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Abstract: Scaling model-based inverse reinforcement learning (IRL) to real
robotic manipulation tasks with unknown dynamics remains an open problem.
The key challenges lie in learning good dynamics models, developing algorithms
that scale to high-dimensional state-spaces and being able to learn from both vi-
sual and proprioceptive demonstrations. In this work, we present a gradient-based
inverse reinforcement learning framework that utilizes a pre-trained visual dynam-
ics model to learn cost functions when given only visual human demonstrations.
The learned cost functions are then used to reproduce the demonstrated behavior
via visual model predictive control. We evaluate our framework on hardware on
two basic object manipulation tasks.
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1 Introduction

Learning from demonstrations is a very active area of research, motivated by enabling robots to
bootstrap their learning processes. Demonstrations can help in various ways, for instance via in-
verse reinforcement learning (IRL), where the robot tries to infer the reward or goals from the
human demonstrator. Most IRL approaches require demonstrations that couple action and state
measurements, which are often costly to acquire.

In this work, we take a step towards model-based inverse reinforcement learning from visual demon-
strations for simple object manipulation tasks. Model-based IRL approaches are thought to be more
sample-efficient and hold promises for easier generalization [1]. Yet, thus far, their model-free
counter-parts have been more successful in real world robotics applications with unknown dynam-
ics [2, 3, 4]. In the context of learning cost functions from visual demonstrations, several major
challenges remain for model-based IRL: most prior work [5, 6, 7] assume the transition model (of
the environment and the robot) to be known, i.e. the robot knows how its actions change the environ-
ment state. However, when manipulating objects, the robot typically does not have access to such
a model. Furthermore, IRL approaches typically involve a computationally intensive optimization
procedure with an outer loop that estimates new cost function parameters, and an inner loop that
solves the RL problem given the new cost function. The results in algorithms that do not scale well.

Our work targets both of these challenges, i.e. unknown transition models and computationally in-
tensive optimization: 1) We present a system that enables visual inverse reinforcement learning from
just a few human demonstrations. We utilize a vision module that extracts low-dimensional vision
features both on human demonstrations, as well as on the robot. We pre-train a dynamics model
with which the robot can predict how its actions change this low-dimensional feature representation.
Once the robot has observed a latent state trajectory from a human demonstration, it can use its
own dynamics model to optimize its actions to achieve the same (relative) latent-state trajectory. 2)
We introduce a novel inverse reinforcement learning algorithm that enables learning cost functions
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from few demonstrations. Our IRL algorithm builds on recent progress in gradient-based bi-level
optimization [8], which allows us to compute gradients of cost function parameters as a function of
the inner loop policy optimization step, leading to more stable and effective optimization.

We evaluate our approach by collecting human demonstrations for two basic object manipulation
tasks, learn the cost functions for these tasks and reproduce similar behaviors on a Kuka iiwa.

2 Background and Related Work

The proposed framework builds upon approaches from visual model-predictive control and IRL.
This section provides an overview of the related methods and positions our work in context.

2.1 Visual Model Predictive Control

At the core of this paper lies the ability to optimize action sequences that minimize a task cost under a
given visual dynamics model. Here we highlight how related work optimizes such action sequences
and what cost function representations were chosen. [9, 10] optimize action sequences by utilizing
the cross entropy method [11]. They learn pixel-level transition models and present methods for
designing cost functions that evaluate progress to goal pixel positions, registration to goal images,
and success classifiers. In contrast, [12] optimizes actions using gradient based methods, and learns
a structured deep dynamics model that predicts change in the learned pose space, given applied
actions. [13] learns locally linear dynamics models from images, and use stochastic optimal control
algorithms in conjunction with quadratic cost functions (that penalize distances in latent space).

