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General-purpose robots of the future will need learning to acquire skills to work with us in our homes,
offices, farms, and hospitals, and they will need visual perception to operate in these dynamic, uncertainty-
rife, open-world settings. However, vision-based robot learning today is inflexible and inefficient: it is
overreliant on robot-and-task-specific training experiences, expert-engineered task specifications, and sub-
stantial computational resources. In comparison, animals and humans demonstrate far more nimble forms
of sensorimotor learning1;2. What are our robots missing?

Fig. 1: In my research, “attention” steers information flow bottlenecks to retain and foreground task-relevant informa-
tion in each module of a robot learner’s control loop: observation, representation, decision making, and learning.

My research group’s efforts target flexible vision-based robot learning for general-purpose robots, through
“attentive abstraction” algorithms. Traditional modular robotic controllers contain inflexible, pre-set ab-
stractions that bottleneck information flow between modules, hindering decision-making and learning.
For example, a pre-defined state abstraction limits task capabilities. In trying to remove these bottlenecks,
modern end-to-end approaches have gone too far: they produce large monolithic blackbox systems that
are difficult to train and interrogate. In our attentive abstractions, “attention” is a mechanism that steers
the abstractions in a modular perception-action-learning loop to dynamically select task-relevant infor-
mation: which parts of the world to sense, how detailed of a state representation to use, which futures
to predict, and which training data to learn from (Fig. 1). Thus, attentive abstractions overcome both the
information-limitedness of pre-set modular controllers, and the sample-inefficiency of monolithic end-to-
end learning systems. In doing so, they afford (Fig. 1, right): (1) flexible pre-training [P] of modules from
diverse data sources, (2) flexible task specification [S] for robots to acquire new skills from layperson train-
ers, and (3) flexible resource allocation for efficiency [E] in compute, energy, and training data. In the rest
of this document, I highlight these three types of flexibility with the tags [P] [S] [E].

I am excited about several key advances in vision-based robot learning that we have made pursuing this
vision during my time at UPenn. We have efficiently trained robots to perform many kitchen tasks by map-
ping language task specifications to reward signals3 (ICML’23) [P] [S], focused behavior cloning losses
on discovered keyframes to overcome longstanding spurious correlate issues in robotic tasks such as au-
tonomous driving4 (ICML’21) [S] [E], discovered multi-level object-centric representations of robotic scenes
for imitation learning of tabletop manipulation tasks from only a few tens of demonstrations5;6 (ECCV’22)
[P] [E] [S], and trained interactive behaviors for reward perception to autonomously guide robot policy
learning for tasks like screwing and door locking7 [S] [E] [P] (CORL’22). Our work has been received well,
with publications at the most selective top tier conferences across machine learning, robotics, and vision,
and the CORL’22 Best Paper Award. I will now expand upon these and our other key contributions at each
stage of the robotic control loop.
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Fig. 2: Representations as value func-
tions3;8

Task-Aligned Representations with Object-Centric Spatial Atten-
tion. What does it mean for a visual representation of a scene to
be suitable for robotic control? We have been making progress
on this problem on two fronts. First, building on my past work
in self-supervised visual representation learning from egomotion9

and from temporal continuity10, we have constructed a new self-
supervision objective that trains representations as universal value
functions3;8 (ICML’23, ICLR’23) [P] [S]: distances in representation
space between the current image o and a goal g (specified as an im-
age8 or as a language phrase3) must match the goal-reaching value
function V∗(o, g): how good is the current state for reaching the goal? Intuitively, this objective encourages
the representation to capture task progress. Two key properties of V∗(o, g) enable flexibility in training
data sources: first, the V value function does not take action arguments, and further, conditioning on task
goal g means that we can train on data from many different tasks. Therefore, we pre-train our represen-
tations as value functions on large and diverse pre-recorded human video datasets11;12 using a form of
offline reinforcement learning. Our objective function can be expressed as a control-aware member of the
contrastive learning family of self-supervision objectives. Empirically, our representations enable imitation
learning of task policies from minimal demonstrations for various robot manipulation tasks, such as fold-
ing a towel. Further, since our representations encode task value, they permit backing out dense rewards
for downstream reinforcement learning of new skills conditioned on image or language goals: this means
that in an unseen environment, on an unseen robot, having only ever seen human data, a simple picture
or language phrase describing a desired outcome suffices for the robot to teach itself a new skill.

