Or cases in which the snippet is rescued due to the

presence of same SRs,

Snippet no. 876

Officials said Michael Hamilton was killed when

gunmen opened fire and exchanged shots with Saudi

security forces yesterday

Michael Hamilton died yesterday.

where DIE and KILL have opposite meaning but

when KILL is used in the passive the SRs attached to

their SUBJects will be identical.

3.2 The Quantitative Module

In this module all Heads, Dependents, GRs and SRs

are collected for each member of the T/H pair and

then they are passed to a scoring function that takes

care of identical or similar members by assigning a

certain score to every hit. Penalties correspond to

high scores, while rewards correspond to low scores.

A threshold is then set at a certain value which

should encode the presence of a comparatively high

number of identical/similar linguistic items.

As with previous subcalls, at the end of the

computation semantic consistency and integrity is

checked by collecting and comparing semantic

operators, as well as performing a search of possible

governing “doubt” verbs.

Generally speaking, we also treat short utterances

differently from long ones. A stricter check is

performed whenever an utterance has 3 or less HD

structures, the reason being that in these structures

some of the above mentioned subcalls would fail due

to insufficient information available.

4. Evaluation and Discussion

The RTE task is a hard task: this may be partly due

to the way in which it has been formulated – half of

the snippets are TRUE, the other half are FALSE. It

is usually the case that 10-15% mistakes are

ascribable to the parser or any other analysis tool;

another 5-10% mistakes will certainly come from

insufficient semantic information. Whenever a

system makes 20% errors this is doubled to 40% and

the final result will become 60% overall Recall.

We looked into our mistakes to evaluate the import

of the parser on the final Recall and we found out

that: 10 snippets out of 100 TRUE ones have a

wrong parse which can be regarded the main cause

of the mistake. In other words only 10% of wrong

results can be ascribed to bad parses. The remaing

10% is due to insufficient semantic information. In

turn, this may be classified as follows:

- 80% is due to lack of paraphrases and

definitions;

- 10% is due to wrong SemanticRole

assignment;

- 10% is due to lack of synonym/antonym

relations.

When we started working on the training corpus,

verb predicates synsets made available by WordNet

have been augmented by the information contained

in Grady Ward’s MOBY Thesaurus

(http://www.dcs.shef.ac.uk/research/ilash/Moby/).

Additional information has been derived from a

manually reorganized version of Roget’s Thesaurus,

again limited though to verb predicates. We also felt

we needed information related to negative polarity

verb predicates which we derived from Harvard

Dictionary derived from Harvard IV-4 e Laswell's

dictionary on the Dynamics of Culture

(http://www.wjh.harvard.edu/). The paraphrase and

definition list for verb predicates taken from

WordNet and transformed into HD structures was

also updated in order to cover some missing cases.

For instance, we had to implement a new paraphrase

for the verb FIRE which is paraphrased as “send

dismissal letter to” in snippet no. 783. The list of

HDSs will be accessed by the Evaluator in the

appropriate Module.

Test-set Results Training-set Results
cws:    0.6257

accuracy:       0.5925

precision:      0.6242

recall: 0.4650

f:      0.5330

CD cws:0.7395   acc:0.6867

QA cws:0.5441   acc:0.5846

PP cws:0.8354   acc:0.8000

IE cws:0.6150   acc:0.5833

IR cws:0.6624   acc:0.6222

RC cws:0.5629   acc:0.5214

MT cws:0.4723   acc:0.4667

cws:    0.6396

accuracy:       0.6032

precision:      0.6261

recall: 0.5088

f:      0.5614

CD cws:0.7416   acc:0.6633

QA cws:0.5719   acc:0.5444

PP cws:0.6846   acc:0.6707

IE cws:0.6192   acc:0.6000

IR cws:0.6749   acc:0.6286

RC cws:0.5422   acc:0.5243

MT cws:0.6482   acc:0.6111

Tab.1 Results for training and test-set
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Abstract

This report outlines the approach taken

by members of the IIRG at University

College Dublin in the PASCAL Textual

Entailment Challenge 2005. Our tech-

nique measures the semantic equivalence

of each text/hypothesis pair by examining

both linguistic and statistical features in

these sentences using a decision tree clas-

sifier.

1 Introduction

Our system uses a decision tree classifier whose fea-

tures include lexical, semantic and grammatical at-

tributes of nouns, verbs and adjectives to identify

an entailment relationship between a text/hypothesis

pair. We generated our final classifier from the

issued development sets using the C5.0 machine

learning algorithm.

The features used are calculated using the Word-

Net taxonomy, the VerbOcean semantic network

(developed at ISI) and a Latent Semantic Indexing

technique. Other features are based on the ROUGE

n-gram overlap metrics and cosine similarity be-

tween the text and hypothesis.

Our most sophisticated linguistic feature finds the

longest common subsequence in the entailment-pair,

and then detects contradictions in the pair by exam-

ining verb semantics for the presence of synonymy,

near-synonymy, negation or antonymy in the subse-

quence.

2 System Description

We investigated the usefulness of a number of dis-

tinct features during the development of our deci-

sion tree approach to textual entailment. Not all of

these features were contributing factors in our final

classification systems, but we list all of them here

for the sake of completeness because some features

are combinations of other atomic features. These

features can be classified into two types: measures

of syntactic equivalence and measures of semantic

equivalence.

In addition to these measures, there is also a

task feature which identifies the task definition from

which the entailment pair was derived. This allowed

the system to build separate classifiers for each task

which we hoped would capture the different aspects

of entailment specific to each task.

2.1 Syntactic Equivalence Features

The first syntactic equivalence features are derived

using the ROUGE metrics (ROUGE, 2004), which

were used as a means of automatically evaluating

summary quality against a set of human generated

summaries in the DUC 2004 evaluation workshop.

The metrics provide a measure of word overlap

(i.e., unigram, bigram, trigram and 4-gram), and a

weighted and unweighted longest common subse-

quence measure. Our final feature in this class is

provided by the cosine similarity measure, which

calculates the distance (or cosine of the angle) be-

tween the text/hypothesis pair in an n-dimensional

vector space.
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2.2 Semantic Equivalence Features

WordNet (WordNet, 1998) was used to identify en-

tailment between sentence pairs where correspond-

ing synonyms are used. Words from the same synset

were considered to indicate a greater likelihood of

entailment. We believe that the accuracy of this fea-

ture could be greatly improved by disambiguating

the sentence pair before calculating synset overlap.

More specifically, in some instances multiple senses

of a single term could be matched with terms in

the corresponding entailment pair, which results in

sentences appearing more semantically similar than

they actually are.

Using a Latent Semantic Indexing (Deerwester

et al., 1990) matrix constructed using the DUC 2004

corpus, we attempted to identify words in entailment

pairs which have high cooccurrence statistics. This

is an enhancement of the similarity measure given

by the WordNet features, as it matches not only syn-

onymy in the plaintext, but also uses data from other

corpora to identify other latent relationships.

VerbOcean (Chklovski and Pantel, 2004) is

a broad coverage lexical resource that provides

fine-grained semantic relationships between verbs.

These related verb pairs were gleaned from the web

using lexico-syntactic patterns that captured 5 dis-

tinct verb relationships: similar–to (e.g., escape,

flee), strength (e.g., wound is stronger than kill),

antonymy (e.g., win, lose), enablement (e.g., fight,

win), happens–before (marry happens before di-

vorce). VerbOcean also lists relationship strengths

between verb pairs. In our experiments we only use

the antonym and similar–to relationships for verb se-

mantics analysis.

Examination of the development set suggested

that for a significant proportion of sentence pairs,

the longest common subsequence 1 is largely sim-

ilar to the hypothesis element. For this feature, we

only examined verb semantics in the longest com-

mon subsequence of the two sentences rather than

in the full sentences. An example is shown in Fig-

ure 1. There are three variations of this feature: lcs,

lcs pos and lcs neg.

• lcs This feature holds one of three values

1The Longest Common Subsequence of a pair is the longest
sequence of words which is common to both text and hypothe-
sis.

id=1954; task=PP; judgement=FALSE
Text: France on Saturday flew a planeload of United Nations
aid into eastern Chad where French soldiers prepared to deploy
from their base in Abeche towards the border with Sudan’s Dar-
fur region.
Hypothesis:France on Saturday crashed a planeload of United
Nations aid into eastern Chad

Figure 1: Longest Common Subsequence. Italics

denote the longest common subsequence.

{−1, 0, 1}, which correspond to the presence of

an antonym, no relationship, or a synonym re-

lationship between the longest common subse-

quence of the text and the hypothesis sentence

respectively.

• lcs pos is a simpler feature which indicates the

presence of a synonym relationship, zero other-

wise.

• lcs neg is the corollary of lcs pos, indicating an

antonym relationship, zero otherwise.

Another feature based on the longest common

subsequence is lcs+not, which not only combines

the above lcs features, but also looks for the pres-

ence of words like “not”, which reverse the meaning

of the sentence. Thus, for example, if an antonym

and “not” occur in a sentence then this is considered

to be a positive indication of entailment.

Even though lcs+not is a combination of our lcs

features we still retain these simpler features as they

improve entailment accuracy . We believe this to be

the case because the classifier treats them as addi-

tional evidence of negative/positive entailment. It is

likely that when more training data becomes avail-

able that these atomic features will not be needed

and the lcs+not feature will be sufficient.

3 System Performance

Our two submitted systems are largely similar: Sys-

tem 1 uses all the syntactic equivalence features, the

atomic lcs features and the task feature; System 2

uses the syntactic equivalence features, the compos-

ite lcs+not feature, and does not use the task feature.

This gave rise to System 1 performing much

better for some tasks, but System 2 performed

(marginally) better on average. This is shown in Ta-

bles 1 and 2. Our choice of features for each sys-

tem was based on their performance on the second
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development set, having been trained on the first de-

velopment set.