The above approaches either learn a dynamics model directly in pixel space or jointly learn a latent-
space encoding and a dynamics model in that space. This is in contrast to recent work [14], which
proposes a multi-step framework that consists of object segmentation and category level semantic 3-
D keypoint detection, trained via supervision. In such a setup, actions are treated as transformations
between start and goal pose of the 3-D keypoints while the cost function for optimizing the action is
specified by the modeler in the form of geometric constraints governing the semantic 3-D keypoints.
In this work, we combine ideas from all of these frameworks and extend them to the IRL domain.
First, we train 2-D keypoint representations of images via self-supervised training [15, 16, 17]. Next,
we train a dynamics model in that latent-space and optimize actions via gradient-based methods,
similar to [12]. This differentiable action optimization is key to our IRL approach (Section 4.1).

2.2 Inverse Reinforcement Learning

Scaling inverse reinforcement learning to manipulation tasks in the physical world has proven diffi-
cult. This section provides an overview of some of the previously proposed methods, and positions
our work in context. Model-free inverse reinforcement learning algorithms have been shown some
success on real robotic platforms for manipulation tasks [2, 3, 4]. Kalakrishnan et al. [2] and Boular-
ias et al. [3] only utilize proprioceptive state measurements and do not consider visual feature spaces.

However, most model-based IRL methods have been limited to simulation settings with known
models [5, 18], and real robotics tasks with known models [6]. An exception is the work of Abbeel
et al. [19] that learns dynamics models for helicopter flight tasks and then learns cost functions
via apprenticeship learning [5]. Constrained optimization methods are a popular choice for IRL
approaches [6, 20, 21]. Scaling such methods to image-based tasks is highly non-trivial. In contrast,
we pre-train a visual dynamics model, and present a gradient-based IRL approach, which is built on
recent successes in gradient-based bi-level optimization [8, 22].

IRL and Inverse Optimal Control (IOC) from Visual Demonstrations: = There have been sev-
eral approaches that utilize visual demonstrations to learn cost functions [7, 23, 24, 4]. [7, 23] learn
cost functions for path planning tasks in urban and track environments, while Sermanet et al. [24]
and Finn et al. [4] focus on manipulation tasks. [24, 4] employ a model-free IRL approach to learn
reward functions from visual demonstrations. Both methods rely on kinesthetic demonstrations,
either for the full IOC approach [4]; or to initialize the policy that optimizes the learned reward
function [24]. In contrast, our approach is model-based. We only utilize expert demonstrations as
part of the dynamics model training, and can extract cost functions from visual demonstrations only.
When optimizing our policies we do not require expert data for initialization.



3 Gradient-Based Visual Model Predictive Control Framework
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Figure 1: Overview of our keypoint-based visual model predictive control framework. Actions are optimized
via gradient descent on the cost function.

In this section we describe our gradient-based visual model predictive control approach that com-
bines recent advances in unsupervised keypoint representations and model-based planning. In the
next section, we will build our novel inverse reinforcement learning system on top of this foundation.

The proposed system, depicted in Figure 1, comprises of following modules: 1) a keypoint detector
that produces low-dimensional visual representations, in the form of keypoints, from RGB image
inputs; 2) a dynamics model that takes in the current joint state 6,0 and actions u and predicts
the keypoints and joint state at the next time step; and 3) a gradient based visual model-predictive
planner that, given the dynamics model and a cost function, optimizes actions for a given task. Next,
we provide a quick overview of each of these modules.

3.1 Keypoints as visual latent state and dynamics model

We use an autoencoder with a structural bottleneck to detect 2D keypoints that correspond to pixel
positions or areas with maximum variability in the input data. The architecture of the keypoint
detector closely follows the implementation in [15]. To train our keypoint detector we collect visual
data Pyey-rain for self-supervised keypoint training (see Appendix A.2). After this training phase,
we have a keypoint detector that predicts keypoints z = giey(0im) of dimensionality K x 3. Here

K is the number of keypoints, and each keypoint is given by z; = (z’,ﬁ,z%,zf ), where zz,zz are pixel
locations of the k — th keypoint, and z,‘: is its intensity, which corresponds roughly to the probability
that that keypoint exists in the image.

Given a trained keypoint detector, we next collect dynamics data to train a dynamics model §;1| =
fayn(st,u;). The dynamics model is trained to predict the next state, from current state s; and action
u;, where the state s; = [z, 6;] combines the low-dimensional visual state z; = 8key (oim,,) and the joint
state 6;. Actions u, are desired joint angle displacements. For simple tasks we train this dynamics
model on data generated through sine motions on the joints. However for complex tasks, we utilize
expert demonstrations to learn this dynamics model.

