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Electrophoresis of a solute through a column in which its transport is governed by the 
convection - diffusion equation is described. Approximate solutions to the 
convection - difision equation in the limit of small diffusion are developed using per- 
turbation methods. The difision coeficient and velocity are assumed to be functions of 
space and time such that both undergo a sudden change from one constant value to 
another within a thin transition zone that itself translates with a constant velocity. Two 
cases are considered: (1) the thickness of the transition zone is negligible compared 
to the diffusional length scale, so the zone may be treated as a singular boundary across 
which the diffusion constant and velocity suffer discontinuous changes; (2) the transi- 
tion zone is considerably wider than the difisional length scale, so the difision coefi- 
cient and velocity, although sharply varying, are smooth functions of position and time. 
A systematic perturbation expansion of the concentration distribution is presented for 
case 1 in terms of the small parameter E = l/Pe. A lowest order approximation is given 
for case 2. A suitably configured system analyzed here can lead to progressive accumu- 
lation, or focusing, of the transported solute. The degree of focusing in case 1 scales 
with E - ’, whereas in case 2 it scales with ( E ~ E ) - ’ ~ ,  and thus increases much more 
weakly with increasing Pe. A separation based on this concept requires development of 
materials and devices that allow dynamic tuning of the mass-transport properties of a 
medium. This would make it possible to achieve progressive focusing and separation of 
solutes, such as proteins and DNA fragments, in electrophoretic media with an unprece- 
dented degree of control. 

Introduction 
Internal boundaries 

Convective-diffusive mass transport is central to many 
problems in physics, chemistry, and engineering (van Kam- 
pen, 1981; Gardiner, 1983), and it is of particular importance 
to separation processes such as electrophoresis (Masoliver 
and Weiss, 1996). Analytical solutions to the governing equa- 
tions are well established for many specific geometries and 
boundary conditions (e.g., Brenner, 1962; Novy et al., 1990), 
provided that the diffusion coefficient and velocity are con- 
stant in space and time. Variable transport coefficients 
introduce considerable complexity in the treatment of con- 
vective-diffusive transport, but progress has been made. In 
particular, several groups (Ramkrishna and Amundson, 1974; 
Locke and Arce, 1993; Locke et al., 1993; Vaidya et al., 1996a) 
have developed analytical solutions in cases where the trans- 
port properties are piecewise constant. Such systems are 
found in many practical situations (e.g., electrophoretic trans- 

port through a multilayer composite membrane), and inter- 
esting features arise in their transport behavior. The key fea- 
ture of these systems is the presence of an internal boundary, 
or “front,” at which the transport properties change abruptly. 
The existing studies of convective-diffusive transport in the 
presence of a front are limited to systems in which the front 
(or fronts) is (1) static, that is, the location of the front does 
not change as the transport proceeds; and (2) singular, that 
is, the transport properties change discontinuously. In this 
article we relax these restrictions, and in doing so are able to 
demonstrate and analyze several new qualitative effects. 

Small dimsion 
It is common in many electrophoretic applications to find 

that the contribution to the solute flux due to diffusion is 

63 1 AIChE Journal March 1997 Vol. 43, No. 3 



very small in comparison with that due to convection. The 
importance of convection relative to diffusion is quantified by 
the PCclet number 

EL 
D 

P e = = ,  (1) 

where L, E ,  are characteristic values of the length scale, 
electrophoretic velocity, and diffusion coefficient, respec- 
tively. The Ptclet number for electrophoretic flow through a 
porous matrix is typically of order lo5. For example (Locke 
and Carbonell, 19891, using the data for ferritin undergoing 
electrophoresis through BioGel A-5 in a column of length 10 
cm, with mobility of 8.3 X cm9V s, and diffusion coeffi- 
cient of 3.5x low7  cmys in response to an applied electric 
field of about 60 V/cm, the PCclet number is 

(8.3 X lo-' X60)(10) 
Pe = = 1.4x lo5. ( 2 )  

3.5 x 10-7 

For smaller molecules, the mobility would be higher, but so 
would the diffusion coefficient, and we expect that the same 
order of magnitude of Pe would be maintained. 

Purely numerical methods suffer in this regime-finite dif- 
ference techniques require extremely fine meshes (of size 
< 1/Pe) for accurate determination of the concentration pro- 
file near an interface; stability of such schemes then demands 
very small time steps. Thus, to obtain accurate results ex- 
tremely large computation times are required. Even if an ex- 
act solution is available, it can be very difficult to implement 
in the large-Pe regime because of terms that depend expo- 
nentially on Pe (in fact, implementation can become prob- 
lematic for Pe as small as 100-see, e.g., Vaidya et al., 1996a). 
Nevertheless, these otherwise intractable transport problems 
can be made amenable to treatment by exploiting the dispar- 
ity between the transport mechanisms. The most effective ap- 
proaches take the form of asymptotic solutions that become 
valid in the limit Pe -+m. 

Asymptotic treatments are elementary for the case of con- 
stant transport coefficients. The corresponding case where the 
diffusion coefficient and/or velocity are functions of position 
only has been extensively studied by Gitterman and Weiss 
(Gitterman and Weiss, 1993, 1994; Weiss and Gitterman, 
1995). However, their methods are restricted to transport in 
the absence of fronts. The case of convection-dominated 
transport in the presence of a stationary singular front was 
recently addressed by the authors (Vaidya et al., 1996a). A 
systematic expansion in E = 1/Pe for the concentration distri- 
bution on either side of the boundary was developed and was 
found to be in excellent agreement with numerical results for 
Pe > 200. A point to be noted is that although diffusion is 
small away from the singular surface, it plays a key role within 
a boundary layer in satisfying the requirement of continuity 
of flux across the singular surface at all times. 