Sys 1 Sys 2 Sys 3 Sys 4

Average 0.5625** 0.5650** 0.5675** 0.5663**
CD 0.7467** 0.7400** 0.7467** 0.8467**
IE 0.5583** 0.4917 0.5167 0.5417*
IR 0.4456 0.5444* 0.4333 0.5556**
PP 0.5200 0.5600** 0.5600** 0.5000
MT 0.4750 0.5083 0.5667** 0.4083
QA 0.5154 0.5385* 0.5000 0.4846
RC 0.5714** 0.5286 0.5714** 0.5286

Table 1: Accuracy results for both classifiers. Scores

marked with * are statistically significant to 95%

confidence. Scores marked with ** are statistically

significant to 99% confidence.

Sys 1 Sys 2 Sys 3 Sys 4

Average 0.5917** 0.6000** 0.5818** 0.5794**
CD 0.8602** 0.7764** 0.7873** 0.7526**
IE 0.5083** 0.5260 0.4958 0.5715**
IR 0.3789 0.6130** 0.4585 0.5201
PP 0.3968 0.5006 0.5320 0.4651
MT 0.5536* 0.5130 0.5498* 0.4108
QA 0.6003** 0.5006 0.4684 0.4846
RC 0.6003** 0.5685** 0.5961** 0.5866**

Table 2: Confidence–weighted scores (CWS) for

both classifiers. Scores marked with * are statisti-

cally significant to 95% confidence. Scores marked

with ** are statistically significant to 99% confi-

dence.

As already stated, when the task feature is en-

abled, the C5.0 algorithm uses it to make specific

classifiers for each task. This seems to lead to over–

fitting in some cases, e.g., IR and MT, but can help

in certain cases, e.g., RC and IE.

On release of the gold standard, we were able to

train our classifiers on both development sets, fully

examine our systems, and determine which features

produced the best classifier on the test data. We ran

two new systems: System 3 uses all available fea-

tures, and System 4 uses all features except the task

feature.

Before the gold standard was available, experi-

ments on the training sets indicated the extra fea-

tures did not contribute anything to the classifiers.

Consequently, we left them out to minimise noise

in the data. However, when used on the full test

set, we see that the accuracy scores significantly im-

proved in some tasks (most notably, CD and PP), al-

id=1560; task=QA; judgement=TRUE
Text: The technological triumph known as GPS - the Global
Positioning System of satellite-based navigation - was incu-
bated in the mind of Ivan Getting.
Hypothesis: Ivan Getting invented the GPS.

id=858; task=CD; judgement=TRUE
Text: Each hour spent in a car was associated with a 6 percent
increase in the likelihood of obesity and each half-mile walked
per day reduced those odds by nearly 5 percent, the researchers
found.
Hypothesis: The more driving you do means you’re going to
weigh more – the more walking means you’re going to weigh
less.

Figure 2: Compositional Paraphrases (misclassified

by our system).

beit to the detriment of others; the average accuracy

score for the systems does not vary significantly.

However, there is a slight reduction in the reliabil-

ity of the confidence scores assigned by the sys-

tem for some tasks, indicated by lower confidence–

weighting scores for Systems 3 and 4.

4 Analysis

In this section, we discuss with examples some com-

mon system errors made by our decision tree classi-

fier. It is clear from our system description in Sec-

tion 2 that the majority of our features deal with the

identification of word–level, atomic paraphrase units

(e.g., child = kid; eat = devour). Consequently, there

are a number of examples where phrasal and com-

positional paraphrasing has resulted in misclassifi-

cations by our system. Some examples of this are

shown in Figure 2.

Another important type of paraphrase, not ad-

dressed explicitly by our system, is the syntactic

paraphrase (e.g., “I ate the cake” or “the cake was

eaten by me”). However, although we didn’t include

a parse tree analysis in our approach, it appears that

the ROUGE metrics (and to some extent the cosine

metric) were an adequate means of detecting syn-

tactic paraphrases. The position of the ROUGE fea-

tures in high-level nodes in the decision tree con-

firms that n-gram overlap is an important aspect of

textual entailment, but obviously not the full story.

However, we also observed that in some cases syn-

tactic paraphrases prevented the detection of longest

common subsequences, and reduced the effective-

ness of features that relied on this syntactic anal-
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id=2028; task=QA; judgement=FALSE
Text: Besancon is the capital of France’s watch and clock-
making industry and of high precision engineering.
Hypothesis: Besancon is the capital of France.

id=1964; task=PP; judgement=FALSE
Text: Under the avalanche of Italian outrage London Under-
ground has apologised and agreed to withdraw the poster.
Hypothesis: London Underground opposed to withdraw the
poster.

Figure 3: LCS features

id=868; task=CD; judgement=FALSE
Text: Several other people, including a woman and two chil-
dren, suffered injuries in the incident.
Hypothesis: Several people were slightly wounded, including a
woman and three children.

Figure 4: Numerical example (misclassified by our

system).

ysis. Consequently, parse tree analysis and subse-

quent normalisation of sentence structure could be

an effective solution to this problem.

Overall, our LCS–based features were critical to

the classification decision; however, we did find in-

stances where sentence pairs were misclassified by

over–simplification of the textual entailment task.

For example, pair 2028 in Figure 3 shows how the

true meaning of the text sentence can extend beyond

the longest common subsequence. In addition, pair

1964 shows how coverage limitations in the Verb-

Ocean resource resulted in this example being mis-

classified as negative, because an antonym relation-

ship between “agree” and “oppose” was not listed.

Finally, during our manual examination of the re-

sults we also noticed another crucial analysis com-

ponent missing from our system: numerical string

evaluation. An example is shown in Figure 4. Future

development will focus on a normalisation method

for evaluating numeric values in the entailment pair.

5 Gold Standard Quality

In general, we found that the gold standard judge-

ments were unambiguous. However, there were

some instances where external knowledge was

needed to determine entailment. For example, in

Figure 5 the text does not imply that the Liffey is

a river (i.e., it could be a road). Although it appears

that the majority of examples were chosen to avoid

such ambiguity, it does highlight the need for a for-

mal, explicit definition of entailment. This example

also highlights the fact that in a real world appli-

cation the context surrounding the entailment pair

will also be needed to make a full judgement, an

issue that this year’s Textual Entailment Challenge

doesn’t address.

id = 1538; task=QA; judgement=TRUE;
Text: Dividing the Northside of Dublin from the Southside, the
Liffey is spanned by road bridges.
Hypothesis: The Liffey flows through Dublin.

Figure 5: Ambiguity in gold standard classification

6 Conclusions

Our work so far shows that Textual Entailment is a

very difficult task. Clearly, a larger corpus of data

is required to enable a more detailed analysis of the

domain. More data will also mean that we can build

more accurate classifiers.

In our own particular case, the evaluation suggests

that a hybrid classifier may be of some use, taking

the best case classifier for each task and combining

them appropriately.
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Abstract

We present a machine learning approach to ro-
bust textual inference, in which parses of the text
and the hypothesis sentences are used to mea-
sure their asymmetric “similarity”, and thereby
to decide if the hypothesis can be inferred. This
idea is realized in two different ways. In the first,
each sentence is represented as a graph (extracted
from a dependency parser) in which the nodes
are words/phrases, and the links represent depen-
dencies. A learned, asymmetric, graph-matching
cost is then computed to measure the similar-
ity between the text and the hypothesis. In the
second approach, the text and the hypothesis are
parsed into the logical formula-like representa-
tion used by (Harabagiu et al., 2000). An abduc-
tive theorem prover (using learned costs for mak-
ing different types of assumptions in the proof)
is then applied to try to infer the hypothesis from
the text, and the total “cost” of proving the hy-
pothesis is used to decide if the hypothesis is en-
tailed.

1 Introduction

Below, we illustrate our methods with the following toy
example of entailment:
TEXT: Chris purchased a BMW.

HYPOTHESIS: Chris bought a car.

Using relationships derived from syntactic dependen-
cies, we can represent the text and hypothesis sentences
equivalently as either a directed graph, or as a set of logical
terms, as shown in Figure 1 and Section 3.1. In the graph,
a vertex typically represents a word, but can also represent
a phrase that is interpreted as a single entity. Labeled edges
represent syntactic and semantic relationships tagged by
various modules. The logical formula is derived by con-
structing a term for each node in the graph, and represent-
ing the dependency links with appropriately shared argu-
ments. After presenting the inference methods, we show
how the representations over which they work are derived
from plain text.

2 Entailment by graph matching

We take the view that a hypothesis can be inferred from
the text when the cost of matching the hypothesis graph to
the text graph is low. For the remainder of this section, we
outline a model for assigning a match cost to graphs.

For hypothesis graph H , and text graph T , a matching M

is a mapping from the vertices of H to those of T ; we allow
nodes in H to map to a fictitious NIL vertex if necessary.
Suppose the cost of matching M is Cost(M). Then we
define the cost of matching H to T : MatchCost(H,T ) =
minM Cost(M).

One simple cost model is given by the normalized sum
of costs SubCost(v,M(v)) for substituting each vertex v in
H for M(v) in T :

Cost(M) =
1

Z

∑

v∈HV

w(v) SubCost(v,M(v)) (1)

Here, w(v) represents the weight or relative importance
for vertex v, and Z =

∑
w(v) is a normalization constant.

In our implementation, the weight of each vertex was based
on the part-of-speech tag of the word or the type of named
entity, if applicable. For hypothesis vertex v and text ver-
tex M(v), the substitution cost (in [0, 1]) is progressively
higher for the following conditions:

• v and M(v)’s stem and POS / only stem match

• v is a synonym / hypernym of M(v) (WordNet)

• v and M(v)’s stems are similar according to the word
similarity modules (described later).

