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Abstract Existing methods to learn visual attributes are plagued by two common
issues: (i) they are prone to confusion by properties that are correlated with the
attribute of interest among training samples, and (ii) they often learn generic, im-
precise “lowest common denominator” attribute models in an attempt to generalize
across classes where a single attribute may have very different visual manifestations.
Yet, many proposed applications of attributes rely on being able to learn the precise
and correct semantic concept corresponding to each attribute. We argue that these
issues are both largely due to indiscriminate “oversharing” amongst attribute classi-
fiers along two axes — (i) visual features and (ii) classifier parameters. To address
both these issues, we introduce the general idea of selective sharing during multi-
task learning of attributes. First, we show how selective sharing helps learn decor-
related models for each attribute in a vocabulary. Second, we show how selective
sharing permits a new form of transfer learning between attributes, yielding a spe-
cialized attribute model for each individual object category. We validate both these
instantiations of our selective sharing idea through extensive experiments on multi-
ple datasets. We show how they help preserve semantics in learned attribute models,
benefitting various downstream applications such as image retrieval or zero-shot
learning.

Chao-Yeh Chen*
e-mail: chaoyeh@cs.utexas.edu

Dinesh Jayaraman*
e-mail: dineshj@cs.utexas.edu

Kristen Grauman
e-mail: grauman@cs.utexas.edu
The University of Texas at Austin, Austin, TX, USA

* indicates equal contribution

1



2 Chao-Yeh Chen*, Dinesh Jayaraman*, Fei Sha, and Kristen Grauman

1 Introduction

Visual attributes are human-nameable mid-level semantic properties. They include
both holistic descriptors, such as “furry”, “dark”, or “metallic”, as well as localized
parts, such as “has-wheels”, or “has-snout”. Because attributes describe object and
scene categories in natural language terms, they can be used to describe an unfa-
miliar object class [9], teach a system to recognize new classes by zero-shot learn-
ing [25, 32, 36], learn mid-level cues from cross-category images [23], or provide a
useful bridge between low-level image features and high-level entities like object or
scene categories [9, 22, 25].1

All these applications stem from one crucial property of attributes—the fact that
they are shared across object categories. Typically, the idea is that a system can learn
about an attribute from image examples drawn from arbitrary objects, e.g., learning
“furry” from bunnies, dogs, and bears alike. In fact, attributes are usually shared
among not only among some limited set of “seen” categories present in the training
data, but among other “unseen” categories too. Thus, it is particularly important to
be able to correctly recognize each attribute manifested in diverse configurations
that may or may not have been previously observed.

The intent to share features and classifiers raises important challenges specific to
attribute learning. On the one hand, as we will soon see, spurious correlated factors
(including other attributes) in training data may easily be mistaken for the attribute
of interest by a learner, which would prevent generalization, especially to instances
of the attribute manifested in unseen classes. Further, even among seen classes, at-
tributes may have different visual manifestations in each category, making it difficult
for one shared generic attribute classifier to work well on all classes.

Existing methods follow the same standard discriminative learning pipeline that
has been successful in other visual recognition problems, particularly object recog-
nition. Using training images labeled by the attributes they exhibit, low-level image
descriptors are extracted, and used to independently train a discriminative classifier
for each attribute in isolation [5, 9, 22, 23, 25, 32, 33, 36, 38]. A single monolithic
model is trained per attribute, which is shared across all object categories. For ex-
ample, classifiers for “furry” and “dark” attributes may be trained independently
with color, texture, and shape features. Each of these classifiers is expected now
to apply to new instances, agnostic to the category that each instance belongs to,
such as “cat”, “human” or “tower”. In short, the status quo approach thus uniformly
shares both the low-level features across all attributes as well as the attribute classi-
fier across all categories.

In this chapter, we explore the following question: when and to what extent is
sharing useful for attribute learning? We show that the standard attribute learning
approach suffers from a problem of indiscriminate sharing along two axes: (i) it
“overshares” features across distinct attribute classifiers and (ii) it overshares classi-
fier parameters for each attribute across distinct categories. See Figure 1 for a visual

1 Throughout, we use the term “category” to refer to an object or scene class, whereas an “attribute”
is a visual property describing some such category.
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depiction of this problem. We contend that this oversharing approach ignores inter-
category and inter-attribute distinctions during attribute learning and thus does not
optimally exploit training data.
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Problem: 
From training data with correlated attributes 

“brown” and “fluffy”,  should a model use color 

features and learn "brown", or texture features 

and learn "fluffy"? 

Problem:  
Is the definition of “fluffy” the same across 

categories? Does “fluffy” indicate different 

visual properties in different categories? 

Attribute: fluffy  

Fig. 1: Two problems caused by oversharing the features and attribute modes in attribute learning
framework. (i) On the one hand, when attribute models overshare feature supports, it is hard to
disambiguate correlated attributes that are semantically very different, such as “brown” and ‘fluffy”
in the example depicted on the horizontal axis. (ii) On the other hand, when attribute classifiers are
overshared across object categories, we ignore the fact that the same semantic attribute could have
very different visual appearances in different categories.

We propose methods to actively account for the semantic information presented
by these distinctions, which allow the learning of better attribute classifiers using
the same attribute-labeled training data. Our key idea for improving upon existing
attribute learning methods is to make the system “learn the right thing” by avoiding
oversharing, using semantic knowledge to decide what to share and what not to share
during learning. We implement this general idea in two separate multi-task learning
(MTL) schemes to address each of the two problems enumerated above. Multi-task
learning methods aim to jointly learn multiple tasks. Whereas typically a multi-task
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learner strives for greater sharing between tasks, we propose new forms of MTL
where the algorithm is intentionally selective about where to share. We show how
the concept of selective sharing helps eliminate two major problems that plague the
standard attribute recognition approach—namely, (i) disambiguating each attribute
from its spurious correlated image properties (Section 2), and (ii) specializing in-
dividual attribute classifiers to fit differences in visual manifestations of the same
attribute across different object categories (Section 3).

Problem #1: Oversharing image features across categories conflates pair(s) of
attributes. In the first main contribution of this chapter, we reconsider the standard
approach of using the same feature representation for all attributes. Even standard
multi-task learning approaches encourage the sharing of features across attributes.
This defect makes these approaches especially prone to learning image properties
that are correlated with the attribute of interest, rather than the attribute itself. In
Section 2, we propose a multi-task learning method informed by attribute seman-
tics to disambiguate correlated attributes while learning attribute vocabularies, by
encouraging different classifiers to rely on signals from disjoint sets of dimensions
in the visual feature space [17].

Problem #2: Oversharing attributes across categories conflates diverse “modes”
of same-named attributes. In the second main contribution of this chapter, we
reconsider the standard approach of learning one monolithic attribute classifier
from training images pooled from all categories. While the notion of a category-
independent attribute has certain appeal—are attributes really category-independent?
For instance, does fluffiness on a dog look the same as fluffiness on a towel? Are the
features that make a high heeled shoe look formal the same as those that make a san-
dal look formal? In such examples (and many others), while the linguistic semantics
are preserved across categories, the visual appearance of the property is transformed
to some degree. That is, some attributes are specialized to the category. This sug-
gests that simply pooling a bunch of training images of any object/scene with the
named attribute and learning a discriminative classifier—the status quo approach—
will weaken the learned model to account for the “least common denominator” of
the attribute’s appearance, and, in some cases, completely fail to generalize. In Sec-
tion 3, we present a method to learn category-sensitive analogous attributes, by
exploring the correlations between different attributes and object categories [6].

Thus, both of these approaches implement our key idea of selective sharing (of
features and models respectively) when treating attribute learning as a multi-task
learning problem. In both approaches, we pursue joint learning of a vocabulary of
attributes. Whereas the first approach produces a single attribute model per attribute
word, the second approach further formulates the learning of each attribute itself as
multiple related tasks corresponding to specialized models of the attribute for each
category. In both cases, easily available semantic information (attribute semantics
and category labels respectively) is exploited to help guide the selective sharing.

Roadmap In the rest of this chapter, we will first zoom in, one by one, to study the
two above-listed instantiations of our general idea of selective sharing (as opposed
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to indiscriminate “oversharing”) during attribute learning, delving into their tech-
nical approaches and experimental results validating their usefulness. Specifically,
in Section 2, we will focus on our method for learning decorrelated models for a
vocabulary of visual attributes as described above, and Section 3, we will focus on
our method for learning category-specific attribute classifiers. In Section 4, we will
zoom back out to look at previous work that is relevant to the ideas discussed in this
chapter. Finally, in Section 5, we will summarize our findings and outline areas for
future work that may build on our ideas.