Fig. 3: (Left) Deformable keypoint pyramids 5. (Right) Discovered
object-based representations in our manipulation task setup6

In parallel, we have been working to go
beyond this standard scene vector rep-
resentation format, towards representa-
tions formatted as object-centric hier-
archies, mirroring the natural structure
of the world. For example, a “pile
of laundry” at finer resolutions could
contain individual garments, their parts
and keypoints, and eventually full 3D
meshes. A hierarchical representation
implicitly offers a coarse-to-fine menu of
representations, so that, say, a laundry-
folding robot could mix and match, attending to different levels of abstraction for different portions of the
scene at each task phase. Building on my prior work on learning representations from object tracking13,
we first showed how to train flat object-centric image representations using optical flow signals extracted
from training videos14. We have since shown that we can build “deformable keypoint pyramids” (DKP)5

(ECCV’22) [P] [E]: hierarchies of landmark keypoints connected by springs between parent and children
keypoints. We encourage coarse-to-fine gradation using a novel “assisted reconstruction” loss: broadly,
each level of the keypoint pyramid must reconstruct the scene with assistance from an unstructured repre-
sentation; and higher coarser levels are provided more assistance than lower, finer levels. On human and
tabletop multi-object scenes generated by an exploring robot in our lab, DKP successfully discovers parent-
children keypoint groups that are more consistent with manually annotated semantic keypoints than prior
approaches. Once again, this permits scalable task specification: we have found that such keypoint-based
object-centric representations enable efficient policy learning from few demonstrations15 or limited inter-
active experience16;17. In ongoing research, we are exploring ways to distill such object-centric hierarchies
straight out of large pre-trained models such as DINO-ViT18 and SAM19. Further, using our V∗-based en-
coders from above to embed objects enables improved learning for various manipulation tasks on a real
robot6 (Under review, available on request) [P] [S] [E].
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Temporal Attention During Decision Making and Learning. How can an agent further selectively “at-
tend” to such representations to select task-optimal actions? We have explored this question for visual
model-based planning and offline policy learning. First, reliable predictive models can be used to select
optimal actions, but are difficult to build for complex visual percepts over long time durations owing to
compounding uncertainties. We have found one potential solution: “time-agnostic” jumpy predictors20,
which, given the freedom to select which future frame to attend to for prediction, consistently select low-
uncertainty “bottleneck” events that conveniently decompose long tasks into subtasks to improve plan-
ning. Building on this, we have also proposed a hierarchical predictor21 (NeurIPS’20) [S] [E] that first
generates a coarse prediction of future waypoints, before iteratively filling in the missing frames at finer
prediction levels, demonstrating large gains in long-horizon prediction and planning performance for ma-
nipulation tasks. Building further in this direction, we have successfully learned a “meta-controller” mod-
ule22 (arXiv, Under review) that selects how far out to predict, and how long to spend on plan optimization,
allocating time budgets to maximize success for a dynamic grasping task.

Fig. 4: Keyframe-focused visual
imitation4

This kind of temporal attention is useful when applied not only to spe-
cial future events during task execution, but also to special past events
during learning. We had identified a common “causal confusion” phe-
nomenon23–25, wherein imitators for tasks like autonomous driving dis-
cover shortcut solutions based on extrapolating past actions, rather than at-
tend to the environment state. We have recently found a simple yet promis-
ing fix4 (ICML’21) [S] [E]: we first train a decoy action extrapolation pol-
icy to mimic the expert data. Then, when training the real vision-based
imitator, we boost weights for the samples where the decoy fails — envi-
ronment observations most influence expert decisions at these “keyframes”,
such as when a traffic light turns green, or a nearby car brakes. A similar
weighted behavior cloning objective also naturally emerges in our work on goal-conditioned offline rein-
forcement learning26, where goal-reaching policies are trained to imitate appropriately weighted subsets
of pre-recorded non-expert data, attending to the samples that most closely approach optimal behavior.
Building on this work, we have recently developed a novel “policy-aware” model-based reinforcement
learning27 (L4DC’23) [E] technique that focuses the training of a dynamics model on the most task-
relevant transitions, such that it can best inform faithful policy improvement within the learned model.
Intuitively, a car driving on the road does not need to very precisely model the dynamics of driving on the
rocks and can afford to downweight such experiences in its learning objective.

Finally, decision making also benefits from attention over spatial regions. We have recently proposed
“robot-aware control”28 (ICLR’22) [E] [S]: since robot geometry and kinematics are often known in advance
for robot arms, we factorize visual models into an analytical robot predictor and a learned visual non-
robot region predictor. This improves planning cost functions and dynamics model learning, and most
importantly, facilitates easier training data transfer between robots: for example, we demonstrate “zero-
shot” transfer of visual models from Franka to previously unseen WidowX robots to enable skill transfer
between robots.

Fig. 5: “Interactive reward functions”7 to
train task policies.