As (Punyakanok et al., 2004) demonstrated, models
which also match syntactic relationships between words
can outperform bag-of-words models for TREC QA an-
swer extraction. As in (1), we can measure how relation-
ally similar H and T are by a normalized sum of costs for
substituting each edge relation (v, v′) in H with the edge
relation (M(v),M(v′)) in T . We assign a substitution cost
for edge (v, v′) in H based on the following conditions on
path length:

• M(v) is a parent/ancestor of M(v′)

• M(v) and M(v′) share a parent/ancestor
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objectsubj

Chris

(person)

bought

car

Chris

(person)

purchased

BMW

subj object

Exact Match

Cost: 0.0

Synonym

Match

Cost: 0.2

Hypernym

Match

Cost: 0.4

Vertex Cost: (0.0 + 0.2 + 0.4)/3 = 0.2

Relation Cost: 0 (Graphs Isomorphic)

Match Cost: 0.55 (0.2) + (.45) 0.0 = 0.11

Figure 1: Example graph matching (α = 0.55) for example
pair in Section 2. Dashed lines represent mapping.

As in the vertex case we have weights for each hypothesis
edge, w(e), based upon the edge’s label; typically subject
and object relations are more important to match than oth-
ers. Our final matching cost is given by a convex mixture
of the vertex and relational match costs:
Cost(M) = αVertexCost(M) + (1−α)RelationCost(M).

Notice that minimizing Cost(M) is computationally
hard since RelationCost(M) = 0 if and only if H is iso-
morphic to a subgraph of T . As an approximation, we
can efficiently find the matching M∗ which minimizes
VertexCost(·) using the Hungarian method (Kuhn, 1955);
we then perform local greedy hillclimbing search, begin-
ning from M∗, to approximate the minimal matching.

3 Abductive theorem proving

This method works with a logical formula-like representa-
tion (Harabagiu et al., 2000) of the syntactic dependencies
in the text and hypothesis sentences. The basic idea is that
a hypothesis that can be logically derived from the text is
entailed by it. Such a logical derivation is called a “proof”
of the hypothesis.

The logical formulae capture only the syntactic depen-
dencies in the sentences. Consequently, several entailed
hypotheses that require semantic rewrites (such as “a BMW

is a car”) can be derived from the corresponding text for-
mulae only by using additional assumptions in the proof.
We do not use explicit logical axioms (“rules”) for these as-
sumptions; instead, each assumption that unifies one term
in the hypothesis with another in the text is assigned a cost
based on the judged plausibility of that assumption. This
cost is computed using particular features of the assump-
tion.

Using such a cost model, the inference procedure
searches for a minimum cost proof for the hypothesis. The

hypothesis is judged to be entailed from the text if it has a
proof with cost below a certain learned threshold value.

We also provide a procedure to learn good costs for as-
sumptions from a training set containing examples of en-
tailed and non-entailed hypotheses.

3.1 Representation

For the example, the following logical representation is de-
rived, with each number/letter representing a constant:
T: Chris(1) BMW(2) purchased(3,1,2)

H: Chris(x) car(y) bought(e,x,y)

Each predicate and each argument is also annotated with
other linguistic information not shown here (such as se-
mantic roles and named entity tags) for use in assigning
costs to assumptions.

3.2 Inference

For our representation, proof steps that unify one term from
the text with one term of the hypothesis suffice. We allow
any pair of terms to unify with each other, with a cost as-
signed by the assumption cost model. We relax the require-
ments for logical unification in several ways, adding cost
penalties for each such relaxation:

1. Terms with different predicates can be unified; the
cost penalty is obtained using the term similarity mea-
sures (described later) and the linguistic annotations
on the predicates.

2. The terms can have differing number of arguments,
and the arguments of one term can be matched with
those of the other term in any order. Each argument
matching is assigned a cost based on the compatibil-
ity of the annotations of those arguments. A term pair
might be unified in many ways corresponding to dif-
ferent argument matchings.

3. Constants can be unified with each other at an appro-
priate cost. This cost is precomputed for all constant
pairs in a particular example, and is lowered for spe-
cific pairs—such as when there is possible coreference
or appositive reference.

We developed a specialized abductive theorem prover
to discover the minimum cost proof using uniform cost
search. For our running example, the minimum cost proof
unifies BMW with car, and purchased with bought, at
small costs.

3.3 Learning good costs for assumptions

Given a training set of labeled text-hypothesis pairs (such
as the RTE development set), we propose a learning algo-
rithm that tries to learn good assumption costs.1

1Details are omitted here due to space constraints. See (Raina
et al., 2005) for details.
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4 Producing representations and similarities
for inference

4.1 Syntactic processing

The first steps of the front-end deal with tokenization and
parsing. Beyond this base level, the performance of the
inference methods depends critically on our ability to iden-
tify similarities and differences between our fairly syntac-
tic representations of the text and the hypothesis. This is
largely dependent on being able to perform normalization
and enrichment tasks that will reveal essential similarities,
and on having good measures of lexical semantic similarity
between words and larger units.

We do deterministic tokenization and then use full sen-
tence parsing to reveal syntactic dependencies. The parser
used was a variant of (Klein and Manning, 2003). The
most important addition was training on an extra dozen
sentences that gave the parser some exposure to topics in
the news in 2005 rather than only those appearing in 1989.
Exploiting headedness relations and hand-written pattern-
matching rules, the parse tree is converted into a set of
typed dependencies between words, representing grammat-
ical relations (like subject and object) and other modifier
dependencies, including such things as appositives, nega-
tions, and temporal modifiers. This is the basis of the
graph structure in Figure 1. Various collapsings are then
done to normalize and improve this dependency represen-
tation. Prepositions and possessive ’s are changed from be-
ing vertices to relation names, and coordinations explicitly
represent the conjuncts. A conditional random field (Laf-
ferty et al., 2001) named entity recognition system is run
to identify seven classes (Person, Organization, Location;
Percent, Time, Money, and Date). The first three are col-
lapsed into single nodes tagged NNP (proper noun) prior
to parsing, while the latter four are grouped after parsing,
but before the conversion to a dependency representation,
and their values are normalized into a canonical form us-
ing hand-written regular expressions. This includes rep-
resenting approximate and relative quantities (around $40

and less than 2 dollars) as well as exact amounts. At the
same time, we also collapse collocations, which are found
in WordNet, like back off and throw up to a single node.

4.2 Additional dependencies between nodes

We augment the syntactic dependency graph with seman-
tic role arcs using a Propbank-trained semantic role la-
beler (Toutanova et al., 2005). For each verb, we added
edges between that verb and the head word of each of its
arguments, and labeled the edges with the appropriate se-
mantic role. This allowed us to add relations (between
words) that were not captured by surface syntax, and also
to classify modifying phrases as temporal, locative, and
other categories. We added coreference relations between
noun phrases and named entities using a maximum entropy
coreference classifier modeled after (Soon et al., 2001).

Dataset General ByTask

Accuracy CWS Accuracy CWS

DevSet1 64.8% 0.778 65.5% 0.805
DevSet2 52.1% 0.578 55.7% 0.661

DevSet1 + DevSet2 58.5% 0.679 60.8% 0.743
Test set 56.2% 0.620 55.2% 0.686

Table 1: Accuracy and confidence weighted score (CWS)
on RTE datasets.

Task General ByTask

Accuracy CWS Accuracy CWS

CD 79.3% 0.903 84.0% 0.926
IE 47.5% 0.493 55.0% 0.590
IR 56.7% 0.590 55.6% 0.604
MT 46.7% 0.480 47.5% 0.479
PP 58.0% 0.623 54.0% 0.535
QA 48.5% 0.478 43.9% 0.466
RC 52.9% 0.523 50.7% 0.480

Table 2: Accuracy and confidence weighted score (CWS)
split by task on the RTE test set.

4.3 Methods for discovering term similarity

As in other work, e.g., (Moldovan et al., 2000), we relied
on WordNet (Miller, 1995) heavily for lexical knowledge.
The WordNet::Similarity module (Pedersen et al.,
2004) was used to compute a symmetric similarity score
between two phrases. If the queried phrases are listed as
antonyms in WordNet, the match is given a very high cost
in the inference procedures. Derivational forms in Word-
Net are used to detect nominalized events and modify the
representation (e.g., murder of police officer entails po-

lice officer killed). WordNet does not include prepositions.
We semi-automatically constructed a matrix of preposition
similarity values using synonyms (e.g., over and above)
and antonyms (e.g., over and under). Synonyms were
found by grouping prepositions into clusters. Antonym
pairs were added manually. Finally, we compiled a list of
206 countries and their derivatives manually (e.g., Philip-

pines - Filipino), and collected a list of 276 frequently oc-
curring acronyms in a large corpus, and recorded their ex-
pansions.

The inference procedures require considerable semantic
knowledge to infer some rewrites using just phrasal depen-
dencies; for example, won victory in Presidential election

might entail became President. We attempted to discover
such rewrites by looking for similarly placed phrases in a
large corpus, using a backed-off modification of the simi-
larity measure described in (Lin and Pantel, 2001).

Sometimes both of these methods are too precise. Words
that are used in the same context often do not have explicit
relationships between them; for instance marathon and run

clearly have a semantic relationship not considered in the
WordNet hierarchy. To overcome this we used Infomap,2

2Available at http://infomap.stanford.edu.
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Text Hypothesis Our answer Conf Comments

A Filipino hostage in Iraq was re-
leased.

A Filipino hostage was freed in
Iraq. (TRUE)

True 0.61 Verb rewrite is handled. Phrasal or-
dering does not affect cost.

The government announced last
week that it plans to raise oil prices.

Oil prices drop. (FALSE) False 0.69 High cost given for substituting
word for its antonym.

Shrek 2 rang up $92 million. Shrek 2 earned $92 million.
(TRUE)

False 0.51 Collocation “rang up” is not known
to be similar to “earned”.