2 Learning Decorrelated Attributes

Many applications of visual attributes such as image search and zero-shot learn-
ing build on learned models for a vocabulary of multiple, diverse attributes, e.g., a
detailed textual query in image search might describe various attributes of the de-
sired target image. A key underlying challenge in learning discriminative models of
multiple attributes is that the hypothesis space is very large. The standard discrim-
inative model can associate an attribute with any direction in the feature space that
happens to separate positive and negative instances in the training dataset, result-
ing very often in the learning of properties that are spuriously correlated with the
attribute of interest. The issue is exacerbated by the fact that many nameable visual
properties will occupy the same spatial region in an image. For example, a “brown”
object might very well also be “round” and “shiny”. In contrast, when learning ob-
ject categories, each pixel is occupied by just one object of interest, decreasing the
possibility of learning incidental classes. Furthermore, even if we attempt stronger
training annotations, spatial extent annotation for attributes is harder and more am-
biguous than it is for objects. Consider, for example, how one might mark the spatial
extent of “pointiness” in the images in Figure 2.

Fig. 2: What attribute is present in the first three images, but not the last two? Standard methods
attempting to learn “furry” from such images are prone to learn “brown” instead—or some combi-
nation of correlated properties. We propose a multi-task attribute learning approach that resists the
urge to share features between attributes that are semantically distinct yet often co-occur.

But does it even matter if we inadvertently learn a correlated attribute? After
all, weakly supervised object recognition systems have long been known to exploit
correlated background features appearing outside the object of interest that serve as
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“context”. For attribute learning, however, it is a problem, on two fronts. First of all,
with the large number of possible combinations of attributes (up to 2k for k binary
attributes), we may see only a fraction of plausible ones during training, making
it risky to treat correlated cues as a useful signal. In fact, semantic attributes are
touted for their extendability to novel object categories, where correlation patterns
may easily deviate from those observed in training data. Secondly, many attribute
applications—such as image search [20,22,38], zero-shot learning [25], and textual
description generation [9]—demand that the named property align meaningfully
with the image content. For example, an image search user querying for “pointy-
toed” shoes would be frustrated if the system (wrongly) conflates pointiness with
blackness due to training data correlations. We contrast this with the object recogni-
tion setting, where object categories themselves may be thought of as co-occurring,
correlated bundles of attributes. Learning to recognize an object thus implicitly in-
volves learning these correlations.

Given these issues, our goal for the rest of this section is to decorrelate attributes
at the time of learning, thus learning attribute classifiers that fire only when the cor-
rect semantic property is present. In particular, we want our classifiers to generalize
to test images where the attribute co-occurrence patterns may differ from those ob-
served in training. To this end, we propose a multi-task learning framework that
encourages each attribute classifier to use a disjoint set of image features to make
its predictions. This idea of feature competition is central to our approach.

As discussed in Section 1, whereas conventional models train each attribute clas-
sifier independently, and therefore are prone to re-using image features for corre-
lated attributes, our multi-task approach resists the urge to share. Instead, it aims to
isolate distinct low-level features for distinct attributes in a vocabulary by enforc-
ing a structured sparsity prior over the attributes. We design this prior to leverage
side information about the attributes’ semantic relatedness, aligning feature sharing
patterns with semantically close attributes and feature competition with semanti-
cally distant ones. In the example in Figure 2, the algorithm might discover that di-
mensions corresponding to color histogram bins should be used to detect “brown”,
whereas those corresponding to texture in the center of the image might be reserved
to detect “furry”.

2.1 Approach

In the following, we first describe the inputs to our algorithm: the semantic rela-
tionships among attributes (Section 2.1.1) and the low-level image descriptors (Sec-
tion 2.1.2). Then we introduce our learning objective and optimization framework
(Section 2.1.3), which outputs a classifier for each attribute in the vocabulary.
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2.1.1 Semantic Attribute Groups

Suppose we are learning attribute classifiers2 for a vocabulary of M nameable at-
tributes, indexed by {1,2, . . . ,M}. To represent the attributes’ semantic relation-
ships, we use L attribute groups, encoded as L sets of indices S1, . . . ,SL, where each
Sl = {m1,m2,m3, . . .} contains the indices of the specific attributes in that group,
and 1≤ mi ≤M. While nothing in our approach restricts attribute groups to be dis-
joint, for simplicity in our experiments each attribute appears in one group only.

If two attributes are in the same group, this reflects that they have some semantic
tie. For instance, in Figure 3, S1 and S2 correspond to texture and shape attributes
respectively. For attributes describing fine-grained categories, like bird species, a
group can focus on domain-specific aspects inherent to the taxonomy—for exam-
ple, one group for beak shape (hooked, curved, dagger, etc.) and another group for
belly color (red belly, yellow belly, etc.). While such groups could conceivably be
mined automatically (from text data, WordNet, or other sources), we rely on existing
manually defined groups [25, 48] in our experiments (see Figure 6).

As we will see below, group co-membership signals to our learning algorithm
that the attributes are more likely to share features. For spatially localized attribute
groups (e.g., beak shape), this could guide the algorithm to concentrate on descrip-
tors originating from the same object part; for global attribute groups (e.g., colors),
this could guide the algorithm to focus on a subset of relevant feature channels.
There might be no such thing as a single “optimal” grouping; rather, we expect such
partial side information about semantics to help intelligently decide when to allow
sharing.

Our use of attribute label dimension-grouping to exploit relationships among
tasks is distinct from and not to be confused with descriptor dimension grouping
to represent feature space structure, as in the single-task “group lasso” [55]. While
simultaneously exploiting feature space structure could conceivably further improve
our method’s results, we restrict our focus in this paper to modeling and exploiting
task relationships.

2.1.2 Image Feature Representation

When designating the low-level image feature space where the classifiers will be
learned, we are mindful of one main criterion: we want to expose to the learning
algorithm spatially localized and channel localized features. By spatially localized,
we mean that the image content within different local regions of the image should
appear as different dimensions in an image’s feature vector. Similarly, by channel
localized, we mean that different types of descriptors (color, texture, etc.) should
occupy different dimensions. This way, the learner can pick and choose a sparse set
of both spatial regions and descriptor types that best discriminate attributes in one
semantic group from another.

2 We use “attribute”, “classifier” and “task” interchangeably in this section.
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To this end, we extract a series of histogram features for multiple feature channels
pooled within grid cells at multiple scales. We reduce the dimension of each compo-
nent histogram (corresponding to a specific window+feature type) using Principal
Component Analysis (PCA). This alleviates gains from trivially discarding low-
variance dimensions and isolates the effect of attribute-specific feature selection.
Since we perform PCA per channel, we retain the desired localized modality and
location associations in the final representation. More dataset-specific details are in
the experiments below in Section 2.2.

2.1.3 Joint Attribute Learning with Feature Sharing and Competition

The input to our learning scheme is (i) the descriptors for N training images, each
represented as a D-dimensional vector xn, (ii) the corresponding (binary) attribute
labels for all attributes, which are indexed by a = 1, . . . ,M, and (iii) the semantic
attribute groups S1, . . . ,SL. Let XN×D be the matrix composed by stacking the train-
ing image descriptors. We denote the nth row of X as the row vector xn and the dth

column of X as the column vector xd . The scalar xd
n denotes the (n,d)th entry of

X. Similarly, the training attribute labels are represented as a matrix YN×M with all
entries ∈ {0,1}. The rows and columns of Y are denoted yn and ym respectively.

Because we wish to impose constraints on relationships between attribute mod-
els, we learn all attributes simultaneously in a multi-task learning setting, where
each “task” corresponds to an attribute. The learning method outputs a parameter
matrix WD×M whose columns encode the classifiers corresponding to the M at-
tributes. We use logistic regression classifiers, with the loss function

L(X,Y;W) = ∑
m,n

log(1+ exp((1−2ym
n )xT

n wm)). (1)

Each classifier has an entry corresponding to the “weight” of each feature dimen-
sion for detecting that attribute.

Note that a row wd of W represents the usage of feature dimension d across all
attributes; a zero in wm

d means that feature d is not used for attribute m.

