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More Than a Feeling: Learning to Grasp and
Regrasp using Vision and Touch
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Jitendra Malik1, Edward H. Adelson2, and Sergey Levine1

Abstract—For humans, the process of grasping an object relies
heavily on rich tactile feedback. Most recent robotic grasping
work, however, has been based only on visual input, and thus
cannot easily benefit from feedback after initiating contact. In this
paper, we investigate how a robot can learn to use tactile infor-
mation to iteratively and efficiently adjust its grasp. To this end,
we propose an end-to-end action-conditional model that learns
regrasping policies from raw visuo-tactile data. This model – a
deep, multimodal convolutional network – predicts the outcome
of a candidate grasp adjustment, and then executes a grasp by
iteratively selecting the most promising actions. Our approach re-
quires neither calibration of the tactile sensors, nor any analytical
modeling of contact forces, thus reducing the engineering effort
required to obtain efficient grasping policies. We train our model
with data from about 6,450 grasping trials on a two-finger gripper
equipped with GelSight high-resolution tactile sensors on each
finger. Across extensive experiments, our approach outperforms a
variety of baselines at (i) estimating grasp adjustment outcomes,
(ii) selecting efficient grasp adjustments for quick grasping,
and (iii) reducing the amount of force applied at the fingers,
while maintaining competitive performance. Finally, we study
the choices made by our model and show that it has successfully
acquired useful and interpretable grasping behaviors.

Index Terms—Deep Learning in Robotics and Automation;
Grasping; Perception for Grasping and Manipulation; Force and
Tactile Sensing

I. INTRODUCTION

GRASPING is a deeply interactive task: we initiate con-
tact by reaching our fingers toward an object, adjust

the placement of our fingers, and balance contact forces as
we lift. During this process, the feedback provided by the
sense of touch is paramount, as demonstrated by human
experiments [1]. Nonetheless, incorporating touch sensing into
robotic grasping has thus far proved challenging, due to
hardware limitations (e.g., sensor sensitivity and cost) and
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the difficulty of integrating tactile inputs into standard con-
trol schemes. Consequently, the predominant input modalities
currently used in the robotic grasping literature are vision and
depth.

Figure 1: We propose an action-
conditional model that iteratively
adjusts a robot’s grasp based on
raw visuo-tactile inputs.

However, vision does
not easily permit the
measurement of and
reaction to ongoing
contact forces, thus
significantly hindering
the potential benefits of
interaction. As a result,
vision-based grasping
approaches have largely
relied on selecting a grasp
configuration (location,
orientation, and forces) in
advance, before making
contact with the object.

In the quest for inter-
active grasping, we study
how tactile sensing can be
integrated into a grasping
system that can probe an
object and then reactively
adjust its grasp to achieve
the highest chance of success. Our method is based on learning
an action-conditioned grasping model, trained end-to-end in
a self-supervised manner by using a robot to autonomously
collect grasp attempts. In contrast to prior self-supervised
grasping work [2], [3], however, our model incorporates rich
touch sensing from a pair of GelSight sensors (see Fig. 1).
Incorporating tactile sensing into action-conditional models,
however, is not straightforward. The robot only receives tactile
input intermittently, when its fingers are in contact with the
object and, since each regrasp attempt can disturb the object
position and pose, the scene changes with each interaction.
In contrast, grasping methods that use vision typically do not
interact repeatedly with the object, but simply drive the arm
toward a chosen grasp pose and then attempt a single grasp.

Our contributions are as follows: (1) we introduce a new
multi-modal action-conditional model for grasping using vi-
sion and touch; (2) we show that our model is effective
at grasping novel objects, in comparison to unconditional
models and vision-only variations; (3) we analyze the learned
grasping policy and show that it produces interpretable and
useful grasping behaviors; (4) we demonstrate that our model
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permits explicit constraints on contact forces, allowing us
to command the robot to “gently” grasp an object with
significantly reduced force. Since it incorporates raw visuo-
tactile inputs, our approach requires neither calibration of the
tactile sensors, nor any analytical modeling of contact forces,
hence significantly reducing the engineering effort required to
obtain efficient grasping policies.