3.2 Gradient-Based Visual MPC towards a keypoint goal state

We want to optimize an action sequence u = (ug,u1,...,ur) that moves the arm towards the visual
goal keypoints zgo, extracted from a goal image. Similar to other visual MPC work [10, 12] we
utilize our learned visual dynamics model f4y, to optimize actions u. Two ingredients are neces-
sary to implement this step: 1) a cost function that measures distances in visual latent space; 2)
an action optimizer that can minimize that cost function. We build on the gradient based action
optimization presented in [12] and extend it for optimizing actions over a time horizon 7. Specif-
ically, to optimize a sequence of action parameters u = (ug,uj,...,ur) for a horizon of T time
steps, we first predict the trajectory 7, that is created through the current u from starting configura-
tion so: §1 = fayn(S0,u0), §2 = fayn(S1,u1),... ST = fayn(§i—1,u:—1), which generates a predicted (or
planned) trajectory £. Intuitively, this step uses the learned dynamics model fyyy, to simulate forward
what would happen if we applied action sequence u. We then measure the cost achieved Cy (%, Zgoa1)
and perform gradient descent on actions u such that the cost of the planned trajectory is minimized

Upew = U — nvucw(%azgoal) (D
Details of our full visual MPC algorithm can be found in the Appendix, in Algorithm 3. Manually

designing this cost function is hard, especially in visual feature spaces. In the next section we
propose a gradient-based inverse reinforcement learning algorithm to learn this cost function.



4 Gradient-Based IRL from Visual Demonstrations

Most inverse RL algorithms have an inner and
outer optimization loop; the inner loop opti- Algorithm 1 Gradient-Based IRL for 1 Demo
mizes actions or policies given the current cost
function parameters Y, and the outer loop opti-
mizes the cost function parameters given there-  ,
sults of the inner loop. To the best of our knowl- 3
edge, all existing IRL approaches implement
these two optimization steps independently. As 5
we show below, and in our experiments, this ¢
can lead to instability in the optimization. Here 7 // rollout £ from initial state s and actions u
we derive an algorithm that optimizes cost pa- 8 % < rollout(sg, u, fayn)
rameters Y as a function of the inner loop pol-  9: /I Gradient descent on u with current Cy,
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Specifically, in this work we address determin- // Computes gradient through the inner loop
istic, fixed-horizon and discrete time control 15: W< ¥ —1.VyZLrr (%, Tdemo)
tasks with continuous states s = (s1,...,s7) and 16: end for
continuous actions u = (uy,...,ur). Each state
sy =16, él,zt] is the concatenation of the measured joint angles and velocities 6;, §; and the extracted
keypoints z; at time step . The control tasks are characterized by a pre-trained visual dynamics
model §;4.1 = fayn(s/,u;) and the learned cost function Cy,.

4.1 Learning cost functions for action optimization

In our IRL algorithm, the outer loop optimizes cost parameters Y and the inner loop optimizes
actions u given the current cost. The result of the inner loop step is a predicted latent trajectory 7.
Intuitively, we want to learn a cost function Cy,, that, when used in the inner loop, minimizes the IRL
loss -ZIrL(Tdemo, T) between 7 and the expert demonstrations Tgemo. TO put it succinctly, we want to
compute the gradient of Zjg; wrtto y: Vy.Zgy .

To compute this gradient, let’s first consider a case where the demonstration consists of only one
observation (e.g. the goal) Tgemo = Sdemo, and we want to optimize one action parameter u to achieve
this goal in one time step. Then we can write out the IRL optimization problem as

VyZIRL(Tdemos By) = Vi, LIRL(Tdemos Ty) Vy Ty )
= vaﬁRL(Tdemm %W)Vlyfdyn (s, uopt) 3)
= V%Wv%RL(Tdemm %W)wadyn (s; Uinit — nVuCW(SdemO»fdyn (Sv u)) 4)

where in Eq 2 we apply the chain rule to decompose VyZ7rr(Tdemo, Tc,, ) into the gradient of Zgy,
with respect to the predicted trajectory 7y and the gradient of 1y, wrt cost parameters y. In the
next step, Eq 3, we plug in the rollout of the predicted trajectory, which is only one time step, so
Ty = fdyn(s uopt) where uqp, is the optimized action parameter. In the final step, Eq 4, we write out
the gradient update of the action parameters u which shows the dependence on the cost function Cy,.