Sonia Gandhi can be defeated in the
next elections in India by BJP.

Sonia Gandhi is defeated by
BJP. (FALSE)

True 0.66 “can be” does not indicate the com-
plement event occurs.

Fighters loyal to Moqtada al-Sadr
shot down a U.S. helicopter Thursday
in the holy city of Najaf.

Fighters loyal to Moqtada al-
Sadr shot down Najaf. (FALSE)

True 0.67 Should recognize non-Location
cannot be substituted for Location.

C and D Technologies announced
that it has closed the acquisition of
Datel, Inc.

Datel Acquired C and D tech-
nologies. (FALSE)

True 0.59 Failed to penalize switch in seman-
tic role structure enough

Table 3: Analysis of results on some RTE examples.

an open-source implementation of Latent Semantic Anal-
ysis (Deerwester et al., 1990), to score words according
to distributional similarity (measured using the British Na-
tional Corpus). To further exploit distributional similarity,
we also implemented a measure of similarity that is com-
puted as the ratio between the number of search results
from google.com for two phrases when queried sepa-
rately and in combination.

5 Results and analysis

Our overall system is a combination of the two systems de-
scribed in Sections 2 and 3. Each system produces a real
number score that is normalized to have zero mean and unit
variance, and then converted to a confidence value using
the cumulative distribution function for a normal distribu-
tion. These individual scores are then linearly combined
using logistic regression, with the weights trained on the
RTE development sets. The first version (called General)
trained one set of weights for all RTE tasks; the second
version (called ByTask) trained separate weights per task.
All parameters except the classifier weights were identical.

Table 1 reports the performance of our final classifiers
on different datasets. Table 2 shows the performance sepa-
rately on each task in the test set.

A random guessing baseline achieves accuracy 50% and
confidence weighted score (CWS) 0.50. Our test set accu-
racy is only a few points above random guessing; however,
the CWS is significantly higher. Thus, our predictions are
well-calibrated and more robust; this is probably because
our learning and classifier combination procedures maxi-
mize the likelihood of the full predicted distribution rather
than just a binary accuracy value.

Table 3 has an analysis of some examples from the RTE
datasets. The term similarity routines seemed most impor-
tant for good performance, while many of the other mod-
ules are useful in specific cases. Many of the language
resources used were sparse (e.g., antonyms in WordNet);
high-recall resources would be extremely beneficial.
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Abstract

This paper presents an approach to solving
the problem of textual entailment
recognition and describes the computer
application built to demonstrate the
performance of the proposed approach.
The method presented here is based on
syntax-driven semantic analysis and uses
the notion of atomic proposition as its
main element for entailment recognition.
The idea is to find the entailment relation
in the sentence pairs by comparing the
atomic propositions contained in the text
and hypothesis sentences.
The comparison of atomic propositions is
performed via an automated deduction
system OTTER; the propositions are
extracted from the output of the Link
Parser; and semantic knowledge is taken
from the WordNet database. On its current
stage the system is capable to recognize
basic semantically and syntactically based
entailments and is potentially capable to
use more external and internal knowledge
to deal with more complex entailments.

1 Introduction

The variety of ways to transmit the same
information is an interesting phenomenon of
natural language and is an obstacle for many
applications in the domain of natural language
processing. Question answering, for example, has
faced the fact that a possible answer to a question
could be expressed in a way that is syntactically
and semantically different from the question
sentence, or has to be entailed from it. The paper is

devoted to the phenomena of entailment. By
textual entailment is understood a relationship
between a coherent text T and a language
expression H, which is considered as a hypothesis.
T entails H if the meaning of H, as interpreted in
the context of T, can be deduced from the meaning
of T. By a language expression is understood a
syntactically coherent text fragment, having a well
formed fully connected syntactic analysis (Dagan
and Glickman, 2004). For example,

T: Coffee boosts energy and provides health benefits.

H: Coffee gives health benefits.

is a true textual entailment that will be used as an
example throughout the paper.

2 Meaning Representation

To know if a hypothesis H is entailed from a text T
one should compare their meanings. We represent
meaning of a sentence as a set of atomic
propositions contained in it and compare the
propositions in order to compare the sentences. We
mean by an atomic proposition a minimal
declarative statement (or a small idea) that is either
true (T) or false (F) and whose truth or falsity does
not depend on the truth or falsity of any other
proposition. (Coffee boosts energy and provides

health benefits. – propositions are: Coffee boosts

energy. and Coffee provides health benefits.)
To break a sentence into its atomic propositions a
syntax-driven semantic analysis of the sentence
(Jurafsky and Martin, 2000) is applied, as we
believe that a deep semantic and syntactical
analysis is vital to solve the problem.
The implementation of the method uses an output
of the parser as an input for the semantic analyser
producing the output from which a first-order logic
representation of the meaning can be derived.
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This final meaning representation is called the

logic formula of the sentence. See figure 1 for an
example of the data the system has.
A logical meaning representation of a sentence and
an automatic deduction system to work with it are
often used in QA applications (Moldovan et al.,
2002; Moldovan et al., 2003). There exist many
approaches to describe meaning by means of a
logical form. Thus, a sentence A restaurant serves

meat can have a description
exists e, x Isa(e, Serving) & Server(e, x) & Served(e,

Meat) & Isa(x, Restuarant) (Jurafsky and Martin, 2000).

From our point of view, these forms are rigid and
hard to produce. There are no automatic rules to
understand that the event here is serving, and the
subject of the sentence is a server. It’s not clear
how to compare two such logical representations.
As a result we use a simplified representation in
this version of the system. There are three types of
objects - Subj(x), Obj(x), Pred(x) and a meaning
attaching element iq(x, <meaning of x>). See fig. 1
for an example. Also, there are two variants of
relationships attr(x, y) and prep(x, y):

“Somali capital” -- Subj(x) & iq(x, ‘capital’) &

attr(x, y) & Subj(y) & iq(y, ‘somali’).

“a zoo in Berlin” - Obj(x) & iq(x, ‘zoo’) & prep(x, y)

& Obj(y) & iq(y, ‘Berlin’).

In this case a logic formula is easy to build
automatically. Semantic synonymy is
expressed as an equivalence (iq(x, ‘serve’) <->
iq(x, ‘dish’)) and hyperonymy ((iq(x, ‘serve’) -
> iq(x, ‘provide’)), (iq(x, ‘serve’) -> iq(x,
‘cater’))). We can store lexical relation rules,

all x (iq(x, 'is') <-> iq(x, 'be')); describe syntactical
equivalence by means of additional logic rules,
“Be X of Y -> X Y” (director of the firm -> direct a

firm) is all y z z1 y77 z77 ((Pred(z1) & iq(z1, 'be') &

Obj(y) & iq(y, y77) & prep(y, z) & Obj(z) & iq(z, z77)) -

> (Pred(y) & iq(y, y77) & Obj(z) & iq(z, z77))); or
soften some mistakes of the parser, such as
prepositional attachment - all x y y77 z z77 x77

(Pred(y) & iq(y, y77) & prep(y, x) & Obj(x) & iq(x, x77)

& Obj(z) & iq(z, z77) <-> Pred(y) & iq(y, y77) &

Obj(z) & iq(z, z77) & attr(z, x) & Obj(x) & iq(x, x77)).

The rules are called knowledge rules, as they
represent knowledge of the system.

3 WordNet Relatedness

A WordNet (WordNet) relatedness algorithm used
in the system was developed specially for this
system, as the existing ones (Budanitsky and Hirst,
2001) are not quite right for the system. The result
of its work is a relatedness score. It is used to
prove the synonymy or entailment relation between
words (see figure 3 for details). As it compares
senses of the words, a WSD algorithm could be
used (will be in future) prior to the comparison to
get a more reliable score (otherwise the probability
that the current word has sense i could be
estimated as 1/n, where n – number of senses the
word has). The score is calculated from the paths
between the senses of the words in the graph. We
use the length of a path (take over–buy has a length
2, form-make-establish has a length 3; the longer
the path, the less is the relatedness); the amount of
sense of the words that is on the path between

+---------------------------------------------------------- Xp ----------------------------------------------+
| +------------- Op -----------+ |

+------ Wd ----+------------------------ Ss -----------------------+ +---- AN ---+ |
| | | | | |

LEFT-WALL coffee.n boosts.v energy.n and provides.v health.n benefits.n.

�

[coffee ]subj [boosts ] [energy ]obj
exists x exists y exists z (Subj(x) &iq(x, 'coffee') & Pred(y) &iq(y, 'boosts')

& Obj(z)&iq(z, 'energy') ).

[coffee ]subj [provides ] [health benefits ]obj
exists x exists y exists z exists za6 (Subj(x) &iq(x, 'coffee') &Pred(y)&iq(y,

'provides') & Obj(z)&iq(z, 'benefits')&attr(z, za6) & Obj(za6)& iq(za6, 'health')).

+----------------------------------------------------------- Xp -----------------------------------------------+
+------ Wd ----+---- Ss ----+---- Os ----+ |
| | | | |

LEFT-WALL coffee.n boosts.v energy.n and provides.v health.n benefits.n.

�

Figure 1. Data of the system on different stages of analysis.

…
↓

linkage array
↓

propositions
↓

logic form
↓…
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these two words (two words connected with a verb
print, for example, are more close to each other, as
the words connected via make, because print has
only 4 senses and make has 49); and the total
number of different paths (the words which senses
are connected through 10 different paths are more
related then the words having only one connecting
path, for example). Though we compare all words
similarly now, I would like to emphasize that the
following method ideally should be used only for
verbs and nouns derived from them, and a different
one in other cases, for, intuitively, the verbs (think
about decide and conclude, and the nouns decision

and conclusion derived from them) have a more
generic meaning, than the nouns describing
particular objects (train, car, bus).