II. RELATED WORK

A. Learning to Grasp

A significant body of work in robotics has studied analytic
grasping models, which use known or estimated models of
object geometry, environments, and robot grippers, and which
typically make use of manually defined grasping metrics [4],
[5], [6]. While these methods provide considerable insight
into the physical interactions in grasping, their actual per-
formance depends on how well the real-world system fits
the assumptions of the analytic model. Model misspecifi-
cation and unmodeled factors can substantially reduce their
effectiveness. As an alternative, data-driven approaches have
sought to predict grasp outcomes from human supervision [7],
[8], simulation [9], [10], [11], or autonomous robotic data
collection [2], [3], typically using visual or depth observations.
Among these works, the most related to ours is [3], which also
proposes to use an action-conditional model. However, these
prior works (with a few exceptions that we discuss below)
do not consider tactile sensing, focusing instead on vision
and 3D geometry, which afford a limited ability to reason
about contact forces, pressures, and compliance. Critically,
most of these methods rely on selecting grasp configurations
in advance, before ever coming into contact with the target
object. In contrast, we show that it is possible to exploit rich
tactile feedback after contact to iteratively adjust and improve
robotic grasps. For an overview of learning for robot grasping,
we refer the reader to [12].

B. Tactile Sensors in Grasping

A variety of tactile sensors have been developed [13],
mainly measuring force and torque, or the pressure distribution
over the sensor. Multiple works [14], [15], [16], [17], [18]
suggested the use of tactile sensors to estimate grasp stability.
While these works estimate the stability of an ongoing grasp,
we focus instead on selecting grasp adjustments to produce
a stable new grasp. [19] incorporated tactile readings into
dynamics models of objects for a dexterous hand, thereby
adapting the grasp. Works such as [20], [21], [22] extracted
features from tactile signals to detect/predict slip, so as to
adaptively adjust the grasping force. Researchers have also
proposed robotic systems that integrate visual and tactile in-
formation for grasping using model-based methods [23], [24],
[25], [26], [27], which improved grasping performance over
single-modality inputs. However, these approaches require
accurate models of the robot and the objects to grasp, and
often also calibrated tactile sensors. Along similar lines, [28]
proposed a regrasping policy based on tactile sensing (without
visual input) and a learned stability metric, which uses a
heuristic transition function to predict future tactile readings.

Our approach does not require any prior model or transition
function, as it learns entirely end-to-end from raw inputs.

Closer to our approach are [29], [30], which proposed
to learn regrasping using tactile sensors. In contrast to our
approach, [30] directly optimizes a policy. Optimizing a pol-
icy requires the data collection to be on-policy and to be
intertwined with the policy update; our approach does not
directly optimize a policy, but learns an action-conditioned
model. As a result our approach can use any data collected.
Additionally, by using an action-conditioned model, we can
change the objective of the policy at evaluation time (as
in the case of reducing the grasping force demonstrated in
Sec. VI-D), while changing the objective for a policy learning
method would require re-training the policy, and thus require
repeating the data collection process. Another difference with
these works is that, in [29], [30], the features used from the
tactile sensors are manually designed by applying PCA and
extracting the first 5 principal components. Our approach,
although using substantially higher resolution tactile inputs,
does not require any manual engineering of features. Finally,
our experiments consider a substantially wider range of objects
than demonstrated by [30], with 65 training objects, and a
detailed evaluation on 22 previously unseen test objects.

Closely related is also our previous work [18], where we
proposed a visuo-tactile model from raw inputs for classifying
grasp outcomes. The main difference to the present work is
that [18] does not make use of the learned visuo-tactile model
to actively select the next grasp to perform, but simply to
evaluate the stability of an ongoing grasp. For grasp selection,
this method executes random grasps iteratively until it arrives
at a grasp that is stable according to the learned model. While
this allows for evaluation of the correlation between touch
sensing and grasp outcome, it does not by itself provide a
practical method for grasp selection: in our experiments, we
found that this prior approach could require as many as 50
random regrasp attempts to yield a stable grasp. Furthermore,
by including the grasping force as part of the action, our
approach allows for the grasping force to be modulated
during the evaluation to achieve secondary objectives, such
as minimum-force grasps.