Moving fronts 
Large-Pe applications are particularly interesting when one 

examines moving fronts. To show why, we first review large-Pe 
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Figure 1. Increase in concentration of solute within the 
boundary layer on migrating from a fast into a 
slow domain across a stationary front. 
The dashed curve is the initial distribution, and the solid 
curve is the distribution at a subsequent time. The vertical 
line represents the front. 

transport through a stationary front (Vaidya et al., 1996a). 
Illustrated in Figure 1 are concentration profiles for a solute 
undergoing convection-diffusion across a stationary, singular 
front into a domain where its velocity (and diffusivity) de- 
creases. Near the interface the concentration profile devel- 
ops a sharp rise to maintain continuity of flux at the front. 
For a fixed interface this increase in concentration is re- 
stricted to the short period during which the solute distribu- 
tion passes through the front. Thereafter, the solute peak 
spreads out by diffusion. 

Now consider a column containing an electrophoretic 
medium that is dynamic and tunable in the sense that the 
transition zone between the domains can be made to move at 
any prescribed velocity. In such a medium the solute can be 
made to experience the presence of the interface for a longer 
period, thereby leading to a progressive concentration in- 
crease at the front. Taking the velocity upstream of the front 
as u' and that downstream as uI1 (u'  > u"),  three possibili- 
ties arise for the choice of the velocity of the front uf: (a> 
uf < u'' < u ' ,  ( b )  u" < u' < uf; and (c) u" < of < u ' .  Figure 2 
illustrates the velocity vectors relative to the moving front for 
these three cases. Case (a) is similar in qualitative behavior to 
the stationary front (corresponding to the special case uf = 01, 
and therefore suffers from the same limitation of a short time 
of interaction between the solute and the front. The same is 
true of case (b). In case (c) there is incoming flux at the inter- 
face from both upstream and downstream domains. In the 
absence of substantial diffusion, mass conservation would re- 
quire that the concentration continually increase within a thin 
layer at the interface. Eventually, the entire solute Content 
would be trapped within the boundary layer, and would elute 
in a very sharp peak as the front reaches the exit. Ultimately, 
however, diffusion becomes important enough to limit this 
progression, and a steady state is reached. A key quantity at 
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+ denotes solute motion relative to front 
Figure 2. Principle of dynamic separations using a 

moving front. 
When the front moves with a velocity that is intermediate to 
the upstream (high) and the downstream (low) values, there 
is progressive accumulation of the solute at the moving 
boundary. 

the steady state is the characteristic width S of the concen- 
tration distribution. This quantity describes the extent to 
which the peak can be focused by the moving front. 

One might conceive of several types of materials that would 
be candidates for a tunable medium. Liquid crystals (LCs), 
for example, are composed of molecules that tend to align 
spontaneously, forming phases that display anisotropic trans- 
port properties. Moreover, on the application of an external 
field such as a voltage gradient, the molecules switch their 
direction of alignment to one that is parallel to that of the 
applied field (de Gennes and Prost, 1993). An externally con- 
trolled front can be created with such materials as follows 
(see Figure 3). Imagine a horizontal capillary filled with a 
liquid crystalline material such that the spontaneous molecu- 
lar alignment is parallel to the longitudinal axis of the tube. 
The capillary is lined along its outer surface with a number of 
electrodes that can create a transverse voltage gradient within 
the column. If the electrodes along the right half of the col- 
umn were switched on while those on the other half were 
kept off, the molecules in the right half would align perpen- 
dicular to the capillary axis, whereas those on the left half 
would continue to remain parallel to the axis, thus creating a 
front halfway through the column. By controlling which elec- 
trodes go off and which remain on over a period of time, the 
location of the front could be externally controlled. Alterna- 
tively, one might consider materials that respond to other 
types of external stimuli, such as magnetic fields or light. For 
example, Ikeda and Tsutsumi (1995) have recently reported 
azobenzene-based polymeric liquid crystals that switch be- 
tween an isotropic and a molecularly ordered phase when 
subjected to a laser pulse with a response time of 200 ps. 
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Figure 3. Hypothetical tunable electrophoretic device 
using liquid crystal polymer. 
In addition to the axial DC electric field, the column con- 
tains a series of transverse electrode pairs (TEPs). The poly- 
mer side chains orient themselves along the axis of the col- 
umn in the absence of a transverse field, but switch to a 
perpendicular orientation when the TEPs are turned on. 
Initially, all the TEPs are turned off. A front can be created 
at a desired location by turning on all the TEPs downstream 
of that location. The front can be moved downstream (up- 
stream) by turning the nearest downstream (upstream) TEP 
off (on). 

The specific purpose of this study is to derive a perturba- 
tion approximation for the problem of a front that moves with 
a velocity intermediate between the solute velocities in the 
upstream and downstream domains (case c). Real materials 
generally do not exhibit a discontinuous change in transport 
properties; rather, these properties vary continuously over a 
small but finite length scale erL. We therefore consider both 
the case of a discontinuous transition and the case of a smooth 
variation between upstream and downstream values of D 
and u. 

Mathematical Formulation 
Transport equations and boundary conditions 

The general equation governing one-dimensional convec- 
tive-diffusive transport of a solute present at dilute concen- 
trations through an electrophoretic column is 

( 3 )  

where c denotes the concentration of solute, x denotes the 
axial coordinate measured relative to a space-fixed origin, and 
t denotes time. We will use superscript i = I for the left (up- 
stream) region ( x  < Lf), where D = D' and u = u l ,  and i = I1 
for the righthand (downstream) domain (Lf < x) ,  where D = 
D" and u = u". The line of demarcation between the up- 
stream and downstream domains-the front-moves with a 
uniform velocity uf. Thus the location of the front at any 
time t is given by 
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Figure 4. Finite-width front of width 2 q L .  
The vertical line defines the "front" and the horizontal linc 
denotes its velocity. The upward arrows indicate a positive 
value, while the downward arrows indicate a negativc value 
for the velocity of the solute relative to the front. 

where Lfi ,  is the initial position of the front. The case of a 
stationary front (Locke and Arce, 1993; Locke et al., 1993; 
Vaidya et al., 1996a) is recovered by setting uJ = 0. 