This optimization problem is reminiscent of recent gradient-based bi-level optimization approaches
to meta-learning [25, 22], involving two sets of parameters (in our case u, ) to be optimized. Such
gradient-based solutions typically involve tracking the gradients through the inner loop, and then
auto-differentiating the inner loop optimization trace with respect to the outer parameters. We use the
gradient-based optimiser higher [8] to tackle this bi-level optimization problem. We have described
our gradient-based IRL algorithm for inner loops with one step optimization, the extension over
multiple time steps requires Eq 3 and Eq 4 to be adapted to the predicted trajectory over 7' time
steps. A high-level overview of our gradient-based IRL algorithm is presented in Algorithm 1.



4.2 Cost functions and IRL Loss for learning from visual demonstrations

Our algorithm depends on both, the specification of the IRL loss g, and the cost function
parametrization Cy. Intuitively, the Z7g; should measure the distance between the predicted la-
tent trajectory 7 and the demonstrated latent trajectory Tgemo. We would like to keep the Zjg; as
simple as possible, and thus choose it to be the squared distance between predicted and demon-
strated keypoints at each time step, -Zrr.(Tdemos T) = L (2t demo — %,)%. Similar to [6], we compare
three distinct parametrizations for the cost function Cy:

Weighted Cost Cy (%, zgoa) = L [‘I’ff Y (&~ Zhoar) H VL (@4 — Zpous)

where .4, is the kth predicted keypoint at time-step ¢ and z3,,; k’Z}éoal, « is the goal keypoint.

This simple cost function parametrization provides a constant weight per x,y dimension of each key
point. This cost function has K x 2 parameters.

Time Dependent Weighted Cost C.,,(%,zgoal) =Y.y, [y/;fk(éf’k — zgoahk)2 + l/l,yyk(ftyﬁk — Zgoal,k)z}

This cost extends the previous formulation to provide a weight for each time step 7. This adds more
flexibility to the cost and allows to capture time-dependent importance of specific keypoints. This
cost function has 7' x K x 2 parameters, which scale linearly with the horizon length.

RBF Weighted Cost Cw(%’ Zgoal) =YX Zj [‘V}ik(t) (sz - Z)gcoahk)z + ‘I/jy',k (t) (fik - Zgoalvk)z]
Here we introduce J time dependent RBF kernels y;(t) = exp (b(t — p1;)?). This cost allows us

to more easily scale to longer time horizons, with J x K x 2 parameters, and J < T. Kernels are
uniformly spaced in time and b is chosen to create some overlap between neighboring kernels.

4.3 Illustrative Comparison with Feature-Matching IRL

Here, we illustrate the differences be-
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Figure 2: (Top) IRL cost during cost training for reaching demonstration, and evaluate the learned

(a) and placing (b) task with one demonstration. (Bottom) cost function on five test demonstrations
Performance of learned cost on five test tasks. We compare for with our algorithm and our baseline. In

our lgarned IRL costs with a cost trained using apprenticeship Figure 2 we show convergence on training
learning [5] . and test tasks, as a function of outer loop

iterations. We see that our baseline oscil-
lates between good and bad solutions, while our algorithm converges to a good solution. We believe
this improvement in convergence behavior is due to the presence of an explicit connection between
the policy optimization and the cost function parameter learning in our method. This connection
allows us to compute gradients that communicate between inner and outer loops and thus explicitly
account for the cost function performance for policy optimization during cost function learning. In
contrast, existing model-based IRL approaches, such as the feature matching algorithm, separate the
outer and inner loop and rely on careful design of multiple constraints or features to update cost
function parameters.