Concurrently to our work, [31] also proposed a tactile
regrasping method based on the GelSight sensor. This method
simulates transformations to tactile readings based on rigid
body dynamics, while our approach is entirely data-driven
and self-supervised, which means that we do not require
assumptions about dynamics or environment structure. An in-
depth exploration of the tradeoffs between data-driven and
analytic approaches would an interesting future topic of study.
Another concurrent work [32], explores grasping with a 3-
axis force sensor, but reports comparatively low success rates,
focusing instead on tactile localization without vision. Our
method uses rich touch sensing that is aware of texture and
surface shape, simultaneously incorporates multiple modali-
ties, and can flexibly accommodate additional constraints, such
as minimum-force grasps.

The main contribution of this paper is a practical approach
that exploits visual and tactile sensing to grasp successfully
and efficiently i.e., with as few regrasps as possible. We do
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Figure 2: Examples of raw tactile data collected by one of the GelSights (right) for different training objects (left).

so by building predictive models that can predict the grasp
outcome of a given action. Our experiments demonstrate that
our action-conditioned predictive model substantially outper-
forms the results that can be obtained via grasp classification,
illustrating the value of closed-loop regrasping. Finally, we
demonstrate that our action-conditioned model can be used to
optimize for gentler grasps, enabling the robot to determine
grasps that can pick up an object with minimal force (hence
avoiding damage to fragile objects). To the best of our knowl-
edge, our work is the first to propose an action-conditioned
model for learning to grasp from raw visuo-tactile inputs.

III. HARDWARE SETUP

In our experiments we used a hardware configuration con-
sisting of a 7-DoF Sawyer arm, a Weiss WSG-50 parallel grip-
per, and two GelSight sensors [33], one for each finger. Each
GelSight sensor provides raw pixel measurements at a resolu-
tion of 1280x960 at 30Hz over an area of 24mm× 18mm.
Additionally, a Microsoft Kinect2 sensor was mounted in front
of the robot to provide visual data. The GelSight sensor is an
optical tactile sensor that measures high-resolution topography
of the contact surface [34], [33]. The surface of the sensor is
a soft elastomer painted with a reflective membrane, which
deforms to the shape of the object upon contact. Underneath
this elastomer is a camera (an ordinary webcam) that views
the deformed gel. The gel is illuminated by colored lights,
which light the gel from different directions. Additional visual
cues of contacts are provided by the deformation of the grid
of markers painted on the sensor surface, which can be used
to compute the shear force and slip information [35]. One
valuable property of the GelSight sensor is that the sensory
data is provided on a regular 2D grid image format, hence
we can use convolutional neural network (CNN) architectures
initially designed for visual processing to process readings
from the tactile sensor. Previous work on material property
estimation with GelSight [36], [37] has successfully applied
CNNs pretrained from natural image data. Examples of raw
tactile data from the GelSight are shown in Fig. 2.

IV. DEEP VISUO-TACTILE MODELS FOR GRASPING

We formalize grasping as a Markov decision process (MDP)
where we greedily select the gripper actions that maximize the

probability of successfully grasping an object. To address this,
we solve the following prediction problem: given the robot’s
current visuo-tactile observations st at time t, and an action a,
we predict the probability that, after applying the action, the
gripper will be in a configuration that leads to a successful
grasp at time t+1. In Sec. IV-B, we describe how we use this
prediction model to select optimal grasping actions.

Raw visuo-tactile observations s are acquired from tactile
sensors and the RGB camera, as shown in Fig. 3. Each action a
directs the gripper to a new pose relative to its current pose.
For example, an action a might consist of moving the gripper
to the left by 2 cm, and rotating it by 15◦. More concretely,
let o(st,a) ∈ {0, 1} be the binary grasp outcome at time
t + 1 resulting from executing action a from grasp state st:
if o(s,a) is 1, the grasp is successful. At evaluation time,
these outcome labels o(st,at) are unknown and the robot must
estimate them. At training time, the robot performs random
trials as described in Sec. V to collect state-action-outcome
tuples (si,ai, oi) ∈ X , which we will use to train an action-
conditional model that can be used for selecting actions.