The "location" of a singular front is unambiguous, and the 
definition of Lj is therefore clear in this case. For the case 
of a continuous transition, it is appropriate to locate LJ  at 
the midpoint of the transition zone as shown in Figure 4. If 
the velocity of the front is chosen as the arithmetic mean 
between the upstream and downstream values, this location 
also corresponds to the point where the velocity of the solute 
relative to the front vanishes. This is not true, however, for 
any other choice of uJ. 

D ( x , t ) =  D D : I  , 

We will bc working with the small parameter E = 1/Pe, and 
we introduce the coordinate x - L,(t) giving position relative 
to the moving front. We then cast Eqs. 3-7 in the dimension- 
less form 

where 

GL 1 
P e = = ,  € = -  

D Pe ' 

The quantities and ij represent characteristic values for 
the diffusivity and velocity, respectively (e.g., D = D' ,  and G 
= 0'). Also, 

Modeling of the finite-width front 

the solute diffusivity as a function of position and time 

= - tf0 - w p  and t2 = 1 - tJ,] - O j T .  

The front is represented by the following specification of 

x < L J ( t ) -  EfL, 

x > L J ( t ) +  EfL, (13) 

We assume that at time t = 0 the column contains a pre- 
scribed initial distribution of the solute F(x) .  At all positive 
times, there is no solute flux entering the column from up- 
stream. The section of the column beyond x = L is both infi- 
nite in length and well-mixed, so that Danckwerts' boundary 
conditions hold (Danckwerts, 1953; Brenner, 1962; Novy et 
al., 1990). Therefore, 

t > 0 ,  (6) 

Note that D' and D" can be interpreted as the diagonal 
components of the diffusivity tensor with respect to a coordi- 
nate system fixed with an LC particle. The dependence of the 
axial component of the diffusivity tensor on the orientation 
angle 8 follows from the coordinate transformation associ- 
ated with the rotation of the particle (cf. de Gennes and Prost, 
1993). The preceding equation is exact for monomeric LC 
materials where O(x,t) refers to the average orientation of 
the LC molecules with respect to the axis of the column. The 
expression is a qualitative description for a polymeric medium 
where O ( x , t )  refers to the average orientation of the side 
chains. The value 8 = 0 describes the upstream mode, while 
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0 = rr/2 refers to the downstream mode. The variation of ve- 
locity is given by an analogous formula with u1  and u" as the 
upstream and downstream values, respectively. The orienta- 
tion distribution in the transition zone is approximated by the 
arbitrary but reasonable functional form 

(14) 

where 17 is given by 

which ensures that the solute diffusivity within the transition 
zone reaches its upstream and downstream values with zero 
slope. This smoothness condition at the beginning and end of 
the transition zone is imposed to maintain stability of the nu- 
merical scheme used in evahating the exact solution. Note 
that any other sigmoidal variation satisfying the zero slope 
condition could also be used. The effect of assuming the 
drastically simpler linear transition zone is discussed later in 
the article. Recasting the diffusivity variation in nondimen- 
sional variables defined in Eq. 12, we see that the dimension- 
less solute diffusivity varies as 

(16) 

where O(5) is given by Eq. 14 with q rewritten as 

(17) 

The velocity variation p ( 5 )  is given by an analogous equa- 
tion. Thus the transition zone stretches from 6 = - Ef to 5 = 
E f .  

Modified formulation for a singular front 
The boundary layer in the solute concentration is not nec- 

essarily confined to the front per se. For E~ << E the bound- 
ary layer will spill over into the region where the transport 
properties are constant. It is shown in the next section that 
when << E ,  the steady-state thickness is given by 6 = E and 
thus is independent of the actual width of the front. The fi- 
nite width of the transition zone can therefore be neglected, 
and the variation of transport parameters can be treated as a 
discontinuity. The governing equations are written in terms 
of upstream and downstream concentration fields (c' and c", 
respectively). The transport equation (Eq. 8) becomes 

and the boundary conditions at the entrance and exit of the 
column can be written as 

In addition, we need to impose two auxiliary conditions ex- 
pressing local equilibrium and continuity of flux at the front, 
namely 

Details of the reduction of Eqs. 8-11 to 18-22 are provided 
in the Appendix. 

Steady-State Width of Concentration Profile 
Perturbation methods proceed by recognizing the differ- 

ence between the correct dynamical length scales in regions 
near and far away from a boundary (cf. van Dyke, 1975). In 
the present problem, there is a nontrivial steady state brought 
about by the balance between convection and diffusion near 
the front. The correct dynamical length scale near the front 
is therefore the width of the concentration profile at the 
steady state. Let 6 denote the appropriate dynamical length 
scale necessary to achieve the balance between convection 
and diffusion. Since for large Pe the solute accumulates 
tightly about the center of the front, the spatial variation of 
its diffusivity and relative velocity can be approximated by 
linear forms 

where b0 is the value of the diffusiyity at 5 = 0, b is the 
gradient of the relative velocity, and b the gradient of diffu- 
sivity at that point. Note that b is of order 1/eJ and can be 
writte? as where pA is a number of order unity. Like- 
wise, b may be represented as + / E ~ ,  where is a number 
of order unity. For the specific sigmoidal variation assumed 
in Eqs. 16 and 17, we have 

Since concentration variation near the front is expected to 
occur over the new characteristic length scale 6 ,  we intro- 
duce a stretched coordinate 5 = (/a. The steady-state equa- 
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tion written in terms of the stretched coordinate becomes at 
lowest order. 