5 Hardware Experiments

We evaluate the proposed approach for inverse reinforcement learning
from visual demonstrations by performing a sequence of qualitative and
quantitative experiments. We seek to interpret the learned cost functions
and investigate their ability to successfully reproduce the demonstrated [
tasks. In our experiments, we assume we have pre-trained a key point
detector (see Figure 3), and a good enough visual dynamics model to
accomplish the task. We use the same keypoint detector for all experiments. Details about training
the keypoint detector and the dynamics model can be found in the Appendix.

Figure 3: Reaching task

5.1 Quantitative Analysis on automatically generated visual demonstrations

We collect a set of 15 automatically generated demonstrations of moving an object from one (visual)
location to another using the KUKA arm, making sure that visually the object moves only in the X-
axis (see Figure 5 for an example). Constraining the movement of the gripped object in this way
allows us to interpret the learned cost functions better. We also note that one of our 4 keypoints
(in red), is fixed in the background. The collected demonstrations comprise the start state 6y, 6o,
and keypoint observations z; = gkey (0im,(), for T = 25 frames at a frame rate of 5Hz. The keypoint
detector predicts 4 keypoints per frame. We train the parametrized costs described in Section 4.2
with 1 and 10 reaching demonstrations; and evaluate their performance by optimizing an action
policy using the learned costs on 5 test demonstrations.

We compare our IRL algorithm to 2 baselines: (1) the IRL apprenticeship learning algorithm [5]
combined with the weighted cost from 4.2, and (2) a naive (“Default”) cost that measures the dis-
tance between the predicted and goal keypoint. This cost is defined as Cyefauic = ):tT (2 — zgoal)2 fora
trajectory with T steps. For visual model-predictive control via learned (or default) cost, the learning
rate for action optimization is chosen to be the same as during the IRL training phase, n = 0.001.

5.1.1 Training and Analysis of the Cost Functions

Model-based IRL training convergence Model-based IRL training convergence
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Figure 4: IRL training and test evaluation (a) and (c) show the g, during training of the parametrized
costs from 1 and 10 demos. Figures (b, d) show the relative distance to the goal keypoint achieved at test time
when optimizing the action trajectory with the learned costs and baselines. Results are averaged across 3 seeds.

Figure 4 depicts the results achieved on the simple reaching task. The final relative distance (see Ap-
pendix) to goal keypoint positions from the planned trajectory is considerably less when optimized
using all three of the learned costs compared to both baselines (see (b, d)). We calculate and compare
this metric for all keypoint dimensions as well as only the dimensions corresponding to z; ;,z;, and
%, 3, which are the least noisy keypoint observation dimensions. We also note that the learned costs
perform overall similarly irrespective of whether they were trained on a single demonstration or on
ten demonstrations. This observation encouraged the use of a single demonstration for the next set
of experiments (Section 5.2), where such demonstrations are harder to acquire.

As noted before, the 10 reaching demonstrations we used for training had very little variability for
the visual keypoints along the Y-direction and for one particular keypoint (marked red in Figure
3). Figure 5 (a,b,c) illustrate that all of the proposed parametrized cost functions learn relatively
small weights corresponding to the Y-axes and the red keypoint. indicating that they have identified
properties of the visual demonstrations they have been trained on. Finally, the parameters of base-
line(1) (while being significantly smaller) have a similar weight structure to the rest of the models.
This indicates that they are able to capture the demonstration properties. However, their overall
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Figure 5: Learned cost Parameters: corresponding to the keypoint vector’s dimensions after training on 10
demos. Y-axes and one keypoint (in red) receive less weight. Colors are matched to keypoints shown in Fig 3.

performance during evaluation was far worse than our learned costs due to the lesser weight each
parameter bears. Note that we could tune the learning rate 11 with which actions are optimized at
test time to account for these smaller weights, which would improve performance of our baseline.
However, this is not necessary for our algorithm, which learned to scale cost function parameters
wrt to the 1 used during the IRL training phase. Furthermore, the IRL optimization procedure for
baseline (1) was very unstable, and it was unclear whether the algorithm has or will converge. Previ-
ous work has proposed to scale and regularise the learned weights as done in the maximum entropy
literature [2, 3] or define additional constraints [6] to address some of these issues. We believe one
reason for this instability is that the inner and outer loops are disconnected in such feature matching
algorithms. Our algorithm instead connects the inner and outer loop optimization steps, and is there-
fore able to leverage gradient updates from action optimization in the inner loop for learning cost
function parameters that automatically work well on the desired task without any additional help.