Formulation

Our method operates on the premise that semantically related attributes tend to be
determined by (some of) the same image features, and that semantically distant at-
tributes tend to rely on (at least some) distinct features. In this way, the support of an
attribute in the feature space—that is, the set of dimensions with non-zero weight—
is strongly tied to its semantic associations. Our goal is to effectively exploit the
supplied semantic grouping by inducing (i) in-group feature sharing (ii) between-
group competition for features. We encode this as a structured sparsity problem,
where structure in the output attribute space is represented by the grouping. Fig-
ure 3 illustrates the envisioned effect of our approach.
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Fig. 3: Sketch of our idea. We show weight vectors (absolute value) for attributes learnt by
standard (left) and proposed (right) approaches. The higher the weight (lighter colors) assigned to a
feature dimension, the more the attribute relies on that feature. In this instance, our approach would
help resolve “silky” and “boxy”, which are highly correlated in training data and consequently
conflated by standard learning approaches.

To set the stage for our method, we next discuss two existing sparse feature se-
lection approaches, both of which we will use as baselines in Section 2.2. The first
is a simple adaptation of the single-task lasso method [43]. The original lasso regu-
larizer applied to learning a single attribute m in our setting would be ‖wm‖1. As is
well known, this convex regularizer yields solutions that are a good approximation
to sparse solutions that would have been generated by the count of non-zero entries,
‖wm‖0.

By summing over all tasks, we can extend single-task lasso [43] to the multi-task
setting to yield an “all-competing” lasso minimization objective:

W∗ = arg min
W

L(X,Y;W)+λ ∑
m
‖wm‖1, (2)

where λ ∈ R is a scalar regularization parameter balancing sparsity against classi-
fication loss. Note that the regularizing second term may be rewritten ∑m ‖wm‖1 =

∑d ‖wd‖1 = ‖W‖1. This highlights how the regularizer is symmetric with respect to
the two dimensions of W, and may be thought of, respectively, as (i) encouraging
sparsity on each task column wm, and (ii) imposing sparsity on each feature row wd .
The latter effectively creates competition among all tasks for the feature dimension
d.

In contrast, the “all-sharing” `21 multi-task lasso approach for joint feature se-
lection [1] promotes sharing among all tasks, by minimizing the following objective
function:

W∗ = arg min
W

L(X,Y;W)+λ ∑
d
‖wd‖2. (3)

To see that this encourages feature sharing among all attributes, note that the regu-
larizer may be written as the `1 norm ‖V‖1 = ∑d ‖wd‖2, where the single-column
matrix V is formed by collapsing the columns of W with the `2 operator, i.e. its dth

entry vd = ‖wd‖2. The `1 norm of V prefers sparse-V solutions, which in turn means
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the individual classifiers must only select features that also are helpful to other clas-
sifiers. That is, W should tend to have rows that are either all-zero or all-nonzero.

We now define our objective, which is a semantics-informed intermediate ap-
proach that lies between the extremes in Equation (2) and 3 above. Our minimization
objective retains the competition-inducing `1 norm of the conventional lasso across
groups, while also applying the `21-type sharing regularizer within every semantic
group:

W∗ = arg min
W

L(X,Y;W)+λ

D

∑
d=1

L

∑
l=1
‖wSl

d ‖2, (4)

where wSl
d is a row vector containing a subset of the entries in row wd , namely,

those specified by the indices in semantic group Sl . This regularizer restricts the
column-collapsing effect of the `2 norm to within the semantic groups, so that V is
no longer a single column vector but a matrix with L columns, one corresponding to
each group. Figure 4 visualizes the idea. Note how sparsity on this V corresponds
to promoting feature competition across unrelated attributes, while allowing sharing
among semantically grouped attributes.

attribute groups

fe
a
tu

re
s

Fig. 4: “Collapsing” of grouped columns of the feature selection matrix W prior to applying the
lasso penalty ∑l ‖vl‖1. Non-zero entries in W and V are shaded. Darkness of shading in V repre-
sents how many attributes in that group selected that feature.

Our model unifies the previous formulations and represents an intermediate point
between them. With only one group S1 = {1,2, . . . ,M} containing all attributes,
Equation (4) simplifies to Equation (3). Similarly, setting each attribute to belong to
its own singleton group Sm = {m} produces the lasso formulation of Equation (2).
Figure 5 illustrates their respective differences in structured sparsity. While stan-
dard lasso aims to drop as many features as possible across all tasks, standard “all-
sharing” aims to use only features that can be shared by multiple tasks. In contrast,
the proposed method seeks features shareable among related attributes, while it re-
sists feature sharing among less related attributes.

As we will show in results, this mitigates the impact of incidentally correlated
attributes. Pushing attribute group supports away from one another helps decorre-
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Fig. 5: A part of the W matrix (thresholded, absolute value) learned by the different structured
sparsity approaches on CUB data. The thin white vertical lines separate attribute groups.

late unrelated attributes within the vocabulary. Even if “brown” and “furry” always
co-occur at training time, there is pressure to select distinct features in their clas-
sifiers. Meanwhile, feature sharing within the group essentially pools in-group la-
bels together for feature selection, mitigating the risk of chance correlations—not
only within the vocabulary, but also with visual properties (nameable or otherwise)
that are not captured in the vocabulary. For example, suppose “hooked beak” and
“brown belly” are attributes that often co-occur; if “brown belly” shares a group
with the easier-to-learn “yellow belly”, the pressure to latch onto feature dimensions
shareable between brown and yellow belly indirectly leads “hooked beak” towards
disjoint features.

We stress, however, that the groups are only a prior. While our method prefers
sharing for semantically related attributes, it is not a hard constraint, and misclassi-
fication loss also plays an important role in deciding which features are relevant.

2.1.4 Optimization

Mixed norm regularizations of the form of Equation (4), while convex, are non-
smooth and non-trivial to optimize. Such norms appear frequently in the structured
learning literature [1, 3, 19, 55]. As in [19], we reformulate the objective by repre-
senting the 2-norm in the regularizer in its dual form, before applying the smoothing
proximal gradient descent [7] method to optimize a smooth approximation of the re-
sulting objective. More details are in [17].

2.2 Experiments and Results

2.2.1 Datasets

We use three datasets with 422 total attributes: (i) CUB-200-2011 (“CUB”) [48],
(ii) Animals with Attributes (“AwA”) [25], and (iii) aPascal/aYahoo (“aPY”) [9].
Dataset statistics are summarized in Table 1. Following common practice, we sepa-
rate the datasets into “seen” and “unseen” classes. The idea is to learn attributes on
one set of seen object classes, and apply them to new unseen objects at test time.
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Table 1: Summary of dataset statistics

Categories Attributes Features
Datasets seen unseen num (M) groups (L) # windows D

CUB-200-2011 (CUB) [48] 100 100 312 28 15 375
Animals with Attributes (AwA) [25] 40 10 85 9 1,21 290

aPascal/aYahoo-restricted (aPY-25) [9] 20 12 25 3 7 105

This stress-tests the generalization power, since correlation patterns will naturally
deviate in novel objects. The seen and unseen classes for AwA and aPY come pre-
specified. For CUB, we randomly select 100 of the 200 classes to be “seen”.

2.2.2 Features

Section 2.1.2 defines the basic feature extraction process. On AwA, we use the fea-
tures provided with the dataset (global bag-of-words on 4 channels, 3-level pyramid
with 4×4+2×2+1=21 windows on 2 channels). For CUB and aPY, we compute fea-
tures with the authors’ code [9]. On aPY, we use a one-level pyramid with 3×2+1=7
windows on four channels, following [9]. On CUB, we extract features at the pro-
vided annotated part locations. To avoid occluded parts, we restrict the dataset to
instances that have the most common part visibility configuration (all parts visible
except “left leg” and “left eye”).

2.2.3 Semantic Groups

To define the semantic groups, we rely largely on existing data. CUB specifies 28
attribute groups [48] (head color, back pattern etc.). For AwA, the authors suggest
9 groups in [24] (color, texture, shape etc.). For aPY, which does not have pre-
specified attribute groups, we group 25 attributes (of the 64 total) into shape, mate-
rial and facial attribute groups guided by suggestions in [24] (“aPY-25”). The full
groups are shown in Figure 6.

As discussed in Section 2.1.2, our method requires attribute groups and image
descriptors to be mutually compatible. For example, grouping attributes based on
their locations would not be useful if combined with a bag-of-words description that
captures no spatial ordering. However, our results suggest that this compatibility is
easy to satisfy. Our approach successfully exploits pre-specified attribute groups
with independently pre-specified feature representations.