(27) 

where cs( 5) denotes the steady-state concentration profile. 
As will become clear in the following subsections, the magni- 
tude of the length scale 6 depends on the relative values of 
the two small parameters involved, viz., E and Er. Two limit- 
ing cases are (1) a singular front, for which er <( E ,  and (2) a 
finite-width front, for which er >> E .  

Singular front 
In this case, there arise in turn two possibilities for the way 

the solute concentration may get distributed in the steady 
state: (i) the entire solute mass is contained in the transition 
zone, or (ii) the solute content spills and spreads outside the 
transition zone. 

Consider case (i), where the solute accumulates in the 
transition zone of thickness ( Er ). According to Eq. 27, in or- 
der that the convection term balance the diffusion term, the 
dynamical length scale must be 

6 = f i .  (28) 

However, since E B ef, this implies that 6 >> e f .  In other 
words, the solute does not accumulate entirely in the transi- 
tion zone. This is a contradiction to the premise of case (i) 
and must therefore be rejected. 

Now consider case (ii). By spilling outside the transition 
zone, the solute does not sample the velocity gradient and 
therefore experiences the constant upstream velocity. Hence 
the steady-state transport equation at lowest order can be 
written as 

pi dc, E d2c ,  
--=-+ 2. (29) S d<  a 2  Od[ 

This gives 

S = E ,  (30) 

which is much greater than er and is therefore consistent 
with the premise of case (ii). Therefore it is the correct choice 
for the steady-state thickness of the concentration boundary 
layer at a singular interface. 

Finite-width front 
For a finite-width interface, a similar analysis can be car- 

ried out bearing in mind that er >> e .  When the width of the 
transition zone is greater than the reciprocal of Pe, the sol- 
ute does indeed accumulate within the transition zone. The 
dynamical length 6 obtained from Eq. 28 is consistent with 
the previously mentioned. assumptions and is therefore the 
correct choice for this case. 

Concentration Profiles for a Singular front 
As noted in the previous section, the characteristic length 

scale over which concentration gradients occur near the front 
becomes independent of the actual thickness of the transition 
zone. The analysis therefore reduces to one in which there is 
only one small parameter (viz., E ) ,  and can therefore be for- 
mulated within the framework similar to that in Vaidya et al. 
(1996a). We thus proceed by dividing the domain of transport 
into two subdomains, depending on the relative importance 
of the diffusional term. In the following sections, we outline 
the methodology of deriving perturbation approximations to 
the concentration profile. Most algebraic details of derivation 
have been omitted here for conciseness but can be found in 
Vaidya (1996). 

Outer solution 
For large Pe, diffusional effects are negligible away from 

the interface. Here the solute never samples the gradient in 
p and 4, and its concentration never increases drastically. 
Hence in the outer region the solution may be expanded in a 
regular perturbation series 

We can express the given arbitrary initial distribution as 

The perturbation series for C ' , ~ ~ ~ ( [ , T )  is substituted in Eq. 
18, and on comparing zeroth- and first-order quantities on 
both sides of the equation, we obtain simplified partial differ- 
ential equations for successive terms. Each of these equa- 
tions is solved subject to the initial condition by equating each 
term of the series C ~ , " " ' ( & , T )  with its corresponding term in 
the series for f'( 5 ). 

Inner solution 
In the region near the interface, concentration changes are 

expected to occur over distances of order E .  To resolve this 
boundary-layer structure, we introduce the stretched coordi- 
nate 5 = t / ~ ,  in terms of which Eq. 18 becomes 

Note that, p' > 0 and plI < 0, and the resultant incoming 
convective flux from both upstream and downstream domains 
leads to successive accumulation of solute at the interface. In 
order for the area under the concentration curve (repre- 
senting the total mass of solute) to remain unchanged, the 
leading term of the inner solution must be of order e - ' .  
Therefore, the inner solution takes the form: 
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Collecting terms of order E - ~  and E', we obtain the succes- 
sive differential equations for each term in the inner expan- 
sion. The form of the inner expansion (Eq. 34) is substituted 
in the auxiliary conditions of fast equilibrium and continuity 
of flux expressed by Eqs. 21 and 22, and terms of like order 
in E are equated. The resultant set of equalities (two for each 
order of e )  provide the boundary conditions necessary to solve 
each of the successive partial differential equations for the 
inner expansion. 

The general solutions of the preceding equations, subject 
at most to the requirements of algebraic divergence as f + 
+m, are 

Here k ' ( ~ ) ,  mf(r), ni(7), pi(7),  qi(r), and ri(T) represent as 
yet unknown functions of time r ;  the single dot and double 
dots, respectively, denote the first and second derivatives with 
respect to the argument T ;  and vi  = ~ 7 4 ~ .  

Matching of inner and outer solutwns 
The perturbation analysis is completed by matching the 

outer and inner solutions to the left and right of the inter- 
face. Thus, in the dual limit as 6 + fa, and & + 0 we must 
have 

The inner expansion through first order in E varies as 

(40) 

valid near f = 0. Noting that f = @, and matching quanti- 
ties of like order in E in the preceding equation, we find that 

The remaining boundary conditions that determine the inner 
solution are furnished by the auxiliary conditions at the inter- 
face f = 0. Implementing the condition of rapid equilibrium 
term by term in E gives 

Continuity of flux for the leading-order term is automatically 
satisfied. The condition of continuity of flux for the zeroth- 
and first-order terms gives 

Simultaneous solutions to Eqs. 46-50 using Eqs. 41-45 yield 

P ( r )  = r"(O)+ [ - :; - - vlJ' 
in the limit 5 + f 00. This behavior is reproduced by the outer 
solution, c$"'" + EC?', as can be seen from its Taylor expan- 
sion 0 

X [ p ' ~ T c ~ ' ( O , s ) d s  - p1IJT ~~~7~" ' (0 , s )ds ] ,  (51) 
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Equation 49 is the equivalent of the jump mass balance 
condition for a singular interface when there is accumulation 
near the front in the presence of small diffusional effects. 
The terms r i ( T )  and d ( ~ )  represent the zeroth- and first- 
order concentration at the interface at a given instant in time 
T .  Hence, r'(0) and n'(0) are specified by the initial concen- 
tration distribution. 