5.2 Learning Cost Functions from Visual Human Demonstrations

In this subsection we scale the proposed method to a more challenging task both from manipulation
and demonstration points of view. We consider the task of placing a bottle on a shelf demonstrated
by a human user through video data.

Expert Demonstration Data Collection We collect the human demonstration at a frame rate of
30 Hz, which we then downsample to 5 Hz. In contrast to Section 5.1, we do not have access to
the initial proprioceptive state 6,0. We therefore test with 2 starting configurations of the robot.
Start configuration 1) we choose an initial position for the robot that is roughly close to the human
demonstration’s initial position; and start configuration 2) that is closer to the target. We preprocess
all the video-frames to obtain keypoint vectors corresponding to each step, relative to the first frame.

Training the Cost Functions and analysis We experiment on a task that is comprised of two
individual motions. During the first half of the demonstration, the object moves only along the X-
axis towards the shelf, while in the second half it moves downwards (i.e. along the Y-axis, while
X-coordinate of the object remains constant). We train the 3 cost function architectures from Section
4.2 on a single human demonstration for placing a bottle for 5000 gradient steps.

AL Cost Weighted Cost Parameters Time Dependent Weighted Cost Parameters RBF Weighted Cost Parameters
at the Last Epoch of Cost Learning at the Last Epoch of Cost Learning at the Last Epoch of Cost Learning
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Figure 6: (a) plots the -Zg;, while training costs for 5K gradient steps with a human demonstration. (b, ¢ and
d) show the values of the learned costs’ parameters. For Time Dependent (b) and RBF costs with 5 kernels (c)
which calculate separate parameters corresponding to each step of the trajectory, we compare the mean of the
parameters corresponding to each keypoint across the first five steps to the last five steps.

The Zry loss converges roughly around 2K iterations (Figure 6 (a)). We note that the parameters
of the time-dependent cost functions (Figure 6 (b and c)) learn to emphasize the distance from the
goal in the X direction during the first half of the motion and Y-direction in the latter half.



5.2.1 Using the Learned Cost Function on the Robot

(a) Demo (b) Default  (c) Weighted  (d) TimeDep (e) RBF

Figure 7: Column a) Human Demonstration that is used for the IRL algorithm to extract cost functions.
Column b)-d) Comparison of visual MPC result using the default and learned costs. First row corresponds to
timestep ¢ = 0, middle row to = 5 and bottom row to ¢ = 10 of executing the placing task. The detected and
goal keypoints in each image are depicted using filled and hollow circles respectively.

We use the 3 learned cost functions and our pre-trained visual dynamics model to optimize a se-
quence of T = 10 desired joint angle displacements towards the keypoint goal from demonstraion.
We record the mean squared distance to the goal keypoint in Table 1. We note that while both Time
Dependent and the RBF Weighted Costs perform much better than our baseline, the simple Weighted
Cost performs well on just one of the test cases, indicating that the time-dependency component of
the cost leads to better generalization.

Start Weighted TimeDep RBF Default
Mean (Std)  Mean (Std) Mean (Std)  Mean (Std)

1 40.99 (9.08) 6.12(0.94) 4.26 (1.20) 26.96 (5.41)
2 3.61(0.40) 3.53(0.21) 4.40(0.15) 15.76 (1.34)

Table 1: records the mean squared distance between the keypoints obtained after executing an action trajectory
optimized from the indicated cost on the KUKA to the given goal keypoints from 2 starting configurations.

6 Discussion and Future Work

We propose a gradient-based IRL framework that learns cost function from visual human demon-
strations. We learn a compact keypoint-based image representation, and train a visual dynamics in
that latent space. We then use the keypoint trajectories extracted from user demonstrations, and our
learned dynamics model, to learn different cost functions using our gradient-based IRL algorithm.