2.2.4 Baselines

We compare to four methods throughout. Two are single-task learning baselines, in
which each attribute is learned separately: (i) “standard”: `2-regularized logistic re-
gression, and (ii) “classwise”: the object class-label based feature selection scheme
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(a) Caltech-UCSD Birds (CUB) groups

(b) Animals with Attributes (AwA) groups
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Fig. 6: Semantic attribute groups on (a) CUB, (b) AwA and (c) aPY-25 datasets, as used in Sec-
tion 2.2. Attribute groups are enclosed in shaded boxes, and phrases in larger font labeling the
boxes indicate the rationale for the grouping. Additionally, in (a), the color and pattern groups,
condensed above, are to be interpreted as follows. Each part on the left, coupled with the term
in the middle (color/pattern) represents the title of an attribute group. The predicates on the right
applied to each part constitute the attributes in the its group, e.g., the “belly-color” attribute group
has attributes “belly-color-blue”, “belly-color-brown” etc.

proposed in [9]. The “classwise” method is, to our knowledge, the only previous
work that attempts to explicitly decorrelate semantic attributes. For each attribute,
the classwise method selects discriminative image features for each object class,
then pools the selected features to learn the attribute classifier. For example, it first
finds features good for distinguishing cars with and without “wheel”, then buses
with and without “wheel”, etc. The idea is that examples from the same class help
isolate the attribute of interest. For this baseline, we use logistic regression in the
final stage replacing the SVM, for uniformity with the others. The other two base-
lines are the sparse multi-task methods in Section 2.1: (iii) “lasso” (Eq 2), and (iv)
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“all-sharing” (Eq 3). All methods produce logistic regression classifiers and use the
same input features. All parameters (λ for all methods, plus a second parameter
for [9]) are validated with held out unseen class data.

2.2.5 Attribute Detection Accuracy

First, we test basic attribute detection accuracy. For this task, every test image is to
be labeled with a binary label for each attribute in the vocabulary. Attribute models
are trained on a randomly chosen 60% of the “seen” class data and tested on three
test sets: (i) unseen: unseen class instances (ii) all-seen: other instances of seen
classes and (iii) hard-seen: a subset of the all-seen set that is designed to consist of
outliers within the seen-class distribution. To create the hard-seen set, we first com-
pute a binary class-attribute association matrix as the thresholded mean of attribute
labels for instances of each seen class. Then hard sets for each attribute are com-
posed of instances that violate their class-level label for that attribute in the matrix,
e.g. albino elephants (gray), cats with occluded ears (ear).

2.2.6 Overall Results

Table 2: Accuracy scores for attribute detection (AP×100). Higher is better. U, H and S refer
respectively to unseen, hard-seen and all-seen test sets (Section 2.2.5). Our approach generally
outperforms existing methods, and especially shines when attribute correlations differ between
train and test data (i.e., the U and H scenarios).

Datasets CUB AwA aPY-25
Methods U H S U S U H S
lasso 17.83 25.52 22.19 52.74 61.75 27.13 29.25 31.84
all-sharing [1] 17.78 25.46 22.17 53.78 60.21 26.01 29.34 25.60
classwise [9] 19.09 27.56 24.06 N/A N/A 27.29 27.76 35.95
standard 18.36 27.06 23.69 53.66 66.87 27.27 28.45 37.72
proposed 21.14 29.62 26.54 54.97 64.80 29.89 33.18 30.21

Table 2 shows the mean AP scores over all attributes, per dataset.3 On all three
datasets, our method generalizes better than all baselines to unseen classes and hard
seen data.

While the “classwise” technique of [9] helps decorrelate attributes to some ex-
tent, improving over “standard” on aPY-25 and CUB, it is substantially weaker than
the proposed method. That method assumes that same-object examples help isolate
the attribute; yet, if two attributes always co-vary in the same-object examples (e.g.,
if cars with wheels are always metallic) then the method is still prone to exploit cor-

3 AwA has only class-level attribute annotations, so (i) the classwise baseline [9] is not applicable
and (ii) the “hard-seen” test set is not defined.
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related features. Furthermore, the need for sufficient positive and negative attribute
examples within each object class can be a practical burden (and makes it inappli-
cable to AwA). In contrast, our idea to jointly learn attributes and diffuse features
between them is less susceptible to same-object correlations and does not make such
label requirements. Our method outperforms this state-of-the-art approach on each
dataset.

The two multi-task baselines (lasso and all-sharing) are typically weakest of all,
verifying that semantics play an important role in deciding when to share. In fact,
we found that the all-sharing/all-competing regularization generally hurt the models,
leading the validated regularization weights λ to remain quite low.
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Fig. 7: Attribute detection results across all datasets (Section 2.2.5)

Figure 7 plots the unseen set results for the individual 422 attributes from all
datasets. Here we show paired comparisons of the three best performing methods:
proposed, classwise [9], and standard. For each plot, attributes are arranged in order
of increasing detectability for one method.4 For nearly all of the 422 attributes, our
method outperforms both the standard learning approach (first plot) and state-of-
the-art classwise method (second plot).

2.2.7 Evidence of “Learning the Right Thing”

Comparing results between the all-seen and hard-seen cases, we see evidence that
our method’s gains are due to its ability to preserve attribute semantics. On aPY-
25 and AwA, our method underperforms the standard baseline on the all-seen set,
whereas it improves performance on the unseen and hard-seen sets. This matches
the behavior we would expect from a method that successfully resolves correlations
in the training data: it generalizes better on novel test sets, sometimes at the cost of
mild performance losses on test sets that have similar correlations (where a learner
would benefit by learning the correlations).

In Figure 9(a), we present qualitative evidence in the form of cases that were
mislabeled by the standard baseline but correctly labeled by our approach, e.g., the
wedge-shaped “Flatiron” building (row 2, fourth from left) is correctly marked not

4 Since “classwise” is inapplicable to AwA, its scores are set to 0 for that dataset (hence the circles
along the x-axis in plots 2 and 3).
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Fig. 8: Contributions of bird parts (shown as highlights) to the correct detection of specific at-
tributes. Our method looks in the right places more often than the standard single-task baseline.
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Fig. 9: (a) Success cases: Annotations shown are our method’s attribute predictions, which match
ground truth. The logistic regression baseline (“standard”) fails on all these cases. (b) Failure
cases: Cases where our predictions (shown) are incorrect and the “standard” baseline succeeds.

“3D boxy” and the bird in the muck (row 2, end) is correctly marked as not hav-
ing “brown underparts” because of the black grime sticking to it. In contrast, the
baseline predicts the attribute based on correlated cues (e.g., city scenes are usually
boxy, not wedge-shaped) and fails on these images.
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Figure 9(b) shows some failure cases. Common failure cases for our method
are when the image is blurred, the object is very small or information is otherwise
deficient—cases where learning context from co-occurring aspects helps. In the low-
resolution “feather” case, for instance, recognizing bird parts might have helped to
correctly identify “feather”.

Still more qualitative evidence that we preserve semantics comes from studying
the features that influence the decisions of different methods. The part-based repre-
sentation for CUB allows us to visualize the contributions of different bird parts to
determine any given attribute. To find locations on instance number n that contribute
to positive detection of attribute m, we take the absolute value of the element-wise
product of descriptor xn with the attribute weight vector wm—denote this h. Each
feature dimension is mapped onto the bird part it was computed from, in a map-
ping f . For each part p, we then compute its weight as lp = ∑ f (i)=p |hi|. These part
weights are visualized as highlights in Fig 8.

Our method focuses on the proper spatial regions associated with the bird parts,
whereas the baseline picks up on correlated features. For example, on the “brown
wing” image, while the baseline focuses on the head, our approach almost exclu-
sively highlights the wing.

2.2.8 Zero-shot Object Recognition

Table 3: Scores on zero-shot object recognition (accuracy). Higher is better.

Datasets CUB AwA aPY-25
Methods [100 cl] [10 cl] [12 cl]
lasso 7.35 25.32 9.88
all-sharing [1] 7.34 19.40 6.95
classwise [9] 9.15 N/A 20.00
standard 9.67 26.29 20.09
proposed 10.70 30.64 19.43

Next we show the impact of retaining attribute semantics for zero-shot object
recognition. Closely following the setting in [25], the goal is to learn object cate-
gories from textual descriptions (e.g., “zebras are striped and four-legged”), but no
training images, making attribute correctness crucial. We input attribute probabili-
ties from each method’s models to the Direct Attribute Prediction (DAP) framework
for zero-shot learning [25].