4 System description

The scheme of the system is presented on the
figure 2. The Link Parser 4.1a (Link
Grammar) to trace the connections between
the elements of sentences and a version 3.3 of
OTTER (OTTER) for comparison of the atomic
propositions are used now. A way to logic form is
shown in section 2. After the algorithm is the
following (figure 2: Otter and its input data; and
figure 4): if for every proposition in the hypothesis
sentence there is one in the text sentence from that
it could be entailed then the sentence entailment
holds, otherwise the entailment does not hold.
The same algorithm also can be used to obtain
some knowledge rules from the data set: when
entailment holds we want to find pairs <p1, p2>
(see fig. 2) and to build knowledge rules p1->p2 to
use them later. The idea of this process is the
following: for every atomic proposition Y in the
hypothesis find the atomic proposition in the text
from which it is entailed. If there is none, find the
closest (with the higher relatedness score according
to WordNet (see section 7)) atomic proposition X
and create a rule Prop X -> Prop Y. So, what we
can learn is:
reduce the risk of diseases -> have health benefits.
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interpretation of propositions

Knowledge rules
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Figure 2. System architecture.

provide – give relatedness score: 0,3623
(verb chain); maximum path length – 3

1. provide#1(7)[2259805] -- hyperonym -- give#3(44)[2136207]
…

7. provide#6(7)[2155855] -- hyperonym -- support#2(11)[2155507] -- hyperonym -- give#3(44)[2136207]

=> ∀ x (iq(x, ‘provide’) -> iq(x, ‘give’)).

Figure 3. WordNet relatedness algorithm. Data and results.

Coffee boosts energy and

provides health benefits

Coffee boosts

energy.

Coffee provides

health benefits.

for (Coffee gives health benefits)

Coffee boosts energy ≠> Coffee gives health benefits

Coffee provides health benefits => Coffee gives

health benefits, as provides => gives (see fig. 3),

coffee = coffee, health benefits = health benefits

match == 1 => entailment holds

Coffee gives health

benefits

Coffee gives

health benefits.

Figure 4. Comparison of propositions.
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4

5 Performance of the system

First, the examples where entailment holds and it is
right.

T: The decision is made. - H: The determination is

made.

As decision and determination are connected via
WordNet, so we’ll have a rule all x (iq(x,

‘decision’) <-> iq(x, ‘determination’)) .
T: The good decision is made. - H: The decision is

made.

Subj(x) & iq(x,’decision’) & attr(x, y) & Subj(y) &

iq(y, ‘good’) -> Subj(x) & iq(x,’decision’)
T: The Brazilian president visited France. - H: The

president of Brazil visited France, and T: The boy goes

to school by bus. - H: The boy travels with school bus.

A rule all x y (attr(x, y) <-> prep(x, y)) works here.
T: The man is a director of the company. – H: The

man rules the company.

“Be X of Y -> X Y” (section 4) rule is used here.
Now, the examples where entailment holds though
it shouldn’t:

T: The population of France has grown during the

last 3 years. – H: The population of Paris has grown

during the last 3 years.

T: The gastronomic capital of France is Lyon. – H:
The capital of France is Lyon.

T: The man came to the park by car. – H: The man

came to a car park.

It is clear now why the following two examples
were recognized as TRUE entailments:

T: A male gorilla escaped from his cage in the Berlin

zoo and sent terrified visitors running for cover, the zoo

said yesterday. – H: A gorilla escaped from his cage in

a zoo in Germany.

T: The incident in Mogadishu, the Somali capital,

came as U.S. forces began the final phase of their

promised March 31 pullout. – H: The capital of Somalia

is Mogadishu.

6 Results

cws: 0.5067; accuracy: 0.5188 ;
precision: 0.6119; recall: 0.1025; f: 0.1756

task cws accuracy task cws accuracy

CD 0.6121 0.5867 RC 0.4702 0.5214

IE 0.5519 0.5083 PP 0.5452 0.5200

MT 0.4341 0.4917 IR 0.4797 0.5111

QA 0.4649 0.4769

Note: according to Recognising Textual Entailment

Challenge evaluation method (Pascal Challenges).

The results are low now, as more work should be
done for proposition extraction and logical
representation. Also a good knowledge rule
database is missing.

7 Future work

Despite not very high results we believe the
proposed system has a strong potential. The main
future tasks are: to make inferences inside the text
sentence itself, to try reasoning with all
propositions from the text, and to create an
inference rule database. An attempt will be done to
construct the database using sentences with
inferences inside them. That is the sentences with
the conjunctions as result of, because, if, and
predicates cause, follow.
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Abstract

We combine two methods to tackle the
textual entailment challenge: a shallow
method based on word overlap and a
deep method using theorem proving tech-
niques. We use a machine learning tech-
nique to combine features derived from
both methods. We submitted two runs,
one using all features, yielding an ac-
curacy of 0.5625, and one using only
the shallow feature, with an accuracy of
0.5550. Our method currently suffers
from a lack of background knowledge and
future work will be focussed on that area.

1 Introduction

In this paper we summarise our submission to the
2004/5 Recognising Textual Entailment (RTE) chal-
lenge. In this task, given a pair of text fragments—a
text (T) and an hypothesis (H)—the system has to
decide whether the hypothesis is entailed by the text.
The system we developed is a hybrid system, using
both shallow and deep semantic analysis methods.

The shallow techniques establish a baseline per-
formance, but also complement the deep semantic
analysis. In the hybrid system, each T/H-pair is
represented by feature-value vectors that are derived
from either shallow or deep semantic analysis. The
features used are domain-independent to increase
scalability. An off-the-shelf machine learning tool
was then used to derive a decision tree model from
the RTE development set.

2 Shallow Semantic Analysis

The shallow semantic analysis measures only word
overlap between text and hypothesis. Both text

and hypothesis are tokenised and lemmatised. Each
lemma in the hypothesis is assigned its inverse doc-
ument frequency, using the Web as corpus, as its
weight. This standard procedure allows us to assign
more importance to less frequent words.

The word overlap overlap between text and hy-
pothesis is initialised as zero. Should a lemma in the
hypothesis also occur in the text, its weight is added
to overlap, otherwise it is substracted. In the end
overlap is normalised by dividing it by the sum
of all weights of the lemmas in the hypothesis. This
ensures that overlap is always a real number be-
tween 1 and −1 and also ensures independence of
the length of the hypothesis.1

Training a decision tree on the development set
with this feature alone yielded the following tree for
entailment, where TRUE associates with entailment,
and FALSE does not:2

overlap <= 0.161146: FALSE

overlap > 0.161146: TRUE

Accuracy on the development set (using 10-fold
cross-validation) was 0.594 and therefore clearly
beat the baseline of 0.50. In general this method
overestimates the number of true entailments in the
development set and achieved an F-measure of 0.672
for the class TRUE and only 0.474 for the class

1This word overlap measure is similar to the method used in
(Monz and de Rijke, 2003) and (Saggion et al., 2004) —how-
ever, they do not substract from the overlap measure a token in
the hypothesis which does not appear in the text. Hence, their
scores are within 0 and 1. We experimented with this varia-
tion on the development set, but achieved slightly better perfor-
mance with the scores that used substraction as well.

2We used Weka’s J48 classifier (http://www.cs.
waikato.ac.nz/˜ml/weka/) for all experiments in this
paper. We also used Weka’s confidence values for confidence
weighting scores.
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FALSE. We submitted this baseline as Run2 and the
performance on the RTE test set was as follows:

cws: 0.5864
accuracy: 0.5550
precision: 0.5375
recall: 0.7875
f: 0.6389

Although the performance is still signifi cantly
better than the baseline (5% level), it is worse than
on the development set, because the level of word
overlap in the test set was lower overall than in the
development set. This seems to be an indicator of a
different design of development and test set—using
10-fold cross-validation on the test set indicates that
an overlap value of between −0.20 and 0.92 al-
ready indicates a TRUE value in the test set, whereas
a value of over 0.92 indicates a FALSE value. The
latter anomaly, which indicates that if text and hy-
pothesis are very similar then the entailment is false,
is due to the fact that there are many examples in
the test set that are deliberately constructed to have
a high word overlap but nevertheless be FALSE.

3 Deep Semantic Analysis

We use a robust wide-coverage CCG-parser (Bos et
al., 2004) to generate fi ne-grained semantic repre-
sentations for each T/H-pair. The semantic represen-
tation language is a fi rst-order fragment of the DRS-
language used in Discourse Representation Theory
(Kamp and Reyle, 1993). To check whether an en-
tailment holds or not, we used Vampire, a theorem
prover for fi rst-order logic (Riazanov and Voronkov,
2002), and Paradox, a fi nite model builder (Claessen
and Sörensson, 2003).

To support the proofs we calculated background
knowledge using three kinds of sources:

• Generic axioms for, for instance, the semantics
of possessives, active-passives, and locations.

• Lexical knowledge that was created on the
fly with an algorithm that takes as input the
DRSs for the text and hypothesis, and out-
puts fi rst-order axioms based on WordNet hy-
pernyms. This algorithm also performs sim-
ple word sense disambiguation and analysis of
complex concepts.

• Geographical knowledge from the CIA fact-
book was translated into fi rst-order axioms.

To perform the actual search for a proof, the DRSs
for T and H were translated into fi rst-order logic.
The theorem prover and model builder were used in
all tasks as complementary inference engines, where
the theorem prover attempts to prove the input, and
the model builder tries to fi nd a model for the nega-
tion of the input. First we checked whether the
background knowledge (BK) was consistent with
the text, by giving ¬(BK ∧ T) to the theorem prover.
If there is a proof, indicating that the background
knowledge is inconsistent, we proceed with check-
ing for entailment without background knowledge,
by giving (T → H) to the theorem prover. Otherwise
we attempt to prove (BK ∧ T → H).