A. End-to-End Outcome Prediction
We would like to learn a function f(s,a) that directly

predicts the success probability for a future grasp, given
observations from the current grasp s and a candidate action a.
We parametrize f as a deep neural network, whose architecture
is shown in Fig. 3. There are multiple design choices when
designing deep models for multi-modal inputs [38]. In our
experiments, we decided to employ a network processing
the state s, consisting of raw RGB inputs from the frontal
camera and the two GelSight tactile sensors, in three deep
stacks of convolutional layers. Additionally, the action a
is processed in a two-layer, fully-connected stack (a multi-
layer perceptron). We then use a late fusion approach to
combine information from these modalities: the feature vectors
produced by these four stacks are concatenated, and fed to
a two-layer fully-connected network that produces the prob-
ability, f(s,a), that the input action from the current state
results in a successful grasp at the next step. We train the
network f on the training dataset X to minimize the loss
Ldir(f,X) =

∑
(s,a,o)∈X L(f(s,a), o) where L is the cross-

entropy loss. As input for the tactile CNNs, we rescale the
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Figure 3: Action-conditioned visuo-tactile model network architecture.

original GelSight RGB images to 256×256, and subsequently
(for data augmentation) sample random 224×224 crops. This
kind of image resolution is standard for CNN-based object
recognition in computer vision, though it is substantially lower
than the native resolution of the GelSight. Although we did
not investigate the effect of image resolution on performance,
this is an interesting question for future work.

a) Network design: We process each image using a con-
volutional network. Specifically, we use the penultimate layer
of a 50-layer deep residual network [39]. We further emphasize
deformations in each GelSight image through background
subtraction i.e., we pass the neural network the difference
of the GelSight images before and after contact. The action
network is a multi-layer perceptron consisting of two fully-
connected layers with 1024 hidden units each. This network
takes as input vector representations of the action and pose.
The action is a 5-dimensional vector consisting of a 3D
motion, in-plane rotation, and change in force. Likewise, the
end effector pose is a 4-dimensional vector represented by
position and angle. Moreover, we also provided the network
with the 3D motion transformed into the gripper’s coordinate
system. To fuse these networks, we concatenate the outputs of
the four input branches (camera image, two GelSight images,
and the action network), and then pass them through a two-
layer fully-connected network that produces a grasp success
probability. The first layer of this fusion network contains 1024
hidden units. Our model architecture is shown in Fig. 3.

b) Training: To speed up training, we pretrain these
networks using weights from a model trained to classify
objects on ImageNet [40], and we tie the weights of the two
tactile networks. We then jointly optimize the model with
a batch size of 16 for 9,000 iterations (using a dataset of
18,070 examples), lowering the learning rate by a factor of
10 after 7000 iterations.

B. Regrasp Optimization
Once the action-conditional model f has been learned,

we use it to select the action that maximize the expected
probability of success of the grasp after performing the action

a∗t = arg maxa f (st,a) . (1)

We perform this optimization using stochastic search: we
randomly sample potential actions and predict the success
probability using the learned model f , and then select the
action with the highest success probability. Although this
optimization can be computationally expensive (in our exper-
iments, approximately 0.6 s for 5000 samples), in practice we
find that it performs well.

V. DATA COLLECTION

To collect the data necessary to train our model, we de-
signed a self-supervised automated data collection process.
In each trial, depth data from the front Kinect was used to
approximately identify the starting position of the object and
enclose it within a cylinder. We then set the end-effector (x, y)
coordinates to the position of the center of the cylinder plus a
small random perturbation, and set its height to be a random
value between the floor and the height of the cylinder. Its
orientation φ was set uniformly at random. Moreover, we
randomized the gripping force F to collect a large variety
of behaviors, from firm, stable grasps, to occasional slips, to
overly gentle grasps that fail more often. After moving to the
chosen position and orientation, and closing the gripper with
the desired gripping force, the gripper attempt to lift the object
and wait in the air for 4 s. If the object was still in the gripper
at the end of this time, the robot would place the object back
at a randomized position, and a new trial would start.