Table 3 shows the results. Our method yields substantial gains in multi-class
accuracy on the two large datasets (CUB and AwA). It is marginally worse than
“standard” and “classwise” on the aPY-25 dataset, despite our significantly better
attribute detection (Section 2.2.5). We believe that this may be due to recognition
with DAP being less reliable when working with fewer attributes, as in aPY-25 (25
attributes).
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2.2.9 Category Discovery with Semantic Attributes

Finally, we demonstrate the impact on category discovery. Cognitive scientists pro-
pose that natural categories are convex regions in conceptual spaces whose axes cor-
respond to “psychological quality dimensions” [12]. This motivates us to perform
category discovery with attributes. Treating semantic visual attributes as a concep-
tual space for visual categorization, we cluster each method’s attribute presence
probabilities (on unseen class instances) using k-means to discover the convex clus-
ters. We set k to the true number of classes. We compare each method’s clusters
with the true unseen classes on all three datasets. For CUB, we test against both
the 100 species (CUB-s) as well as the taxonomic families (CUB-f). Performance is
measured using the normalized mutual information (NMI) score which measures the
information shared between a given clustering and the true classes without requiring
hard assignments of clusters to classes.

Table 4 shows the results. Our method performs significantly better than the base-
lines on all tasks. If we were to instead cluster the ground truth attribute signatures,
we get a sense of the upper bound (last row). This shows that (i) visual attributes
indeed constitute a plausible “conceptual space” for discovery and (ii) improved
attribute learning models could yield large gains for high-level visual tasks.

Table 4: NMI scores for discovery of unseen categories (Section 2.2.9). Higher is better (0-100).

Methods / Datasets CUB-s AwA aPY-25 CUB-f
lasso 54.85 18.91 19.15 35.03
all-sharing [1] 54.82 18.81 17.17 35.08
classwise [9] 57.46 N/A 19.73 38.62
standard 56.97 22.39 17.61 37.19
proposed 59.44 24.11 24.76 42.81
GT annotations 64.89 100.00 64.29 49.37

Before moving on to the second instantiation of our general idea for multi-task
learning of attributes without oversharing, here is a summary of what we have
learned so far. We have shown how to use semantics to guide attribute learning
without oversharing across attributes. Through extensive experiments across multi-
ple datasets, we have verified that: (i) our approach overcomes misleading training
data correlations to successfully learn semantic visual attributes, and (ii) preserv-
ing semantics in learned attributes is beneficial as an intermediate step in high-level
tasks.

3 Learning Analogous Category-Sensitive Attributes

In the previous section, we showed how to avoid oversharing features across differ-
ent attributes by our proposed multi-task learning approach. In this section, we will
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Fluffiness of dog Fluffiness of towel 

= 
?? 

Fig. 10: Is fluffiness on a dog the same as fluffiness on a towel? Existing approaches assume an
attribute such as “fluffy” can be used across different categories. However, as seen in here, in reality
the same attribute name may refer to different visual properties for different categories.

move to a different instantiation of our idea for multi-task learning with selective
sharing. Specifically, we are going to show how to learn analogous category sen-
sitive attributes. These analogous attributes aim to prevent another aspect of over-
sharing: using a single universal attribute model across all object categories.

Intuitively, the conventional approach of universal attribute learning is an over-
simplification. For example, as shown in Figure 10, fluffiness on a dog does not look
the same as fluffiness on a towel. In this case, the attribute “fluffy” refers to different
visual properties in different categories. Whereas above we encourage some fea-
tures to be shared within certain attributes and keep some features disjoint between
certain attributes, here we want to distinctively build a category-sensitive attribute
for each category. Instead of sharing the attribute across categories, we utilize the
correlation between attributes and categories during training.

What would it mean to have category-sensitive attribute predictions? At a glance
it sounds like the other extreme from the current norm: rather than a single attribute
model for all categories, one would train a single attribute model for each and every
category. Furthermore, to learn accurate category-sensitive attributes, it seems to
require category-sensitive training. For example, we could gather positive exemplar
images for each category+attribute combination (e.g., separate sets of fluffy dog
images, fluffy towel images). If so, this is a disappointment. Not only would learning
attributes in this manner be quite costly in terms of annotations, but it would also
fail to leverage the common semantics of the attributes that remain in spite of their
visual distinctions.

To resolve this problem, we introduce a novel form of transfer learning to infer
category-sensitive attribute models. Intuitively, even though an attribute’s appear-
ance may be specialized for a particular object, there likely are latent variables con-
necting it to other objects’ manifestations of the property. Plus, some attributes are
quite similar across some class boundaries (e.g., spots look similar on Dalmatian
dogs and Pinto horses). Having learned some category-sensitive attributes, then, we
ought to be able to predict how the attribute might look on a new object, even without
labeled examples depicting that object with the attribute. For example, in Figure 11,
suppose we want to recognize striped dogs, but we have no separate curated set of
striped-dog exemplars. Having learned “spotted”, “brown”, etc. classifiers for dogs,
cats, and equines, the system should leverage those models to infer what “striped”
looks like on a dog. For example, it might infer that stripes on a dog look somewhat
like stripes on a zebra but with shading influenced by the shape dogs share with cats.

Based on this intuition, we show how to infer an analogous attribute—an at-
tribute classifier that is tailored to a category, even though we lack annotated exam-
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Fig. 11: Having learned a sparse set of object-specific attribute classifiers, our approach infers
analogous attribute classifiers. The inferred models are object-sensitive, despite having no object-
specific labeled images of that attribute during training.

ples of that category exhibiting that attribute. Given a sparse set of category-sensitive
attribute classifiers, our approach first discovers the latent structure that connects
them, by factorizing a tensor indexed by categories, attributes, and classifier dimen-
sions. Then, we use the resulting latent factors to complete the tensor, inferring the
“missing” classifier parameters for any object+attribute pairings unobserved during
training. As a result, we can create category-sensitive attributes with only partial
category-sensitive labeled data. Our solution offers a middle ground between com-
pletely category-independent training (the norm today [9, 23, 25, 32, 33, 36]) and
completely category-sensitive training. We do not need to observe all attributes iso-
lated on each category, and we capitalize on the fact that some categories and some
of their attributes share common parameters.

Analogous attributes can be seen as a form of transfer learning. Existing trans-
fer learning approaches for object recognition [2, 4, 10, 27, 30, 34, 44, 50, 53] aim to
learn a new object category with few labeled instances by exploiting its similarity to
previously learned class(es). While often the source and target classes must be man-
ually specified [2, 4, 50], some techniques automatically determine which classes
will benefit from transfer [16, 27, 44]. [30] uses class co-occurrence statistics to
infer classifier weights for a given concept from those of related visual concepts.
Different from them, our goal is to reduce labeled data requirements. More impor-
tantly, our idea for transfer learning jointly in two label spaces is new, and, unlike
the prior work, we can infer new classifiers without training examples. See Section 4
for further discussion of related work.
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3.1 Approach

Given training images labeled by their category and one or more attributes, our
method produces a series of category-sensitive attribute classifiers. Some of those
classifiers are explicitly trained with the labeled data, while the rest are inferred by
our method. We show how to create these analogous attribute classifiers via tensor
completion.

3.1.1 Learning Category-Sensitive Attributes

In existing systems, attributes are trained in a category-independent manner [5, 9,
22, 23, 25, 32, 33, 36, 38]. Positive exemplars consist of images from various object
categories, and they are used to train a discriminative model to detect the attribute
in novel images. We will refer to such attributes as universal.

Here we challenge the convention of learning attributes in a completely category-
independent manner. As discussed above, while attributes’ visual cues are often
shared among some objects, the sharing is not universal. It can dilute the learning
process to pool cross-category exemplars indiscriminately.

The naive solution to instead train category-sensitive attributes would be to par-
tition training exemplars by their category labels, and train one attribute per cat-
egory. Were labeled examples of all possible attribute+object combinations abun-
dantly available, such a strategy might be sufficient. However, in initial experiments
with large-scale datasets, we found that this approach is actually inferior to training
a single universal attribute. We attribute this to two things: (i) even in large-scale
collections, the long-tailed distribution of object/scene/attribute occurrences in the
real world means that some label pairs will be undersampled, leaving inadequate ex-
emplars to build a statistically sound model, and (ii) this naive approach completely
ignores attributes’ inter-class semantic ties.