Note that r ' ( ~ ) ,  which appears in the inner solution of or- 
der e - ' ,  cannot be evaluated until the outer solution is re- 
solved through zeroth ( e " )  order (see Eq. 49). Similarly, 
d(~), which appears in the inner solution for order e0 term, 
can only be determined after resolving the equations of first 
order. This is in contrast to the case for a stationary front 
(Vaidya et al., 1996a), where terms of a particular order in E 

are fully determined from outer and inner equations at the 
same order. For large PCclet numbers, it is adequate to trun- 
cate the inner expansion after terms of order e". Hence ex- 
plicit determination k i ( 7 )  has not been attempted and c;,'" 
has therefore not been evaluated in the present analysis. 

Conceniration projiks 
The outer concentration variation can be solved by the 

method of characteristics (Carrier and Pearson, 1976; Locke 
and Carbonell, 1989) to yield 

The inner solution is obtained by substitution of these ex- 
pressions for the outer solution into Eqs. 41-45 and Eqs. 
51-56. The complete concentration profile is obtained by 
evaluating the composite solution: 

where ci,ma'ch represents the limiting behavior of the concen- 
tration distribution in the transition from the inner to the 
outer region and is given by 

Concentration Profiles for a Finite-width Front 
The case of E << ef << 1 is considered next. In this case, the 

width of the steady-state concentration profile depends on 
both small parameters e and E,. The formulation of a sys- 
tematic perturbation expansion incorporating the two small 
parameters is problematic. In the present article, we restrict 
ourselves to deriving only the leading approximation to the 
concentration profile. This is not entirely unreasonable since, 
despite the square-root scaling of the steady-state width of 
the concentration profile with Pe, for the large values of Pe 
of interest the next correction term would be more than an 
order of magnitude smaller. In the case of a finite-width front, 
we must incorporate some detail about the transition zone, 
as it is no longer infinitesimally thin and its character does 
influence the evolution of the concentration profile. Never- 
theless, its thinness (compared to unity) does permit us to 
treat it in a simple fashion. Thus we ignore the fine detail of 
its structure (which is practically unknowable in real applica- 
tions anyway), and consider only the slope of the variation of 
the transport properties. 

We again must consider "outer" and "inner" solutions, but 
in the present context they will have unusual connotations. 
Essentially, the approximate solution can be derived by view- 
ing the solute transport process in terms of a succession of 
events enumerated below. We shall consider the general case 
in which the front is placed a fair distance ( > ef) away from 
the peak in the initial concentration distribution, so that the 
solute experiences the presence of the front only after catch- 
ing up to it over a finite time interval. Transport occurs as 
follows (see Figure 5): 

1. (Time interval defined as 0 < T < T ' . )  The initial concen- 
tration distribution evolves in the absence of diffusion. The 
concentration profile is convected to a point where it is par- 
tially or entirely within the width of the front. The negative 
gradient in the velocity within the front begins to narrow the 
concentration distribution. 

2. (Time interval defined as T~ < T < T".) Peak sharpening 
continues, causing diffusion to become increasingly impor- 
tant. The concentration profile is not entirely within the front, 
or is not sufficiently sharp to permit the front to be modeled 
by a linear variation in transport properties. 

< T <m.) The solute con- 
centration peak is now sufficiently sharp that diffusion is im- 
portant, and the velocity variation is well described by a lin- 
ear form. Focusing continues until diffusion balances convec- 
tion and a steady state is attained. 

In the following sections, step 1 is termed the outer solu- 
tion and step 3 the inner solution, while step 2 is the transi- 
tion. Thus the outer and inner solutions are divided not only 
on the basis of spatial proximity to the front but also in terms 
of the time intervals over which each describes the concen- 
tration profile. The inner and outer regions each exhibit sim- 
plifying features that make them amenable to analysis. The 

3. (Time interval defined as 
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Figure 5. Definition of the “outer” and “inner” region for 
a finite-width front, with the transition region 
in between. 

transition (step 2) does not. In this regime, the smallness of E 

is not useful because peak sharpening is making diffusion im- 
portant, while the smallness of ef is not yet helpful because 
the concentration profile is not sufficiently concentrated 
within the front. We treat step 2 as an extension of the outer 
solution. Our approach thus in principle shows errors in the 
concentration profiles at intermediate times. However, we are 
able to minimize these errors by proper selection of the tran- 
sition time between the inner and outer solutions. The treat- 
ment nevertheless yields the correct steady-state distribution, 
which is important for practical applications. 

Outer solution 

transport equation is reduced to 
To resolve the concentration profile at lowest order the 

(61) 

by neglecting diffusion. This equation is solved numerically 
by the method of characteristics. Note that if the front is lo- 
cated appreciably far away from the initial solute peak (say a 
distance > 2u0 + ef from the mean position for an initial 
Gaussian distribution of standard deviation uo), the solute 
experiences convection under a constant velocity p1 for a 
certain interval of time T ~ .  