The labels for this data (i.e., whether the grasp was suc-
cessful) were also automatically generated using deep neural
network classifiers (running two instances, one for each finger)
trained to detect contacts using the raw GelSight images
observed1. We performed additional manual labeling on a
small set of samples for which the automatic classification
was borderline ambiguous (e.g., if both sensor were not
confident of the presence of contacts after lifting), or in the
rare cases when a visual inspection would indicate a wrong

1This model was initially trained using manually collected data, and
iteratively fine-tuned in a self-supervised manner using the very same au-
tomatically collected, but manually labeled, data.
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label. Overall, we collected 6,450 grasping trials from over 65
training objects.

As the gripper moves from one position to another, the
locations that it moves to along the way can provide additional
data points for training. We use this idea to augment the
dataset with additional examples. When the robot is gripping
an object, we create a state-action pair with zero translation
or rotation, corresponding to the action of the robot keeping
the gripper in the same position (a useful possible action
for regrasping). Similarly, we create a state-action pair at the
moment that the robot has released the gripper but has not
yet moved. In this case, the action is the same as when the
gripper is in contact with the object. After this augmentation,
our dataset contains 18,070 examples.

During the data collection and experimental evaluation,
we replaced the gels of the two GelSight sensors multiple
times due to wear and tear. Each gel is unique, and as a
result produces slightly different inputs (e.g., grid of markers
might not be evenly aligned). Moreover, with the progressive
wear of the surface a single gel, the images can significantly
change over time. In our experiments we noticed how, initially,
replacing the gel would degrade the performance of the learned
models. However, after collecting data with a few different
gels, changing the gels did not seem to significantly affect
performance anymore, hence suggesting that the model learned
features that are reasonably invariant to the specific gel being
used.

VI. EXPERIMENTAL RESULTS

To validate our multi-modal grasping model, we first com-
pare the performance of the model on the dataset we collected.
Then, we test the model on an actual robot, and evaluate its
generalization capabilities on additional (unseen) test objects.
Moreover, we analyze the learned visuo-tactile model to gain
some insight into its learned behavior and features. Finally,
we demonstrate that it is possible to exploit our visuo-tactile
action-conditioned model to minimize the applied forces while
maintaining a high success rate. Videos showing the robotic
grasping experiments (and other material) are available online
at: https://sites.google.com/view/more-than-a-feeling

A. Model Evaluation

Table I: K-fold (K=3) cross-validation
accuracy of the different models trained
with 18,070 data points.

Model Accuracy
(mean ± std. err.)

Chance 62.80%± 0.85%
Vision (+ action) 73.03%± 0.24%
Tactile (+ action) 79.34%± 0.66%
Tactile + Vision (+ action) 80.28%± 0.68%
Tactile + Vision (no action) 76.43%± 0.42%

First, we ask:
can our model
successfully learn
to predict future
grasp success for
novel objects?
Recall that while
previous works
such as [18] have
shown that it is
possible to predict
stability of ongoing grasps from visuo-tactile inputs, we seek
to evaluate the stability of future grasps, conditional on a
relative adjustment from the current grasp. We compare the
predictive performance of a number of variations of our

model, using our dataset of grasps (Sec. V). For this, we
use K-fold (K = 3) cross-validation, partitioning the data
by object instance. Does our model learn to use actions to
predict future outcomes? This is critical, since we expect to
use this model to search over possible actions during grasping
on a robot. To test this, we evaluate the model in Fig. 3
without the action (“Tactile + Vision (no action)” in Tab. I) –
an unconditional model similar to the one considered in [18]
– which without having access to the action corresponds to
computing the expectation over all the possible actions. We
see that performance indeed drops significantly when action
information is withheld, validating that the model learns to
successfully evaluate the importance of different actions.
Next, we test whether our model significantly outperforms
variations where different components are ablated, such as the
vision-only and tactile-only models. As seen in Tab. I, the full
visuo-tactile model performs best – results for future-grasp
prediction that are consistent with those reported in [18] for
the task of evaluating current grasps.