To overcome these shortcomings, we instead use an importance-weighted sup-
port vector machine (SVM) to train each category-sensitive attribute. Let each train-
ing example (xi,yi) consist of an image descriptor xi ∈ ℜD and its binary attribute
label yi ∈ {−1,1}. Suppose we are learning “furriness” for dogs. We use examples
from all categories (dogs, cats, etc.), but place a higher penalty on violating attribute
label constraints for the same category (the dog instances). This amounts to an SVM
objective for the hyperplane w:

minimize

(
1
2
||w||2 +Cs ∑

i
ξi +Co ∑

j
γ j

)
(5)

s.t. yiwT xi ≥ 1−ξi; ∀i ∈S

y jwT x j ≥ 1− γ j; ∀ j ∈ O

ξi ≥ 0;γ j ≥ 0,
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where the sets S and O denote those training instances in the same-class (dog) and
other classes (non-dogs), respectively, and Cs and Co are slack penalty constants.
Note, S and O contain both positive and negative examples for the attribute in
consideration.

Instance re-weighting is commonly used, e.g., to account for label imbalance
between positives and negatives. Here, by setting Co <Cs, the out-of-class examples
of the attribute serve as a simple prior for which features are relevant. This way we
benefit from more training examples when there are few category-specific examples
of the attribute, but we are inclined to ignore those that deviate too far from the
category-sensitive definition of the property.

3.1.2 Object-Attribute Classifier Tensor

Next we define a tensor to capture the structure underlying many such category-
sensitive models. Let m= 1, . . . ,M index the M possible attributes in the vocabulary,
and let t = 1, . . . ,T index the T possible object/scene categories. Let w(t,m) denote
a category-sensitive SVM weight vector trained for the t-th object and m-th attribute
using Equation (5).

We construct a 3D tensor W ∈ ℜT×M×D using all available category-sensitive
models. Each entry wtm

d contains the value of the d-th dimension of the classifier
w(t,m). For a linear SVM, this value reflects the impact of the d-th dimension of
the feature descriptor x for determining the presence/absence of attribute m for the
object class t.

The resulting tensor is quite sparse. We can only fill entries for which we have
class-specific positive and negative training examples for the attribute of interest.
In today’s most comprehensive attribute datasets [33, 36], this means only ∼ 25%
of the possible object-attribute combinations can be trained in a category-sensitive
manner. Rather than resort to universal models for those “missing” combinations,
we propose to use the latent factors for the observed classifiers to synthesize analo-
gous models for the unobserved classifiers, as we explain next.

3.1.3 Inferring Analogous Attributes

Having learned how certain attributes look for certain object categories, our goal
is to transfer that knowledge to hypothesize how the same attributes will look for
other object categories. In this way, we aim to infer analogous attributes: category-
sensitive attribute classifiers for objects that lack attribute-labeled data. We pose the
“missing classifier” problem as a tensor completion problem.

Matrix (tensor) completion techniques have been used in vision, from bi-linear
models for separating style and content [11], to multi-linear models separating the
modes of face image formation (e.g., identity vs. expression vs. pose) [46,47]. While
often applied for visualization, the discovered factors can also be used to impute
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missing data—for example, to generate images of novel fonts [11] or infer missing
pixels for in-painting tasks [28].

Different from the existing work, we want to use tensor factorization to infer
classifiers, not data instances or labels. This enables a new “zero-shot” transfer pro-
tocol: we leverage the latent factors underlying previously trained models to create
new analogous ones without any labeled instances. Our goal is to recover the latent
factors for the 3D object-attribute tensor W, and use them to impute the unobserved
classifier parameters.

Let O ∈ℜK×T , A ∈ℜK×M , and C ∈ℜK×D denote matrices whose columns are
the K-dimensional latent feature vectors for each object, attribute, and classifier
dimension, respectively. We assume that wtm

d can be expressed as an inner product
of latent factors,

wtm
d ≈ 〈Ot ,Am,Cd〉, (6)

where a subscript denotes a column of the matrix. In matrix form, we have W ≈
∑

K
k=1 Ok ◦Ak ◦Ck, where a superscript denotes the row in the matrix, and ◦ denotes

the vector outer product.
The latent factors of the tensor W are what affect how the various attributes,

objects, and image descriptors covary. What might they correspond to? We expect
some will capture mixtures of two or more attributes, e.g., factors distinguishing
how “spots” appear on something “flat” vs. how they appear on something “bumpy”.
The latent factors can also capture useful clusters of objects, or supercategories, that
exhibit attributes in common ways. Some might capture other attributes beyond the
M portrayed in the training images—namely, those that help explain structure in the
objects and other attributes we have observed.

We use Bayesian probabilistic tensor factorization [52] to recover the latent fac-
tors. Using this model, the likelihood for the explicitly trained classifiers (Sec-
tion 3.1.1) is

p(W|O,A,C,α) = Π
T
t=1Π

M
m=1Π

D
d=1
[
N (wtm

d |〈Ot ,Am,Cd〉,α−1)
]Itm ,

where N (w|µ,α) denotes a Gaussian with mean µ and precision α , and Itm =
1 if object t has an explicit category-sensitive model for attribute m, and Itm = 0
otherwise. For each of the latent factors Ot , Am, and Cd , we use Gaussian priors.
Let Θ represent all their means and covariances. Following [52], we compute a
distribution for each missing tensor value by integrating out all model parameters
and hyper-parameters, given all the observed attribute classifiers:

p(ŵtm
d |W) =

∫
p(ŵtm

d |Ot ,Am,Cd ,α)p(O,A,C,α,Θ |W) d{O,A,C,α,Θ}.

After initializing with the MAP estimates of the three factor matrices, this distri-
bution is approximated using Markov chain Monte Carlo (MCMC) sampling:

p(ŵtm
d |W)≈

L

∑
l=1

p(ŵtm
d |O

(l)
n ,A(l)

m ,C(l)
d ,α(l)). (7)
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Each of the L samples {O(l)
t ,A(l)

m ,C(l)
d ,α(l)} is generated with Gibbs sampling on

a Markov chain whose stationary distribution is the posterior over the model pa-
rameters and hyper-parameters. We use conjugate distributions as priors for all the
Gaussian hyper-parameters to facilitate sampling. See [52] for details.

We use these factors to generate analogous attributes. Suppose we have no la-
beled examples showing an object of category t with attribute m (or, as is often
the case, we have so few that training a category-sensitive model is problematic).
Despite having no training examples, we can use the tensor to directly infer the
classifier parameters

ŵ(t,m) = [ŵtm
1 , . . . , ŵtm

D ], (8)

where each ŵtm
d is the mean of the distribution in Equation (7).

3.1.4 Discussion

In this approach, we use factorization to infer classifiers within a tensor represent-
ing two inter-related label spaces. Our idea has two key useful implications. First,
it leverages the interplay of both label spaces to generate new classifiers without
seeing any labeled instances. This is a novel form of transfer learning. Second, by
working directly in the classifier space, we have the advantage of first isolating the
low-level image features that are informative for the observed attributes. This means
the input training images can contain realistic (un-annotated) variations. In compar-
ison, existing data tensor approaches often assume a strict level of alignment; e.g.,
for faces, examples are curated under t specific lighting conditions, m specific ex-
pressions, etc. [46, 47].

Our design also means that the analogous attributes can transfer information
from multiple objects and/or attributes simultaneously. That means, for example,
our model is not restricted to transferring the fluffiness of a dog from the fluffiness
of a cat; rather, its analogous model for dog fluffiness might just as well result from
transferring a mixture of cues from carpet fluffiness, dog spottedness, and cat shape.

In general, transfer learning can only succeed if the source and target classes are
related. Similarly, we will only find an accurate low-dimensional set of factors if
some common structure exists among the explicitly trained category-sensitive mod-
els. Nonetheless, a nice property of our formulation is that even if the tensor is
populated with a variety of classes—some with no ties—analogous attribute infer-
ence can still succeed. Distinct latent factors can cover the different clusters in the
observed classifiers. For similar reasons, our approach naturally handles the ques-
tion of “where to transfer”: sources and targets are never manually specified. Below,
we consider the impact of building the tensor with a large number of semantically
diverse categories versus a smaller number of closely related categories.
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3.2 Experiments and Results

We evaluate our approach on two datasets: the attribute-labeled portion of Ima-
geNet [36] and SUN Attributes [33]. See Figure 12 for example images of these two
datasets. The datasets do not contain data for all possible category-attribute pairings.
Figure 13 shows which are available: there are 1,498 and 6,118 pairs in ImageNet
and SUN, respectively. The sparsity of these matrices actually underscores the need
for our approach, if one wants to learn category-sensitive attributes.