Transition from outer to inner solution 

solute content is in the linear part of the velocity profile, 
Here sufficient time T! has evolved so that some of the 

and the magnitude of diffusion is still negligible in compari- 
son with convection. The subsequent evolution of concentra- 
tion is governed by the equation 

subject to the condition that 

where cpO( 5 , ~ ~ )  is the solution to Eq. 61 at T = T,. The evolu- 
tion of solute concentration in the linear regime is given by 

where 

For diffusion to be insignificant compared to convection, we 
must have 

from which it follows that 

(67) 

(68) 

This suggests a logarithmic time scale, and hence we intro- 
duce a modified time variable defined as 

(The significance of choosing a slightly different time scale of 
the form 

(70) 

where k is a real number not necessarily equal to 1, is ad- 
dressed in the “Results and Discussion” section.) Note that 
the interval T,, preceding the exponential rise in concentra- 
tion, has been subtracted in the modified time scale. 

We expect diffusion to be negligible for times T for which 
r (< 1. For time scales r much greater than unity, one needs 
to take into account the contribution of diffusion. This is ob- 
tained by evaluating the inner solution. 
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Inner solution 
In this region, concentration gradients occur over the much 

smaller length scale S = 6, so that diffusion can no longer 
be neglected. In addition to the new time scale r, we also 
introduce the stretched spatial coordinate, 5 = [/a. The con- 
centration distribution can then be empirically written as 

Additionally, the solute has piled up sufficiently close to the 
front, so that the velocity profile is effectively linear. The 
convection-diffusion equation (Eq. 8) for the leading-order 
term of the approximate solution can be rewritten as 

(79) 

Changing it to variables fixed with the moving front, we get 

Therefore the steady-state profile is a Gaussian distribution 
with standard deviation S / J . h  (or d m ) ,  and with the 
mean position located at the front. Note that this profile is 
independent of the initial distribution, depending only on the 
transport parameters, and is thus a characteristic of the sol- 
ute. This fact is relevant in utilizing the solute focusing ability 
of a moving front for separation of the components of a bi- 
nary mixture (Vaidya et al., 1996~). 

Concentration profiles 
Let the front be located at a point Lfo 

at time t = 0 downstream of the entire initial solute distribu- 
tion. We choose the upstream transport properties as the ref- 
erence values, that is, = D' and ij = u* ,  and define the fol- 
lowing variables 

where vA = (- / I ~ ) / + ~ .  This equation must be solved subject 
to the condition that Sigmoidal Front. 

(73) 

where +( [ , T , )  is the solution to Eq. 61 at time T = T, ,  which 
corresponds to the value 

c?,( i,ro) = +[ ~ ) J , ( I ' , ) I ,  

(Y = ( D~~D'), (81) 

All terms in Eq. 72 are of order unity. This equation can be 
therefore easily integrated numerically using a central differ- 
ence scheme. Alternatively, it can be cast in the form of the 
well-known equation of Orstein-Uhlenbeck describing mo- 
tion of a harmonically bound Brownian particle (Uhlenbeck 
and Orstein, 1930) after introducing the modified variables 

The solution to the resultant equation can be obtained by the 
method of Green's functions (see, e.g., Weiss and Gitterman, 
1995) as 

where 

Thus, the steady-state profile in terms of the modified vari- 
ables can be written as 

The parameter cy quantifies the anisotropy of the medium 
for the solute and the parameter Pf represents the dimen- 
sionless velocity of the front relative to the reference value. 
For the purpose of illustration, we can assume (Y to also de- 
note the ratio of solute velocity in the downstream domain to 
that in the upstream domain, that is, pi = # - Pf. Note that 
this assumption does not restrict the validity of the proposed 
mathematical formulation. In situations where ( u ' v u ' )  does 
not equal (D'YD') the velocity ratio has to be specified ex- 
plicitly, but the procedure for determining the concentration 
profiles is exactly as illustrated here. 

We know that the solute will accumulate in the form of a 
steady-state distribution at the front, as long as the front 
moves with a velocity uf that is intermediate to the upstream 
and downstream values, u' and u",  respectively. (It has been 
found in Vaidya et al. (1996b) that when the front moves with 
the same velocity as the downstream (upstream) solute veloc- 
ity, there is no accumulation of solute at long times. This is 
because in this situation the incoming convective flux from 
the downstream (upstream) domain vanishes. Thus there is 
no restoring force to balance the outgoing diffusional flux. 
Consequently, more and more solute spills over to the down- 
stream (upstream) side and undergoes diffusional spreading. 
The peak height decreases and over a large period of time 
goes to zero.) The optimum value for the front velocity is the 
arithmetic mean of the upstream velocities, that is, Pf = (1 + 
a)/2. Note that this fact was tacitly assumed in the theoreti- 
cal analysis by assuming that the point where relative velocity 
of the solute vanishes is exactly halfway through the transi- 
tion zone ( 5  = 0)  (see, e.g., Eq. 23). 
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In order to determine empirically the exact solution to the 
convection-diffusion problem for high-Pe solute transport 
(Eqs. 8, 12 and 13), the finite difference scheme QUICKEST 
(Leonard, 1979) was employed with a smooth transition be- 
tween zones I and I1 (Eqs. 16 and 17). Accurate resolution of 
the concentration within the front ( A t  < 6) was accom- 
plished with a mesh size A 5  of 5 . 0 ~  lo-’ for Pe = 10’ and 
transition zone of half-width q 7 0.05; the entire transition 
zone (of thickness 2 E f )  was thus discretized over 2,000 nodes. 
In order to save on the number of nodes needed to deter- 
mine the concentration profiles, we employed a traveling grid 
covering only the region where the initial concentration pro- 
file is significant and moving with the same speed vf as the 
front. For a Gaussian initial distribution, about 99.99% of the 
mass is included within four standard deviations (4 a,) from 
the mean. We therefore chose a 4,000-node traveling grid 
spanning a length L ,  > 10 a,. The time step chosen was AT 
= 1.OX The initial distribution of the solute was chosen 
to be a Gaussian with its mean location at t 0 = x / L  =0.05 
and a dimensionless standard deviation a, = 0.007. The ini- 
tial location of the front was at tfo = Lfo/L = 0.175, so as to 
ensure that the solute experiences convection at constant ve- 
locity for a nonnegligible interval of time. The parameter a 
was set to 0.5. 