Attentive Information Gathering for Observation and Explo-
ration. The observation and exploration stage acquires information
generated in the environment into the robot’s control loop for fur-
ther processing into representations and decisions. “Attention” at
this stage involves active and interactive perception: how should
an agent select exploratory actions that reveal task-relevant envi-
ronment information? Here, I have previously shown how rein-
forcement learning methods can produce active vision policies for
scene and object category recognition in static scenes29, and ex-
plored their transferability after training on unsupervised scene
reconstruction objectives30;31. We have since extended this work
to include exploration32: dropped into an unknown environment,
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how might a robot scope it out to be able to perform tasks in it afterwards? We have recently presented an
exploration approach that trains a goal-conditioned RL agent33 (ICLR’23) [S] [E]: it must simultaneously
discover tasks, and also learn policies to accomplish them. Here, we show that the choice of goals we set
at training time is critical: setting them to maximize the exploration value as predicted through a learned
world model enables our approach to discover skills like block stacking and accomplish them with no
supervision.

Beyond exploration, we have also discovered a new use case for active/interactive perception in the robot
learning setting. Rather than estimating states as always, we use interactive perception to estimate task
rewards for training a robot with reinforcement learning7 (CORL’22) [S] [E] [P]. Specifically, we train an
interactive policy that inspects the outputs of the task policy as it learns, to determine what rewards to
assign. This interactive policy in turn can be trained from examples of successfully completed tasks — it
can learn how to distinguish a locked door from a merely closed one by tugging at the handle, or how to
recognize a dust-free tabletop by running its fingers over it. Finally, these learned interactive verification
behaviors can also be deployed at test time to improve task performance. This work enables a new form
of layperson-friendly task specification through physical object examples, and received the Best Paper
Award at CORL 2022.

Research Goals and Future Work. Fig. 1 presents these and our other relevant efforts during my time
at UPenn, organized by the three stages of the control loop. As my research group matures, we hope to
continue pushing the frontiers of flexible vision-based robot learning.

We plan to continue developing improved robotics-ready visual representations useful for manipulation
and beyond. First, we are working towards a more cohesive unification of the two key streams of our re-
search on representations: object-centric representations5;6;14 as language-conditioned value functions3;8,
combining their complementary strengths. We will also incorporate sensing modalities beyond vision,
and develop policy learning algorithms that exploit our structured object-centric hierarchies to dynami-
cally select the minimal required representation at each instant for robust, sample-efficient learning and
compute-efficient execution.

Second, I am interested in safe and trustworthy learning, a prerequisite for deploying learning robots in
human environments. We have found in our early investigations that model-based reinforcement learning
offers a promising route to safety. First, capturing uncertainty while learning a model can enable a simple
and provably safe “pessimism under uncertainty” approach to safe exploration34. Further, pretraining on
domain-randomized simulated environments can bootstrap such pessimistic exploration35. I hypothesize
that the ultimate route to trustworthy machine learning systems must involve shared representations between
humans and machines, such as our object-centric and language-grounded representations above.

Next, despite the attractiveness of active and interactive visual perception, robotics researchers have thus
far found it difficult to exploit them for real robotic tasks due to training inefficiencies associated with a joint
policy to make decisions about observation as well as task execution. We plan to explore solutions to this
problem by factorizing the policy into individual modules which can each be trained largely independently
of the other. This is true already of our interactive reward function policies7 discussed above, but we are
pursuing several directions generalizing this idea.

Fourth, underlying our investigations on attentive abstractions for robotic control are some fundamental
questions. Can we characterize what perceptual information is required for learning and executing op-
timal policies, and how this requirement changes between tasks and task phases? Further, under resource
constraints common in robotics such as compute, energy, or time, how should we best utilize resources
across the different stages of the control loop? We have begun studying these questions. Control theoretical
results impose fundamental limits on task performance for specific task families under partial observabil-
ity (such as noisy visual perception or missing perceptual modalities); we have found that these limits are
also predictive of empirical learning difficulties for reinforcement learning36. Our meta-controller results22

above also show the advantages of dynamic time allocation in a time-constrained task.
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Finally, we are exploring the newfound language abilities of autonomous systems to permit an interactive
language-based interface between robot learners and human teachers. Now that we have already made
initial progress on learning from various types of easy-to-provide task specifications such as demonstra-
tions4, image goals8;28, language goals8, and object goals7, we are planning an integrated system that can
flexibly adapt to different teaching modes. Just like it takes a village to raise a child, I eventually want to
have small mobile robots exploring the GRASP lab at UPenn autonomously, and learning flexibly from any
feedback or guidance that any interested student chooses to provide, in any fashion, without straitjacketing
the supervision — they should be able to teach the robot as they might teach a pet or a child. This would
be an important step towards the grand goal of placing learning robots in human homes, hospitals, farms
etc., assisting the elderly, and aiding to automate dull, dangerous, and dirty jobs.
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