Although in theory the method of fi nding proofs
should work, in practice it does not work that well.
This is mostly due to the lack of appropriate back-
ground knowledge without which many true entail-
ments cannot be found. To overcome this problem
we also used a novel way of measuring approximate
entailments, relying on the model sizes computed by
the model builder. Using Paradox, we computed the
model size of (BK∧T) and that of (BK∧T∧H). The
underlying idea was that if the difference of these
two numbers is small, it is likely to be an entailment.
(In other words, the hypothesis does not introduce
any or little new information.)

This deep semantic analysis proposes a number of
features to describe the T/H-pairs:

entailed {proof,unknown}
inconsistent {proof,unknown}
domainsize numeric
domainsizeabsdif numeric
domainsizereldif numeric
modelsize numeric
modelsizeabsdif numeric
modelsizereldif numeric
negation {yes,no}
negationtext {yes,no}
negationhypo {yes,no}

The features entailed and inconsistent

have been discussed above. domainsize is the
value of the domainsize of the model for both T
and H, domainsizeabsdif is the absolute dif-
ference between the domain sizes of T and H,
and domainsizereldif the difference relative
to the model size. The modelsize is computed
by multiplying the domain size with the number
of all positive two-place predicates in the model.
The features negation, negationtext, and
negationhypo are determined by inspecting the
DRSs for the presence of negation operators.
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4 Combining the Methods

For the combined run we used all shallow and deep
features for training a decision tree on the develop-
ment set. The tree generated for the development
data is displayed below:

entailed = proof: TRUE

entailed = unknown

| negationhypo = yes: FALSE

| negationhypo = no

| | overlap <= 0.161146: FALSE

| | overlap > 0.161146

| | | inconsistent = proof: TRUE

| | | inconsistent = unknown

| | | | domainsize <= 8

| | | | | negation = yes: FALSE

| | | | | negation = no

| | | | | | domainsize <= 6

| | | | | | | domainsizeabsdif <= 0: TRUE

| | | | | | | domainsizeabsdif > 0

| | | | | | | | modelsizereldif <= 0.595556: TRUE

| | | | | | | | modelsizereldif > 0.595556: FALSE

| | | | | | domainsize > 6: FALSE

| | | | domainsize > 8: TRUE

Note that not all features were used (negation in
the text, relative domain size difference, model size,
and absolute model size difference were not used).

We did not expect good results, as experiments us-
ing cross-validation on the development data yielded
around 60% accuracy (depending on the decision
tree parameters). However, on the test set, this run
performed better than the baseline at the 1% level
and slightly better than the shallow feature alone.
The actual results on the test set are detailed below.

cws: 0.5931
accuracy: 0.5625
precision: 0.5530
recall: 0.6525
f: 0.5986

5 Error Analysis

The hybrid system was able to create semantic rep-
resentations and then search for proofs for 774 of all
800 T/H-pairs in the test data, achieving a coverage
of 96.8%. Only 30 proofs were found by the system,
of which 23 were annotated as entailments in the
gold standard. These include adequately analysed
phenomena such as apposition (5x: 760, 929, 995,
1903, 1905), relative clauses (3x: 142, 1060, 1900),
coordination and attachment(3x: 898, 807, 893),
active-passive alternation (2x: 1007, 1897), posses-
sives (1x: 1010), the use of background knowledge
(6x: 236, 836, 1944, 1952, 1987, 1994) and more
or less straightforward cases (3x: 833, 1076, 741).
Note that two examples are included that were an-
notated as entailment, but strictly speaking they are
not (Examples 893 and 236, see also Section 6).

Incorrect proofs were found for seven cases.
Some of these are due to the lexical semantics of

certain linguistic categories, others to a lack of back-
ground knowledge. As an example, the current sys-
tem does not deal adequately with ordinals and thus
fi nds proofs for 1617 (see below) and 2040.

Example: 1617

T: In 1782 Martin Van Buren, the first US president who
was a native citizen of the United States, was born in
Kinderhook, N.Y.

H: The first US president was born in Kinderhook, N.Y.

It also found a proof for 2025, where the text con-
tained the hypothesis in an if-clause. Again this was
due to an incorrect lexical semantics, and is easy to
fi x. More complex cases involving modifi ers were
2030 and 2082 (see below). It is hard to see what
kind of background knowledge can preclude proofs
for such cases. (For 2030, the knowledge that Paris
is the capital of France, and that each country has at
most one capital, would suffi ce. Unfortunately our
system does not select this as background knowl-
edge because the trigger Paris is mentioned neither
in the text nor in the hypothesis.)

Example: 2030

T: Lyon is actually the gastronomic capital of France.

H: Lyon is the capital of France.

Example: 2082

T: Microsoft was established in Italy in 1985.

H: Microsoft was established in 1985.

For 2055, the system correctly associated Einstein
to be the subject of being the president of Israel,
but it incorrectly assumed that begin invited to X is
being X. A restriction on this class of modal verbs
could fi x this problem. (In the development data,
however, there were similar cases that were anno-
tated as entailments.)

Example: 2055

T: The fact that Einstein was invited to be the president of
Israel is critical to an accurate understanding of one of
the greatest individuals in modern history.

H: Einstein is the president of Israel.

Finally, background knowledge that if X is in Y,
then X is located in Y, wrongly predicted an entail-
ment for 2079. A more sophisticated lexical analysis
of prepositions could improve on such examples.

Example: 2079

T: US presence puts Qatar in a delicate spot.

H: Qatar is located in a delicate spot.
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In sum, the backbone of the deep semantic anal-
ysis, trying to fi nd proofs, has a small coverage,
but is reasonably accurate. Selecting more appro-
priate background knowledge and revising some of
the lexical semantics will improve its precision. We
already improved its recall by incorporating the fea-
tures concerning model size differences.

6 Discussion of the entailment task

We will now discuss some observations we made on
the task defi nition and the annotated data sets.

Task definition The current RTE dataset classifi ed
entailment as binary TRUE and FALSE. Following
FRACAS, the semantic test suite in (Coopper et al.,
1996), a classifi cation that respects three values (yes,
don’t know, inconsistent), is probably more in its
place. For instance, not only are examples 1301 and
1310 below not entailments, the hypotheses are in-
consistent with the corresponding texts as well:

Example: 1301

T: The former wife of the South African president did not
ask for amnesty, and her activities were not listed in
the political reports submitted by the African National
Congress to the Truth and Reconciliation Commission
in 1996 and 1997.

H: Winny Mandela, the President’s ex-wife, is requesting
amnesty.

Example: 1310

T: Although the hospital insists that King Hussein is not
fully free of the cancer, they are hopeful that he will
recover.

H: The statement added that King Hussein has been cured
completely.

In the current RTE task defi nition FALSE sub-
sumes both the “don’t know” and “inconsistent” val-
ues used in the FRACAS test suite.

Annotated datasets We found several cases
where entailments were incorrectly annotated in our
opinion. Example 236 (see below), for instance, was
judged as entailment. But taking tense into account
(which, incidentally, our system is currently not able
to do), it is strictly speaking not a textual entailment.

Example: 236

T: Yasir Arafat has agreed to appoint a longtime loyalist as
interior minister to take charge of the country’s security.

H: Yasir Arafat nominated a loyalist as interior minister.

Another example is 893: the adverb perhaps in the
text clearly expresses doubt on the date of establish-
ment of settlements on Jakarta, and the hypothesis
establishes it as a fact. This clearly is not entailment.

Example: 893

T: The first settlements on the site of Jakarta were estab-
lished at the mouth of the Ciliwung, perhaps as early as
the 5th century AD.

H: The first settlements on the site of Jakarta were estab-
lished as early as the 5th century AD.

It would also be helpful if human agreement fi g-
ures and explicit guidelines for annotation could be
released for the task. For a small test, one of the
authors annotated all 800 examples of the test set
for entailment, using the short rules that were indi-
cated on the entailment web page (for example, dis-
regarding tense). Comparing to the fi nal gold stan-
dard, now released, we had 38 differences, yielding
an agreement of 95.25%. This indicated good agree-
ment, but one has to take into account that both an-
notations used the indicated simplifi ed guidelines.
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Abstract

The PASCAL RTE challenge has helped

LCC to explore the applicability of en-

hancements that have been made to our

logic form representation and WordNet

lexical chains generator. Our system

transforms each T-H pair into logic form

representation with semantic relations.

The system automatically generates NLP

axioms serving as linguistic rewriting

rules and lexical chain axioms that con-

nect concepts in the hypothesis and text.

A light set of simple hand-coded world

knowledge axioms are also included. Our

COGEX logic prover is then used to at-

tempt to prove entailment. Semantic re-

lations, WordNet lexical chains, and NLP

axioms all helped the logic prover detect

entailment.

1 Introduction

Textual entailment occurs when one text can be in-

ferred from the meaning/contents of another text

passage. All assertions made in an entailed sentence

must be made in the text passage directly, or be log-

ically derivable from it. Our approach attempts to

recognize textual entailment by determining if the

hypothesis sentence can be logically derived from

the text passage using a logic prover. The goal of

a logic prover is to determine if some hypothetical

statement can be proven given a set of other known

true statements. Our logic prover operates by “re-

ductio ad absurdum” or “proof by contradiction”

(Wos, 1988). The hypothesis is negated, and if it

then contradicts anything in the text or anything in-

ferred from the text, the prover concludes that the

original hypothetical statement is derivable from the

text (thus, entailment exists).

A description of our system’s implementation is

provided in Section 2, our results and some perfor-

mance analysis are included in Section 3, and some

final concluding remarks are made in Section 4.

2 System Description

2.1 Logic Form Transformation

In the first stage of our system, the input text and hy-

pothesis are converted into logic forms (Moldovan

and Rus, 2001). This conversion process includes

part-of-speech tagging, parse tree generation, word

sense disambiguation, and semantic relations detec-

tion. In the final representation, word senses are re-

moved from the predicates. We found that the inac-

curacy of the word sense disambiguator was so great

that it prevented many of our other tools from being

properly utilized.