Congregating 

Cluttered 
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Furry 

Smooth 

Wet 

ImageNet Attributes SUN Attributes 

Fig. 12: Example images of ImageNet [36] and SUN Attributes [33] dataset.
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Fig. 13: Data availability: white entries denote category-attribute pairs that have positive and neg-
ative image exemplars. In ImageNet, most vertical stripes are color attributes, and most horizontal
stripes are man-made objects. In SUN, most vertical stripes are attributes that appear across differ-
ent scenes, such as vacationing or playing, while horizontal stripes come from scenes with varied
properties, such as airport and park.
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3.2.1 Category-Sensitive vs. Universal Attributes

First we test whether category-sensitive attributes are even beneficial. We explicitly
train category-sensitive attribute classifiers using importance-weighted SVMs, as
described in Section 3.1.1. This yields 1,498 and 6,118 classifiers for ImageNet and
SUN, respectively. We compare their predictions to those of universal attributes,
where we train one model for each attribute. When learning an attribute, both models
have access to the exact same images; the universal method ignores the category
labels, while the category-sensitive method puts more emphasis on the in-category
examples.

Table 5: Accuracy (mAP) of attribute prediction. Category-sensitive models improve over standard
universal models, and our inferred classifiers nearly match their accuracy with no training image
examples. Traditional forms of transfer (rightmost two columns) fall short, showing the advantage
of exploiting the 2D label space for transfer, as we propose.

Datasets Trained explicitly Trained via transfer
# Categ (N) # Attr (M) Category-sens. Universal Inferred (Ours) Adopt similar One-shot Chance

ImageNet 384 25 0.7304 0.7143 0.7259 0.6194 0.6309 0.5183
SUN 280 59 0.6505 0.6343 0.6429 N/A N/A 0.5408

Table 5 (columns 4 and 5) shows the results, in terms of mean average precision
across all 84 attributes and 664 categories. Among those, our category-sensitive
models meet or exceed the universal approach 76% of the time. This indicates that
the status quo [9, 23, 25, 32, 33, 36] pooling of training images across categories is
indeed detrimental.

3.2.2 Inferring Analogous Attributes

The results so far establish that category-sensitive attributes are desirable. However,
the explicit models above are impossible to train for 18,000 of the ∼26,000 pos-
sible attributes in these datasets. This is where our method comes in. It can infer
all remaining 18,000 attribute models even without class-specific labeled training
examples.

We perform leave-one-out testing: in each round, we remove one observed clas-
sifier (a white entry in Figure 13), and infer it with our tensor factorization approach.
Note that even though we are removing one at a time, the full tensor is always quite
sparse due to the available data. Namely, only 16% (in ImageNet) and 37% (in SUN)
of all possible category-sensitive classifiers can be explicitly trained.

Table 5 (columns 4 to 6) shows this key result. In this experiment, the explicitly
trained category-sensitive result is the “upper bound”; it shows how well the model
trained with real category-specific images can do. We see that our inferred analogous
attributes (column 6) are nearly as accurate, yet use zero category-specific labeled
images. They approximate the explicitly trained models well. Most importantly, our
inferred models remain more accurate than the universal approach. Our inferred
attributes again meet or exceed the universal model’s accuracy 79% of the time.
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We stress that our method infers models for all missing attributes. That is, using
the explicitly trained attributes, it infers another 8,064 and 10,407 classifiers on Im-
ageNet and SUN, respectively. While the category-sensitive method would require
approximately 20 labeled examples per classifier to train those models, our method
uses zero.

Table 5 also compares our approach to conventional transfer learning. The first
transfer baseline infers the missing classifier simply by adopting the category-
sensitive attribute of the category that is semantically closest to it, where semantic
distance is measured via WordNet using [8] (not available for SUN). For example,
if there are no furry-dog exemplars, we adopt the wolf’s “furriness” classifier. The
second transfer baseline additionally uses one category-specific image example to
perform “one-shot” transfer (e.g., it trains with both the furry-wolf images plus a
furry-dog example). Unlike the transfer baselines, our method uses neither prior
knowledge about semantic distances nor labeled class-specific examples. We see
that our approach is substantially more accurate than both transfer methods. This
result highlights the benefit of our novel approach to transfer, which leverages both
label spaces (categories and their attributes) simultaneously.

Which attributes does our method transfer? That is, which objects does it find to
be analogous for an attribute? To examine this, we first take a category j and identify
its neighboring categories in the latent feature space, i.e., in terms of Euclidean
distance among the columns of O ∈ ℜK×T . Then, for each neighbor i, we sort its
attribute classifiers (w(i, :), real or inferred) by their maximal cosine similarity to
any of category j’s attributes w( j, :). The resulting shortlist helps illustrate which
attribute+category pairs our method expects to transfer to category j.

Figure 14 shows 4 such examples, with one representative image for each cat-
egory. We see neighboring categories in the latent space are often semantically re-
lated (e.g., syrup/bottle) or visually similar (e.g., airplane cabin/conference center);
although our method receives no explicit side information on semantic distances,
it discovers these ties through the observed attribute classifiers. Some semantically
more distant neighbors (e.g., platypus/rorqual, courtroom/cardroom) are also dis-
covered to be amenable to transfer. The words in Figure 14 are the neighboring
categories’ top 3 analogous attributes for the numbered category to their left (not
attribute predictions for those images). It seems quite intuitive that these would be
suited for transfer.

Next we look more closely at where our method succeeds and fails. Figure 15
shows the top (bottom) five category+attribute combinations for which our inferred
classifiers most increase (decrease) the AP, per dataset. As expected, we see our
method most helps when the visual appearance of the attribute on an object is quite
different from the common case, such as “spots” on the killer whale. On the other
hand, it can detract from the universal model when an attribute is more consistent in
appearance, such as “black”, or where more varied examples help capture a generic
concept, such as “symmetrical”.

Figure 16 shows qualitative examples that support these findings. We show the
image for each method that was predicted to most confidently exhibit the named
attribute. By inferring analogous attributes, we better capture object-specific prop-
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Fig. 14: Analogous attribute examples for ImageNet (top) and SUN (bottom). Words above
each neighbor indicate the 3 most similar attributes (learned or inferred) between leftmost query
category and its neighboring categories in latent space. For these four examples, [Query cate-
gory]:[Neighbor categories] = (1) [Bottle]:[filter, syrup, bullshot, gerenuk] (2) [Platypus]:[giraffe,
ungulate, rorqual, patas] (3) [Airplane cabin]:[aquarium, boat deck, conference center, art studio]
(4) [Courtroom]: [cardroom, florist shop, performance arena, beach house]
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Fig. 15: (Category,attribute) pairs for which our inferred models most improve (left) or hurt (right)
the universal baseline.
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Fig. 16: Test images that our method (top row) and the universal method (bottom row) predicted
most confidently as having the named attribute. (X = positive for the attribute, X = negative, ac-
cording to ground truth.)

erties. For example, while our method correctly fires on a “smooth wheel”, the uni-
versal model mistakes a Ferris Wheel as “smooth”, likely due to the smoothness of
the background, which might look like other classes’ instantiations of smoothness.

3.2.3 Focusing on Semantically Close Data

In all results so far, we make no attempt to restrict the tensor to ensure semantic
relatedness. The fact our method succeeds in this case indicates that it is capable of
discovering clusters of classifiers for which transfer is possible, and is fairly resistant
to negative transfer.

Still, we are curious whether restricting the tensor to classes that have tight se-
mantic ties could enhance performance. We therefore test two variants: one where
we restrict the tensor to closely related objects (i.e., downsampling the rows),
and one where we restrict it to closely related attributes (i.e., downsampling the
columns). To select a set of closely related objects, we use WordNet to extract sib-
ling synsets for different types of dogs in ImageNet. This yields 42 categories, such
as puppy, courser, coonhound, corgi. To select a set of closely related attributes, we
extract only the color attributes.

Table 6: Attribute label prediction mAP when restricting the tensor to semantically close classes.
The explicitly trained category-sensitive classifiers serve as an upper bound.

Subset Category- Inferred Inferred
sensitive (subset) (all)

Categories (dogs) 0.7478 0.7358 0.7173
Attributes (colors) 0.7665 0.7631 0.7628

Table 6 shows the results. We use the same leave-one-out protocol of Sec-
tion 3.2.2, but during inference we only consider category-sensitive classifiers
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among the selected categories/attributes. We see that the inferred attributes are
stronger with the category-focused tensor, raising accuracy from 0.7173 to 0.7358,
closer to the upper bound. This suggests that among the entire dataset, attributes
for which categories differ can introduce some noise into the latent factors. On the
other hand, when we ignore attributes unrelated to color, the mAP of the inferred
classifiers remains similar. This may be because color attributes use such a distinct
set of image features compared to others (like stripes, round) that the latent factors
accounting for them are coherent with or without the other classifiers in the mix.
From this preliminary test, we can conclude that when semantic side information is
available, it could boost accuracy, yet our method achieves its main purpose even
when it is not.