B. Robot Grasp Evaluation

Next, we evaluated the learned models on the robot. In
these experiments, we had the robot grasp a given object after
executing a series of regrasp actions. Each grasp begins by
randomly sampling an end-effector position and angle with
the manually engineered system used for the data collection
of Sec. V, but without closing the fingers of the robot. Since
we start from a configuration where the fingers are not in
contact, it is impossible to fairly compare against the tactile-
only variant of our model, which requires the robot to already
be in contact with the object to select a meaningful action.
Consequently, we compare with the vision-only variant of
our model, which is similar to that in [3]. We then use
the learned models to select the next grasp, by solving the
optimization of Eqn. (1). For the action optimization, we
consider translations in the interval [−2,+2] cm, gripper
rotations from [−17◦, 17◦], and force values in [4, 25] N. The
optimization is performed by randomly sampling 4900 actions,
plus 100 additional actions sweeping over the grasping force
interval, but having the end-effector rotation and translation
set to 0. Each action results in performing a translation and
rotation of the end-effector, and in closing the fingers with
the desired force. Moreover, if the predicted grasp success
probability is above the desired threshold, the re-grasp also
includes lifting the object. In our experiments, we set this
threshold to 0.9. To ensure that the probabilities are well-
calibrated, we applied Platt scaling [41] to its probability
predictions, using a validation set containing approximately
1900 examples.

As a baseline, we also evaluated against an approach that fits
a cylinder around the object using depth data and subsequently
attempt to grasp the centroid of the object using a constant
grasping force of 10N. Since we used this cylinder fitting
approach as a component of our data collection procedure,
it was manually engineered to perform well.

We first trained the models on 18,070 data points collected
as described in Sec. V, and evaluated them on a test set of

https://sites.google.com/view/more-than-a-feeling
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Table II: Detailed grasping results using different policies for the ”Easy” and ”Hard” test objects.
“E

as
y”

se
t

Methods

Objects
Average

grasp
success

215g 160g 40g 125g 125g 65g 135g 30g 380g 140g 10g
% grasp success (# success / # trials)

Vision only 76% (38/50) 70% (7/10) 60% (6/10) 50% (5/10) 50% (5/10) 90% (9/10) 40% (4/10) 60% (6/10) 90% (9/10) 10% (1/10) 100% (10/10) 63.2%
Tactile + Vision 95% (95/100) 100% (10/10) 100% (10/10) 100% (10/10) 90% (9/10) 100% (10/10) 90% (9/10) 100% (10/10) 80% (8/10) 90% (9/10) 90% (9/10) 94.0%
Cylinder fitting 90% (18/20) 90% (18/20) 80% (16/20) 55% (11/20) 100% (20/20) 100% (20/20) 90% (18/20) 75% (15/20) 35% (7/20) 20% (4/20) 100% (20/20) 75.9%

“H
ar

d”
se

t

Methods

Objects
Average

grasp
success

230g 120g 195g 50g 70g 85g 38g 165g 65g 340g 110g
% grasp success (# success / # trials)

Vision only 60% (6/10) 80% (8/10) 30% (3/10) 30% (3/10) 80% (8/10) 40% (4/10) 60% (6/10) 50% (5/10) 50% (5/10) 50% (5/10) 20% (2/10) 50%
Tactile + Vision 80 % (8/10) 100% (10/10) 50% (5/10) 80% (8/10) 90% (9/10) 70% (7/10) 100% (10/10) 40% (4/10) 60% (6/10) 80% (8/10) 60% (6/10) 73.6%
Cylinder fitting 95% (19/20) 100% (20/20) 35% (7/20) 100% (20/20) 90% (18/20) 15% (3/20) 90% (18/20) 85% (17/20) 15% (3/20) 15% (3/20) 95% (19/20) 66.8%

11 previously unseen objects (that we call “Easy”). These
objects significantly differed from the ones seen in the training
set in terms of color, weight, shape, friction, etc. From the
evaluations, we found that our visuo-tactile model significantly
outperformed both the vision-only and the cylinder fitting
models, achieving 94% accuracy. However, on the harder
objects from the “Hard” test set, this learned model would
not perform very well. Hence, we decided to collect more
data on the training objects, but this time on-policy using the
learned model. We thus collected a new dataset consisting of
25,404 datapoints, which we used to re-train both the Vision
and Tactile+Vision models. After retraining, we evaluated the
performance again on the “Hard” test set. In Tab. II, we
can see how the visuo-tactile model again outperform the
other two models. Based on these experiments, the largest
improvements in performance of our model seem to happen
in the presence of compliant objects, and objects where it is
difficult to visually ascertain a good grasp, such as small or
irregular objects. Another interesting result is that the vision-
only model performs quite poorly. We hypothesize that the
main cause is the relatively small size of the dataset. Prior
work [3] used a smaller model and 40x more data. As such,
it is likely that the performance of our tactile+vision model
could also be further improved by collecting more data.