2.2 Axiom Generation

We have implemented our COGEX (Moldovan et

al., 2003) logic prover into the entailment recogni-

tion system. COGEX is a modified version of the

OTTER (McCune, 1994) logic prover that has been

adapted for natural language processing. The prover

requires a list of clauses called the “set of support”

which is used to initiate the search for inferences.

The set of support is loaded with the negated form

of the hypothesis as well as the predicates that make

up the text passage. A second list, called the usable
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list, contains clauses used by OTTER to generate in-

ferences. In our system the usable list consists of

all the axioms that have been generated either auto-

matically or by hand. Axioms in our system are uti-

lized to provide external world knowledge, knowl-

edge of syntactic equivalence between logic form

predicates, and lexical knowledge in the form of lex-

ical chains.

2.2.1 World Knowledge Axioms

We incorporate a small common-sense knowledge

base of 310 world knowledge axioms, where 80

have been manually designed based on the devel-

opment set data, and 230 originate from previous

projects. Currently, this data set is too small to have

a significant impact, but in combination with Lexical

Chains, the coverage of these axioms will grow.

2.2.2 NLP Axioms

Our NLP Axioms are linguistic rewriting rules

that help break down complex logic structures and

express syntactic equivalence. These axioms are au-

tomatically generated by the system through logic

form and parse tree analysis. Axioms are generated

to break down complex nominals and coordinating

conjunctions into their components so that other ax-

ioms can be applied to the components individually

to generate a larger set of inferences. Other axioms

help us: (1) establish equivalence between prepo-

sitions, (2) establish equivalence between different

parts of speech, (3) equate words that have multi-

ple noun forms, and (4) equate substantives within

appositions.

2.2.3 WordNet Lexical Chains

WordNet provides links between synsets. Each

synset has a set of corresponding predicates for each

word in the synonym set. The name of a predicate

is formed by synonym word form, its part of speech,

and WordNet sense. A predicate can have one or

more arguments. The predicates corresponding to

noun synsets usually have a single argument and the

predicates corresponding to verb synsets have three

arguments: event, subject, and object arguments.

A lexical chain is a chain of relations between two

synsets. For each relation in the chain, the system

generates an axiom using the predicates correspond-

ing to the synsets in the relation. The axiom states

that the predicate from the first synset implies the

predicate from the second. For example, there is an

ENTAILMENT relation between the verbs buy and

pay. The system generates the following axiom for

this relation:

buy VB 1(e1,x1,x2) � pay VB 1(e1,x1,x3)

These axioms help the logic prover infer target

concepts from starting concepts when lexical chains

are found between the two. Not all WordNet rela-

tions are used for generating axioms. The following

three classes of relations are used: pure WordNet re-

lations, relations created from WordNet derivational

morphology, and relations extracted from Word-

Net glosses. A detailed description of the system

as a whole can be found in (Novischi, 2005) and

(Moldovan and Novischi, 2002).

2.3 Logic Prover

Once the set of support and usable lists are complete,

the logic prover can begin searching for proofs. The

clauses in the set of support list are weighted in the

order in which they should be chosen to participate

in the search. The negated hypothesis is assigned

the largest weight to ensure that it will be the last

clause to participate in the search. The logic prover

removes the clause with the smallest weight from the

set of support, and searches the usable list for new

inferences that can be made. Any inferences that

are produced are assigned an appropriate weight de-

pending on what axiom they were derived from and

appended to the set of support list. The logic prover

continues in this fashion until the set of support list is

empty. If a refutation is found, then the proof is com-

plete. If a refutation cannot be found, then predicate

arguments are relaxed. If argument relaxation fails

to produce a refutation, predicates are dropped from

the negated hypothesis until a refutation is found.

Once a proof by refutation is found, a score for that

proof is calculated by starting with an initial perfect

score and deducting points for axioms that are uti-

lized in the proof, arguments that are relaxed, and

predicates that are dropped.

2.4 Scoring

The score generated by the logic prover is only a

measure of the kinds of axioms used in the proof and

the significance of the dropped arguments and pred-

icates. T-H pairs with longer sentences can poten-
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tially drop more predicates, resulting in lower prover

scores. Scores are normalized by first calculating

the maximum penalty that can be assessed to a pair

by dropping all of the hypothesis’ predicates. The

penalty assessed by the logic prover is then divided

by the maximum drop penalty to determine the nor-

malized score.

Due to the logic prover’s relaxation techniques, it

is always successful in producing a proof. The de-

termination of whether entailment exists is made by

examining the penalties assessed by the logic prover

in the process of generating the proof. As more ax-

ioms are utilized and more predicates are dropped,

it becomes much less likely that entailment exists

between a pair. All normalized prover scores that

fall below a specified threshold are considered false

entailment and all scores that are above the thresh-

old are considered true entailment. An appropriate

threshold is calculated by examining the scoring out-

put of the development data set to determine what

threshold produces the highest accuracy.

The confidence score for a T-H pair in our system

is measured as the distance between the normalized

score and the threshold. Normalized scores that are

further from the threshold will have a higher confi-

dence score than normalized scores that are closer

to the threshold. The difference between the nor-

malized score and the threshold itself is normalized

such that the resulting confidence score is a value

between zero and one.

3 Performance Evaluation

Our results for the challenge are summarized in Ta-

ble 1. As evidenced by these results, our system per-

forms significantly better on T-H pairs in the compa-

rable documents task. Due to the way T-H pairs are

chosen in this task, there is often little to no infor-

mation in the text of false pairs that could help us

logically infer the hypothesis. This inferencing in-

ability causes the logic prover to drop a large num-

ber of predicates and return extremely low scores for

the false entailment pairs. The large difference be-

tween the true and false entailment scores allows us

to easily separate the pairs.

The average scores for true and false entailment

varied significantly over all of the tasks. This large

variance makes it extremely difficult to choose a sin-

Task Accuracy CWS F-measure

test-IR .478 .386 .472

test-CD .780 .822 .736

test-RC .514 .534 .558

test-QA .485 .434 .481

test-IE .483 .580 .603

test-MT .542 .440 .444

test-PP .450 .450 .585

test-all .551 .560 .561

dev-all .630 .639 .619

Table 1: Results for the test and development sets.

gle threshold that can be used to detect entailment

for all of the tasks. By selecting thresholds specific

to each task, we were able to increase the test set’s

accuracy to .562. This accuracy is still considerably

lower than the accuracy we received on the develop-

ment set from which the thresholds were chosen.

The numerous disagreements we had amongst

ourselves and with the “Gold Standard” annotations

leads us to believe to that the only appropriate way

to calculate an upper bound for this task is to utilize

the Kappa agreement metric. However, without a

large set of different human annotations for the data

set, it is impossible to calculate this metric.

Before evaluating the T-H pairs in the test set with

our system, we manually determined how difficult it

is to prove entailment in each of the true entailment

T-H pairs. We established five different difficulty

levels: easy, moderate, difficult, intractable, and in-

valid. Proofs are considered easy in cases where the

entailment is simply a matter of eliminating infor-

mation from the first sentence, recognizing an appo-

sition or replacing one or two words with synonyms.

Consider the following example:

Text: A Union Pacific freight train hit five people.

Hypothesis: A Union Pacific freight train struck five

people.

Lexical Chain: hit VB � strike VB

Proofs are considered moderate when one or more

inference rules are needed to derive the second sen-

tence of the entailment pair from the first one. Con-

sider the following example:

Text: Satomi Mitarai died of blood loss.

Hypothesis: Satomi Mitarai bled to death.

World Knowledge Axiom: die VB(e1,x1,x2) &
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of IN(e1,x2) & nn NNC(x2,x3,x4) & blood NN(x3)

& loss NN(x4) � bleed VB(e2,x1,x5) & to TO(e1,

x5) & death NN(x5)

The expectation is that all entailment pairs that

have been deemed easy or moderate can be han-

dled by our current system implementation. Dif-

ficult proofs are those that cannot be handled by

our theorem prover without adding substantial new

functionality (coreference resolution, predicate vari-

ables in rules, etc.) or without using ad hoc rules

(those not applicable beyond the case which moti-

vates them). The following example requires very

specific axioms and coreference resolution:

Text: Israeli Prime Minister Ariel Sharon threat-

ened to dismiss Cabinet ministers who don’t support

his plan to withdraw from the Gaza Strip.

Hypothesis: Israeli Prime Minister Ariel Sharon

threatened to fire cabinet opponents of his Gaza

withdrawal plan.

We have labeled T-H pairs as intractable if we be-

lieve that entailment could not be correctly detected

by an automated system. Invalid is used to indicate

that, in our opinion, an entailment pair which was

labeled TRUE should have been labeled FALSE . In

the following pair the text does not imply that Silvio

Berlusconi is Prime Minister of Italy, only that he is

a prime minister with a mandate to reform Italy.

Text: Prime Minister Silvio Berlusconi was elected

March 28 with a mandate to reform Italy’s business

regulations and pull the economy out of recession.

Hypothesis: The Italian Prime Minister is Silvio

Berlusconi.

The system’s performance on the T-H pairs clas-

sified as easy or moderate is significantly better than

its performance on other pairs as illustrated in Table

2. Since many of the T-H pairs with the moderate

classification require some external world knowl-

edge, we suspect that with a larger knowledge base,

the accuracy of the T-H pairs classified as moderate

would be significantly higher.

It may be possible to build a classifier to deter-

mine the inference difficulty and only return results

for pairs it deems to be easy or moderate. The main

difficulty with such an approach is that it is hard to

classify the difficulty of an inference without know-

ing whether the inference is true or false. We suspect

that a difficulty classifier would have trouble distin-

Difficulty Pairs Accuracy CWS

easy 81 .852 .892

moderate 122 .582 .610

difficult 126 .444 .413

intractable 1 1.000 1.000

invalid 70 .457 .501

Table 2: Results for the true entailment pairs catego-

rized by proof difficulty

guishing difficult true entailments from easy false

entailments, and vice versa.