The asymptotic solution is determined by integrating Eq. 
61 numerically along the characteristics using a fourth-order 
Runge-Kutta method. The time over which it is valid is ob- 
tained empirically by comparison with the exact finite differ- 
ence solution. This interval T, = 0.4 is then translated to its 
corresponding value of r, on the logarithmic time scale. We 
check that the value of r, = 0.8 thus obtained is not too small 
or large compared to unity, as should be the case for the 
transition from the outer solution to the inner solution. The 
evolution of solute concentration after time I‘, is evaluated 
using Eq. 77. The initial distribution taken is the output of 
the asymptotic convection equation at time 7,. All concentra- 
tion profiles preserve the area under the curve to within 0.1%. 

It is interesting to com- 
pare the evolution of the outer concentration under a sig- 
moidal variation in transport properties with that of one un- 
der a perfectly linear variation. The smooth functional form 
assumed is not sacrosanct since, in real materials, the exact 
shape of the transition zone cannot be determined with cer- 
tainty. A linear variation is analytically tractable and reveals 
the essential qualitative features of the solute transport proc- 
ess. Thus, we also study a velocity profile of the form 

Approximation as a Linear Ramp. 

where 6 = 0 is the location of the midpoint of the transition 
zone (also the position where the relative velocity vanishes 
for a front velocity equal to the arithmetic mean of the up- 
stream and downstream solute velocities) and b is the gradi- 
ent of the relative velocity at 5 = 0. Note that we have as- 
sumed the same slope of the velocity variation at the front as 
that in the sigmoidal variation. This means that the thickness 
of the linear ramp has to be adjusted from ef to Z f  in order 
to maintain the same maximum and minimum values for the 

transport parameters. Let us assume that the initial location 
of the front is downstream of the initial concentration distri- 
bution f( 5). Let I?‘( 5 , ~ )  describe the approximation to the 
actual concentration profile upstream of the linear ramp, 
where the solute velocity relative to the front is constant, and 
?( 5 , ~ )  represent the approximate concentration profile 
within the linear ramp. The governing equations for the lead- 
ing order term (ignoring diffusion) then become 

a? d 
- + - [ b[c^‘] = 0,  
d r  d[  

- (85) 

Note that in the absence of diffusion, the solute peak reaches 
the front at 5 = 0 only at infinite time, hence the domain 
5 =[; m need not be considered. The upstream concentra- 
tion distribution 2‘ is solved subject to the initial concentra- 
tion profile f(5). The concentration variation 2‘ is solved 
subject to the condition that at the “corner” of the linear 
variation, the concentration profile should be continuous, that 
is, Pr( - gf  , r )  = c^’( - Z f  ,T). The solution is obtained by the 
method of characteristics as 

f ’  1 

2‘= f ( q 2 ) ,  

2‘= ( T) f (”’ .  - 4 

(86) 

(87) 

where 

(89) 

Figure 6 shows the solutions for piecewise linear and smooth 
variations of the solute velocity, and thereby illustrates the 
variations in solute concentration that may arise owing to dif- 
ferences in the precise structure of the front. 

Results and Discussion 
Singular front 

Unlike the case for smooth variation of D and u, where 
the peak in the solute concentration scales as (Gitter- 
man and Weiss, 1993, 19941, for a singular front it scales as 
€ - I .  This means that, for a discontinuous variation in trans- 
port properties, the solute can be focused extremely sharply 
by making Pe extremely large. The validity of the perturba- 
tion analysis was tested indirectly by deriving Eq. 49 via an 
integral balance not presented here. It is very difficult to get 
the exact solution by finite difference calculations for Pe = 
lo’. This is because for the sake of the stability of the numer- 
ical scheme, the discontinuity of a singular interface must be 
approximated with a suitable sigmoidal ramp. If one were to 
assume Ef  = (higher limit of the inequality ef <( E re- 
quired for a singular interface), we would require a mesh size 
A 5  = lo-’ to accurately resolve the structure of the bound- 
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Figure 6. Effect of curvature of the front; comparison of 
solutions by sigmoidal and perfectly linear 
transition zone at Pe = lo5. 

ary layer within thickness er within 10 nodes. The resultant 
small time step AT would translate to a tremendous amount 
of cpu time. 

Finite-width front 
Figure 7 compares the concentration profiles approxi- 

mated by the outer solution of the asymptotic theory with the 
finite-difference solution for two different values of Pe, viz., 
lo4 and lo5, respectively. Some of the numerical parameters 
were modified for Pe = lo4 as follows: A[ = 1.OX = 

0.20, and tfU = 0.325. The agreement is poorer for the lower 
Pe, thus identifying the practical limit of “large Pe” below 
which the asymptotic analysis becomes very inaccurate. All 
subsequent calculations have therefore been based on the 
value for Pe = lo5. The time interval T~ is taken as the time 
required by the mean position of the concentration profile to 
reach the trailing edge of the sigmoidal ramp, that is, 

(90) 

The gradient of the velocity at the front given by Eqs. 16 and 
17 is 6 = pA/ef .  The dimensionless interval over which the 
velocity is roughly linear could therefore be taken as 

The time T~ at which the solute enters the linear regime (also 
taken as the time after which diffusion begins to become ap- 
preciable) can be estimated as the time it takes for the mean 
position to reach within a distance Zf of the front assuming 
constant convection, that is, 

0.0 0.2 0.4 0.6 0.8 
X l L  

16] 14 (b) (pe=l 0.50 
! 
I * 
I 

0.40 i /  

OIO oI2 0.4 0.6 0.8 
X l L  

Figure 7. Comparison of convection without diffusion 
for a sigmoidal front with the finite difference 
solution for (a) Pe = lo5 and (b) Pe = lo4. 