C. Understanding the Learned Visuo-Tactile Model

Our approach relies on a future grasp evaluation model
learned entirely from data, without manual specification of
heuristically useful behaviors. We now examine qualitatively:
what strategies has our model learned and what behaviors does
it produce?

1) Grasping Force: The first question we study is whether
or not the model has learned the importance of modulating
the amount of force F applied at the fingers for the grasp
outcome. Naturally, a stronger grasp is typically more likely
to succeed. To test this hypothesis, we placed the gripper in a
state where it was in contact with a previously unseen object.
We then asked the model to predict the probability of grasp
success given various finger forces, keeping the other parts of
the action vector fixed. Given this state and candidate actions,
we computed the corresponding success rate prediction. As
illustrated in Fig. 4, the model appears to have learned that
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Figure 4: Predicted grasp success rate with varying the amount
of force F . The model learned that, when stably in contact with
the object, there is a correlation between force applied and
success rate. However, for unstable grasps, the model learned
that increasing the grasp force might misplace the object and
result in an unsuccessful grasp.

there is a correlation between the force and the grasp outcome.
However, further analysis shows that the model did not just
learn to increase the force in all cases: for multiple situations
having very high forces seems to reduce the predicted success
rate. For example, we saw this occur when the robot grasped
a cube whose corner was only half in contact with the fingers.
Due to the shape of the fingers, applying large forces in this
case would cause the object to be displaced and slip out of
the fingers, and the model correctly predicts that lower forces
should be preferred (see Fig. 4b).
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Figure 7: Example of predicted grasp
success rate varying the height of
the fingers. The model learned that
decreasing the height of the fingers
generally increases the success rate.

2) Height and
Center-of-Mass:
A second important
question is what the
model learned with
respect to the height
of the grasp. For
instance, it may be
important to grasp
close to the vertical
center-of-mass of the
object: objects that are held close to their top might slip away
under even small perturbations. At the same time, objects that
are grasped below the center-of-mass might be unstable and
rotate around the contact, increasing the chance of slippage.
Evaluating the model in different circumstances shows that the
model learned that the probability of success increases when
decreasing the height of the fingers (an example is shown in
Fig. 7). The model did not however, seem to have learned
any relevant correlation between the height of the object, or
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(a) Improvement from downward motion
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Figure 5: What does the model learn? Here we show examples where the network
predicts that a downward motion will result in a grasp with (a) higher or (b) lower
chance of succeeding. Notice that downward movement is predicted to be beneficial
for cases where the fingers hold the top of an object, but not when they hold it
by the bottom. To more clearly visualize the contact on the robot’s fingertip, we
show the change in intensity of the GelSight images.
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Figure 6: Histograms of the actions ap-
plied by the Tactile+Vision policy for
the successful grasps. It can be noticed
how the policy strongly favour moving
downward.

the center-of-mass, and the preference for moving downward.
In Fig. 5, we show examples, taken from our dataset, of cases
in which the model strongly preferred a downward motion
to a static or upward one. For this, we trained a variation of
our model without the end effector pose, so that it cannot
use the height above the table as a cue. We show held-out
examples with the most (and least) predicted improvement in
grasp success. The examples with the largest improvement in
downward motion tend to be cases in which the top of the
object has been gripped (which result in a visible bump in
the bottom of the GelSight image). Fig. 6 shows histograms
of the actions performed by the Tactile+Vision model for the
successful grasps in Sec. VI-B. For the z-translation, almost
50% of the actions used the maximum downward motion
allowed (i.e., 2cm), which clearly shows that the learned
model acquired a strong preference for moving downward to
produce stable grasps.