4 Conclusion

We participated in the RTE challenge mainly as a

learning experience and a test of our existing logic

prover system implemented in a new way. Adding

semantic relations to the logic form provided deeper

semantic connectivity between concepts. This made

it possible to write more abstract (more generally-

applicable) world knowledge axioms. WordNet lex-

ical chains helped to connect related concepts that

used different words or different forms of the same

word. And finally, based on linguistic patterns, the

NLP axioms helped to link concepts that would oth-

erwise not be connected in the logic form transfor-

mation.
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Abstract

We describe our participation in the

PASCAL-2005 Recognizing Textual En-

tailment Challenge. Our method is based

on calculating “directed” sentence simi-

larity: checking the directed “semantic”

word overlap between the text and the hy-

pothesis. We use frequency-based term

weighting in combination with two differ-

ent lexical similarity measures. Our best

run shows 0.55 accuracy on the test data,

although the difference between our two

runs is not significant. We found remark-

ably different optimal threshold values for

the development and test data. We argue

that, in addition to accuracy, precision and

recall are valuable measures to consider

for textual entailment.

1 Introduction

Recognizing Textual Entailment Challenge, orga-

nized within the PASCAL network, is a task where

systems are required to detect semantic entailment

between pairs of natural language sentences. For

example, the sentence The memorandum noted the

United Nations estimated that 2.5 million to 3.5 mil-

lion people died of AIDS last year is considered to

logically entail the sentence Over 2 million people

died of AIDS last year.

The organizers of the entailment challenge pro-

vided participants with development and test cor-

pora, with 567 and 800 sentence pairs, respectively,

manually annotated for logical entailment.

In this paper we describe a simple system based

on lexical similarity, with two different word simi-

larity measures. We also present our official results

and a deeper analysis of the system’s performance.

2 System Description

For every text/hypothesis pair (T,H), we consider

each sentence a bag of words and calculate directed

sentence similarity score. To check for entailment,

we compare the score against a threshold. This

method is implemented as shown in the pseudo-

algorithm below.

let T = (T1, T2, . . . , Tn)
let H = (H1,H2, . . . ,Hm)
let totalSim = 0
let totalWeight = 0
for j = 1 . . . m do

let maxSim = maxi wordsim(Ti,Hj)
if maxSim = 0 then maxSim = −1
totalSim += maxSim ∗ weight(Hj)
totalWeight += weight(Hj)

end for

let sim = totalSim/totalWeight

if sim ≥ threshold then return TRUE

return FALSE

Essentially, for every word in the hypothesis we find

the most similar word in the text according to the

measure wordsim(w1, w2). If such a similar word

exists (maxSim is non-zero), we add the weighted

similarity value to the total similarity score. Other-

wise, we subtract the weight of the word, penalizing

words in the hypothesis without matching words in

the text.
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The threshold for the final entailment check-

ing is selected using the development corpus of

text/hypothesis pairs. The confidence of a system’s

decision is determined by looking at the distance be-

tween the similarity value and the threshold. For ex-

ample, for positive decisions (sim ≥ threshold):

confidence =
sim − threshold

1 − threshold
.

The algorithm is parametrized with two functions:

• weight(w): importance of the word for the sim-

ilarity identification;

• wordsim(w1, w2): similarity between two

words, with range [0, 1].

2.1 Weighting words

The weighting of words with respect to importance

is based on core intuitions from research in Informa-

tion Retrieval, where Inverse Document Frequency

(IDF) is often used as a measure of term importance.

Recently, IDF was used for the light-weight entail-

ment checking in (Monz and de Rijke, 2001). For

our experiments we used normalized inverse collec-

tion frequency of words, calculated on a big collec-

tion of newspaper texts. For a word w:

ICF(w) =
# occurences of w

# occurences of all words
,

and

weight(w) = 1 −
ICF(w) − ICFmin

ICFmax − ICFmin

.

The minimum and maximum of the inverse frequen-

cies (ICFmin and ICFmax) are used to normalize

weights between 0 and 1.

2.2 Word similarity measures

We experimented with two similarity measures:

Dekang Lin’s dependency-based word similar-

ity (Lin, 1998) and the measure based on lexical

chains in WordNet (Hirst and St-Onge, 1998). For

both measures, words were first converted to lem-

mas.

3 Results

We submitted two runs that differ in the word sim-

ilarity measures they use: sim-lin and sim-wn. The

table below summarizes the results on the test and

development corpora: accuracy (A), confidence-

weighted score (CWS), and also precision (P) and

recall (R) for the entailment identification.

Run A CWS P R

Test corpus:

sim-lin 55.3 55.9 53.7 75.5

sim-wn 53.6 55.3 53.4 56.5

Development corpus:

sim-lin 61.0 64.9 57.6 81.8

sim-wn 63.4 67.4 61.6 70.6

For our two official runs, sim-lin performed signifi-

cantly better than random at the 0.01 level, and sim-

wn better than random at the 0.05 level.

4 Discussion

The evaluation scores are better on the development

corpus than on the test corpus. This is expected

since the thresholds were selected on the develop-

ment corpus. However, a more detailed analysis

shows that the differences between the evaluations

on the test and development data are not only due

to the choice of thresholds. Figure 1 shows how the

performance of the system changes when the thresh-

olds are changed from 0.1 to 0.9. We give evaluation

results for both our methods and also for a simple

baseline that only considers lexical overlap, without

WordNet and frequency information.

Surprisingly, the performance of the system on

the test corpus (thick lines) is substantially worse

than on the development corpus even if optimal sim-

ilarity thresholds are taken. It is not clear whether

this is due to the test corpus being more “difficult,”

or our system overfits the development corpus in

ways other than threshold selection.

Another important observation is that the opti-

mal threshold values differ substantially for different

corpora: 0.20–0.4 for the test corpus and 0.6–0.7 for

the development corpus. Moreover, whereas the dif-

ference between the two similarity measures seems

substantial on the development corpus, they perform

very similarly on the test corpus. For these reasons,

we find it impossible to tell which of the measures is



75

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

s
im

-l
in

 t
h

=
0

.5

s
im

-w
n

 t
h

=
0

.5

s
im

-l
in

 t
h

=
0

.5

s
im

-w
n

 t
h

=
0

.5

s
im

-l
in

 t
h

=
0

.5

s
im

-w
n

 t
h

=
0

.5

s
im

-l
in

 t
h

=
0

.5

s
im

-w
n

 t
h

=
0

.5

s
im

-l
in

 t
h

=
0

.5

s
im

-w
n

 t
h

=
0

.5

sim-lin on test corpus
sim-wn on test corpus

baseline on test corpus
sim-lin on devel. corpus
sim-wn on devel.corpus

significance boundary (0.01)

Figure 1: Performance of similarity measures with different thresholds. Thick lines show the performance

on the test corpus. The thresholds optimal for the development corpus are clearly not optimal for the test

corpus.

better for the task, and how to select thresholds in a

robust way.

We also compared the performance of our entail-

ment checking system on different subtasks, corre-

sponding to different sources of the entailment pairs.

The table below shows the accuracy, precision and

recall for the sim-lin run for all subtasks.1

Subtask A P R

CD 84.7 74.7 93.3

IE 55.0 95.0 52.8

MT 46.7 63.3 47.5

QA 42.3 53.9 43.8

RC 49.3 88.6 49.6

PP 42.0 80.0 45.5

IR 53.3 75.6 52.3

Overall 55.3 75.5 53.7

1Recall that the identifiers for the substasks have the fol-
lowing readings: comparable documents (CD), reading com-
prehension (RC), question answering (QA), information extrac-
tion (IE), machine translation (MT), and paraphrase acquisition
(PP).

From the table it is clear that the overall accuracy of

the system is relatively high only due to the reson-

able performance on the CD subtask. This particu-

lar subtask appears to be quite easy for our system,

whereas on other tasks the performance is close to

(or worse than) that of the random guessing. Manual

examination of the entailment candidate pairs from

the CD subtask shows that the pairs usually have

many words in common:

T: Voting for a new European Parliament was

clouded by concerns over apathy.

H: Voting for a new European Parliament has been

clouded by apathy.

Entailment: TRUE, Similarity: 0.88

T: A small bronze bust of Spencer Tracy sold for

$174,000.

H: A small bronze bust of Spencer Tracy made

$180,447.

Entailment: FALSE, Similarity: 0.44
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In the second example the similarity is substantially

lower since numbers (which occur relatively rarely

in our newspaper collection, and thus get higher

weight) are different. We have not checked whether

a simple word overlap baseline would give a reason-

able performance for the CD subtask.

Note that we give precision (P) and recall (R)

scores as well as accuracy. We believe that P and

R help us to better understand the behavior of our

algorithms in ways that accuracy does not. For in-

stance, for all subtasks, except CD, precision is sub-

stantially higher than recall. This can be explained

by the fact that our lexical similarity resources are

far from complete and we are not trying to detect

various complex types of paraphrasing (e.g., syntac-

tic). Our method seems very cautious: it prefers to

reject the entailment if it cannot find simple lexical

evidence to support it. Although, in principle, we

can tune the precision/recall balance by varying the

thresholds, the experimental results on which we re-

port in this note show that the thresholds are very

corpus-specific and thus can hardly be used for this

tuning.

5 Conclusions

We described our participation in the PASCAL-2005

Recognizing Textual Entailment Challenge, with a

simple sentence similarity-based system that uses

two different word similarity measures. Although

both our runs show significant improvement over

random guessing, the improvement is based only on

one subtask (CD). We found that the system cannot

be further tuned without overfitting, which suggests

that other, deeper text features need to be explored.
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