The times T, and T” are estimated as 0.075 and 0.4, respec- 
tively. The time of switching over between the asymptotic so- 
lution neglecting diffusion and the convection-diffusion 
equation with linear velocity therefore is (Eq. 74) estimated 
empirically as r, = 0.8. As can be seen from Figure 8, this is 
the point where appreciable deviations from the asymptotic 
convection solution are beginning to occur. These deviations 
occur because the analog of the matching and composite so- 
lutions formulated for the singular-front problem-which 
serve to smooth out the transition between outer and inner 
solutions-are not obvious for this case. Instead, a sudden 
switch between the complementary formulations valid far 
away from and near the front has to be made. Once the 
switching time is determined in terms of the dimensionless 
group To, with its dependence on E and ef, we believe this 
criterion can be used for higher values of Pe and larger tran- 
sition-zone thicknesses. The concentration profile for subse- 
quent time has been determined on the basis of Eq. 77. 

The perturbation approach is valid for small times and long 
times. It suffers from inaccuracies at intermediate intervals 
near the switching time I‘,. If time were to be modified as in 
Eq. 70, it would result in a modified convection-diffusion as 
follows: 
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Figure 8. Comparison of asymptotic convection plus 
modified convection-diffusion with exact 
solution. 
(a) Diffusion is ignored until time T~ (or ro), after which (b) 
the solution is evaluated based on the Orstein-Uhlenbeck 
equation. 

which is not fundamentally different from Eq. 72. This change 
may affect the inaccuracies at intermediate times, but will 
not affect the prediction of the steady-state concentration 
profile. 

The effect of details of the structure of the front is illus- 
trated in Figure 6, and is not great. From a practical view- 
point, it is easier to approximate the smooth variation in 
transport properties as piecewise linear variation because the 
solute concentration can be obtained analytically instead of 
numerically. 

To obtain better quantitative agreement for smaller Pe, the 
next-order correction is needed. Unfortunately, since the 
problem involves two small parameters E and ef, a form of 
the correction term is not obvious. 

Concluding Remarks 

are typically formulated for uninterrupted domains. A step 
toward incorporating near-interface dynamics in the presence 
of stationary internal boundaries using perturbation methods 
was taken by Vaidya et al. (1996a). The present article pre- 
sents the perturbation solution for convection-diffusion with 
moving boundaries. The specific form of the variation of ve- 
locity and diffusion coefficient assumed gives rise to a well- 
defined steady state whereby the entire solute content accu- 
mulates in the boundary-layer region. Since the steady state 
is nontrivial, the transient perturbation solutions derived are 
valid at long times. The main conclusion of this work relating 
to practical application of focusing solutes within thin regions 
is that there are diminishing returns on increasing Pe for a 
fixed transition zone thickness ef, since the concentrating ef- 
fect goes from a e-’  dependence to a dependence as 
1/Pe becomes << ef. 

We intend to follow up this investigation with a theoretical 
study on how the focusing effect studied here can be ex- 
ploited to enhance a separation process (Vaidya el al., 1997). 
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Notation 
E = electric-field strength, V/m 
F =initial concentration distribution, kg/m3 
f = initial concentration distribution, dimensionless 

K,, =equilibrium constant, dimensionless 
LJ =location of interface from column entrance, m 
r =logarithmic time scale, dimensionless 
A =modified coordinate, dimensionless 
H = modified time scale, dimensionless 
7 =coordinate in the transition zone, dimensionless 
E =inverse PCclet number, dimensionless 

eJ = half-width of transition zone, dimensionless 
4 =diffusion coefficient, dimensionless 
~1 =velocity of solute relative to the front, dimemionless 
6 =coordinate fixed at the front, dimensionless 
5 =stretched coordinate, dimensionless 

Subscripts 
II =parallel (fast) mode 
I =perpendicular (slow) mode 

match =matching solution 
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Appendix 
As shown in the subsection titled “Modified Formulations 

for a Singular Front,” for the case where cf << E ,  the actual 
thickness of the transition zone is not relevant in determining 
the width of the final concentration peak. Thus, the analysis 
can be simplified by formulating the problem in terms of a 
nonzero ef and extrapolating the results in the limit as E~ -+ 0. 
In other words, a discontinuity is the limiting case of a linear 
ramp, as the width of the ramp goes to zero. To begin with, 
the velocity and diffusivity profiles may be written as 

Integrating Eq. 8 over [ -  E / , E ~ ]  we get 

The concentration has a well-defined one-sided derivative at 
5 = 0. Thus, it may be expanded in a Taylor series around 
5 = 0 to give 

where the primes denote partial derivatives with respect to 5. 
Splitting the interval of integration in Eq. A3 into [ -  cf,O] 
and [ O , E ~ ]  and substituting Eqs. A4 and A5 for the appropri- 
ate domain, we get 

where the dot denotes the derivative with respect to time T. 
On taking the limit as ef + 0 and rearranging we find that at 
5 = 0 ,  

which is the statement of continuity of flux at a singular front. 
The reason why the concentration may not be continuous is 
because of a change in porosity. This condition relates the 
concentrations on either side of the front through an equilib- 
rium constant, and that gives us our other auxiliary condition 

c ’ ( 0 , ~ )  = Keqc I‘ ( 0 , T ) .  (A81 
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