4 Related Work

In this section we describe related work in more detail and highlight contrasts and
connections with the two main contributions described above.

4.1 Attributes as semantic features

A visual attribute is a binary predicate for an image that indicates whether or not a
property is present and the standard approach to learn an attribute is to pool images
regardless of their object category and train a discriminative classifier [5, 9, 22, 23,
25, 26, 32, 33, 36, 38].

While this design is well-motivated by the goal of having attributes that transcend
category boundaries, it sacrifices accuracy in practice. We are not aware of any prior
work that learns category-sensitive attributes, though class-specific attribute training
is used as an intermediate feature generation procedure in [9, 51], prior to training
class-independent models.

Recent research focuses on attributes as vehicles of semantics in human-machine
communication. For example, using attributes for image search lets a user specify
precise semantic queries (“find smiling Asian men”) [20,22,38]; using them to aug-
ment standard training labels offers new ways to teach vision systems about objects
(“zebras are striped”, “this bird has a yellow belly”, etc.) [5, 25, 26, 40]; deviations
from an expected configuration of attributes may be used to generate textual de-
scriptions of what humans would find remarkable [9, 37]. In all such applications,
learning attributes incorrectly (such as by inadvertently learning correlated visual
properties) or imprecisely (such as by learning a “lowest common denominator”
model shared across all categories) is a real problem; the system and user’s inter-
pretations must align for their communication to be meaningful. However, despite
all the attention to attribute applications, there is very little work on how to learn
attributes accurately, preserving their semantics. The approaches presented in Sec-



Divide, Share, and Conquer: Multi-task Attribute Learning with Selective Sharing 31

tion 2 and Section 3 show promise for such applications that require “learning the
right thing” when learning semantic attributes.

4.2 Attribute correlations

While most methods learn attributes independently, some initial steps have been
taken towards modeling their relationships. Modeling co-occurrence between at-
tributes helps ensure predictions follow usual correlations, even if image evidence
for a certain attribute is lacking (e.g., “has-ear” usually implies “has-eye”) [25, 41,
42, 51]. Our goal in decorrelating attributes (Section 2) is essentially the opposite
of these approaches. Rather than equate co-occurrences with true semantic ties, we
argue that it is often crucial that the learning algorithm avoid conflating pairs of
attributes. This will prevent excessive biasing of the likelihood function towards
the training data and thus deal better with unfamiliar configurations of attributes in
novel settings.

While attribute learning is typically considered separately from object category
learning, some recent work explores how to jointly learn attributes and objects, ei-
ther to exploit attribute correlations [51], to promote feature sharing [15, 49], or to
discover separable features [39, 54]. Our framework in Section 3 can be seen as a
new way to jointly learn multiple attributes, leveraging structure in object-attribute
relationships. Unlike any prior work, we use these ties to directly infer category-
sensitive attribute models without labeled exemplars.

In [14], analogies between object categories are used to regularize a semantic
label embedding. Our method also captures beyond-pairwise relationships, but the
similarities end there. In [14], explicit analogies are given as input, and the goal is
to enrich the features used for nearest neighbor object recognition. In contrast, our
approach in Section 3 implicitly discovers analogical relationships among object-
sensitive attribute classifiers, and our goal is to generate novel category-sensitive
attribute classifiers.

4.3 Differentiating attributes

As discussed above, to our knowledge, the only previous work that attempts to ex-
plicitly decorrelate semantic attributes like we attempt in Section 2 is the classwise
method of [9]. For each attribute, it selects discriminative image features for each
object class, then pools the selected features to learn the attribute classifier. While
the idea is that examples from the same class help isolate the attribute of interest,
as seen above, this method is susceptible to learning chance correlations among
the reduced number of samples of individual classes. Moreover, it requires expen-
sive instance-wise attribute annotations. Our decorrelating attributes approach (Sec-
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tion 2) overcomes these issues, as we demonstrate with experimental comparisons
to [9] in Section 2.2.

While this is the only prior work on decorrelating semantic attributes, some unsu-
pervised approaches attempt to diversify discovered (un-named/non-semantic) “at-
tributes” [9, 29, 54]—for example by designing object class splits that yield uncor-
related features [54] or converting redundant semantic attributes into discriminative
ones [29]. In contrast, our focus in Section 2 is on jointly learning a specified vo-
cabulary of semantic attributes.

4.4 Multi-task learning (MTL)

Multi-task learning jointly trains predictive functions for multiple tasks, often by se-
lecting the feature dimensions (“supports”) each function should use to meet some
criterion. Most methods emphasize feature sharing among all classes [1, 19, 31];
e.g., feature sharing between objects can yield faster detectors [45], and sharing be-
tween objects and their attributes can isolate features suitable for both tasks [15,49].
A few works have begun to explore the value of modeling negative correlations
[13, 35, 56, 57]. For example, in a hierarchical classifier, feature competition is en-
couraged via disjoint sparsity or “orthogonal transfer”, in order to remove redun-
dancies between child and parent node classifiers [13, 56]. These methods exploit
the inherent mutual exclusivity among object labels, which does not hold in our
attributes setting. Unlike any of these approaches, in our decorrelating attributes
method (Section 2), we model semantic structure in the target space using multiple
task groups.

While most MTL methods enforce joint learning on all tasks, a few explore
ways to discover groups of tasks that can share features [16, 18, 21]. Our method
for decorrelating attributes (Section 2) involves grouped tasks, but with two crucial
differences: (i) we explicitly model between-group competition along with in-group
sharing to achieve inter-group decorrelation, and (ii) we treat external knowledge
about semantic groups as supervision to be exploited during learning. In contrast,
the prior methods [16, 18, 21] discover task groups from data, which is prone to
suffer from correlations in the same way as a single-task learner.

In Section 3, we argue for modeling even single attributes through multiple
category-specific models, all learned in a multi-task learning framework. While the
idea of inferring classifier weights for one task from those learned for other tasks
is relatively unexplored, [30] recently estimates a classifier for a new class from
weighted linear combinations of related class classifiers with the knowledge of co-
occurrence statistics in images. Our approach can be seen as a new form transfer
learning that leverages the interplay of both the category and attribute label spaces
to generate new classifiers without seeing any labeled instances.
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5 Conclusion

In this chapter, we have proposed and discussed two new methods to avoid the
problem of “oversharing” in attribute learning.

First, we showed a method that exploits semantic relationships among attributes
to guide attribute vocabulary learning by selectively sharing features among related
attributes and encouraging disjoint supports for unrelated attributes. Our extensive
experiments across three datasets validate two major claims for this method: (i)
it overcomes misleading training data correlations to successfully learn semantic
visual attributes, and (ii) preserving semantics in learned attributes is beneficial as
an intermediate step in high-level tasks.

Next, we proposed a method to learn category-sensitive attributes rather than the
standard monolithic attribute classifier over all categories. To do this, we developed
a new form of transfer learning, in which analogous attributes are inferred using
observed attributes organized according to two inter-related label spaces. Our tensor
factorization approach solves the transfer problem, even when no training examples
are available for the decision task of interest. Once again, our results confirm that
our approach successfully addresses are the category-dependence of attributes and
improves attribute recognition accuracy.

The work we have presented suggests a number of possible extensions. The
decorrelating attributes approach of Section 2 may be extended to automatically
mine attribute groups from web sources, or using distributed word representations
etc. It may also be interesting to generalize the approach to settings where tasks can-
not easily be clustered into discrete groups, but, say, pairwise semantic relationships
among tasks are known. The analogous attributes approach would be interesting to
consider in a one-shot or few-shot setting as well. While thus far we have tested it
only in the case where no category-specific labeled examples are available for an
attribute we wish to learn, it would be interesting to generalize the model to cases
where some image instances are available. For example, such prior observations
could be used to regularize the missing classifier parameter imputation step. In ad-
dition, we are interested in analyzing the impact of analogous attributes for learning
relative properties.

Finally, a natural question is how the two “selective sharing” ideas presented
in this chapter might be brought together. For instance, one might jointly train
category-sensitive attribute classifiers with semantics-informed feature sharing be-
tween attributes, and then use the factorization method to infer classifiers for the
category-attribute pairs for which we lack training examples. Our general idea of
controlled sharing among tasks may also be applicable to many general multi-task
learning problems that have additional sources of information on task relationships.
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