D. Minimum Force Grasp

One of the benefits of training an action-conditional grasp
outcome prediction model, in contrast to the static grasp
classification model in prior work [18], is that we can predict
how successful a given grasp will be if we modify the strength
of the grasp. Humans typically do not use the strongest grasp
possible, but rather employ the minimum amount of contact
force, out of consideration for energy consumption and object
fragility. Our model also allows us to directly optimize for
grasps with either a constraint on the contact force, or via
a weighted combination of contact force and grasp success
probability. In this experiment, we modified the optimization
in Eqn. (1) as a constrained optimization problem such that the
selected action would instead minimize the use of force, but
while still having an expected success rate > 90% (if such
an action existed, otherwise it would revert to the standard
optimization task).

We evaluated the success rate and applied the force of
grasps optimized for either pure grasp success or the minimum
force objective on the ‘Green tea cup’ object. After evaluating
100 grasps for each criterion using the Tactile+Vision model,
we observed a fairly similar grasp success rate, with 95/100
successful grasp for the maximum success optimization and
94/100 for the minimum force grasps. However, we can see
in Fig. 8a that, for the successful grasps, the force distribution

of the minimum force grasp optimization was substantially
lower compared to the maximum success criterion (mean of 10
vs 20 N). Similar results were obtained also when evaluating
the Vision only model, as shown in Fig. 8b. This time, both
criteria achieved a success rate of 76% (out of 50 trials),
which is lower than the Tactile+Vision model. However, the
force distribution of the minimum force grasping policy was
substantially lower compared to the maximum success criteria
at 6 vs 18 N. These results suggest that using a minimum
force optimization with our learned model can effectively
reduce the amount of force exerted when grasping, without
impacting performance. We believe that this is an important
result that show the quality of the learned visuo-tactile model,
and further motivate the use of tactile sensors in applications
which require handling of fragile objects (i.e., glass or fruit,
such as strawberries).

VII. CONCLUSIONS

Touch sensing is an inherently active sensing modality,
and it is natural that it would be best used in an active
fashion, via feedback controllers that incorporate tactile inputs
during the grasping process. Designing such controllers is
challenging, particularly with complex, high-bandwidth tac-
tile sensing combined with visual inputs. In this paper, we
introduced a novel action-conditional deep model capable of
incorporating raw inputs from vision and touch. By using raw
visuo-tactile information, this model can continuously re-plan
what action to take so as to best grasp objects. To train this
model, we collected over 6,000 trials from 65 training objects.
The learned model is capable of grasping a wide range of
unseen objects, and with a high success rate. Moreover, we
demonstrated that with an action-conditioned model, we can
easily decrease the amount of force exerted when grasping,
while preserving a similar chance of success.

Our method has multiple limitations that could be ad-
dressed in future work. First, our action-conditioned model
only makes single-step predictions, and does not perform
information-gathering actions. Second, we consider relatively
coarse actions – A model using fine-grained actions could
more delicately manipulate the object before the grasp, and
potentially react to slippage during the lift-off. Finally, it
would be valuable to extend our approach to more realistic
cluttered environments. Together, addressing these limitations
would require a transition to more continuous feedback control



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2018

0 5 10 15 20 25
Force [N]

0.0

0.1

0.2

0.3

0.4

P
ro

b
a
b

ili
ty

Maximum Success
Minimum Force

(a) Tactile+Vision

0 5 10 15 20 25
Force [N]

0.0

0.1

0.2

0.3

0.4

P
ro

b
a
b

ili
ty

Maximum Success
Minimum Force

(b) Vision only

Figure 8: Histogram and mean (dashed lines) of the forces applied in the successful grasps. (a) Although the success rates
for the two Tactile+Vision policies are similar (95% maximum success vs 94% minimum force), the mean force applied is
significantly reduced when using the minimum force policy (10 vs 20 N). (b) The success rates for the Vision only policies
is lower at 76%, but again the mean force applied is significantly reduced when using the minimum force policy (6 vs 18 N).

strategy (potentially using torque control), which is an exciting
avenue for future work.
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