Several challenges remain: Learning a good visual predictive model is difficult, and created one of
the main challenges in this work. One avenue for easier dynamics model training is to robustify the
keypoint detector using methods like Florence et al. [27], so that it becomes invariant to different
viewpoints. Furthermore, our work assumes that demonstrations are given from the perspective of
the robot. We account for different starting configurations by learning on relative demonstrations
instead of absolute. A step towards generalizing our approach even more is to consider methods
that can map demonstrations from one context to another, as was presented in Liu et al. [28]. Fi-
nally, while we have presented experimental results for the more improved convergence behavior of
our gradient-based IRL algorithm, as compared to the feature-matching baseline, we would like to
investigate our findings in more depth in future work.
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A Appendix

Our framework consists of several components trained in isolation, eg the keypoint detector and
the dynamics model. Here we describe the architecture and training details of both. Furthermore,
we go into the details of our baseline implementation (A.4) as well as our visual MPC trajectory
optimization step (A.5). Finally we also visually depict the results for the 2nd starting configuration
of experiments done in Section 5.2 (A.6).

A.1 Keypoint Detector And Dynamics Model Architectures

Here we describe the architecture details of both the keypoint detector and the dynamics model.

keypoint detector gxey: The complete architecture for training the keypoint detector comprises of
an autoencoder with a structural bottleneck that can extract significant” 2D locations from the input
images. gy itself is essentially the encoder component of the autoencoder. Following Lambeta et al.
[17], we implement 8key as a mini version of ResNet-18. The input images used are cropped to a
resolution of [240 x 240].

dynamics model fqyy: Our dynamics model § = fayn($i—1,u;—1), where §; = [2,,@, 6], has 2
components:

1) a keypoint predictor fip

= fmlp(ft—l’ut—l);
which is modeled by a neural network with two hidden layers with 100 and 25 neurons respectively
and a ReLu activations after each layer except the last.

2) a next joint state predictor which simply integrates the action u,_1, which are desired joint angle
displacements, with the current (predicted) joint state 6,_, 6,_; to predict the next state:

ét = ét—l + U1
ét = 9:—1

A.2 Self-Supervised Training of Keypoint detector

To train our keypoint detector we collect 108 sequences of video data, each 10 frames long. For
each sequence we move the the Kuka iiwa while gripping an object into a random configuration,
and then only move the last joint such that the detector emphasizes on extracting 2D locations that
correspond to the gripped object as opposed to the robot arm. We train the keypoint detector until
convergence. For additional details regarding the training process refer to Minderer et al. [15]. The
resulting keypoint detector is visualized in Figure 3.

A.3 Training of Dynamics Model in Latent Space

We train 2 separate dynamics models fqyn for the two sets of experiments.

Experiments of Section 5.1 For the first task of moving the bottle in *x’-direction we use a purely
self-supervised data collection routine. We command sine motions at various frequencies and am-
plitudes to each joint of the arm. The sine motions were designed to move joints 2,4 and 6 the most,
such that the arm stays in plane. The trained keypoint detector is running asynchronously at 30Az,
and outputs z; at that rate. We collect tuples (s;,u;,s;+1), where s, = [}, 6,,z], at a frequency of
5Hz, on which we train the dynamics model.

The parameters of fay, are trained by optimizing a normalized mean squared error (NMSE) between
predicted §;+1 = fdyn(s,, u;) and the ground truth s,;. We train this model until we converge to a
NMSE of 0.3.

Experiments of Section 5.2 For the task of placing a bottle, we combine self-supervised data
collection, with data collected from expert controllers (that roughly achieve the placing task), and
data augmentation techniques. The self-supervised data collection is similar to the one described
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above. The trained keypoint detector is running asynchronously at 30z, and outputs z; at that rate.
We collect tuples (s;,u;,8:+1), where s, = [6;,6;,7], at a frequency of 1Hz, to train the dynamics
model.

The parameters of fgy, are trained by optimizing a normalized mean squared error (NMSE) between
predicted §;+1 = fdyn(s,, u;) and the ground truth s, 1. We were able to train this model to a NMSE
of 0.03.

A.4 Adaptation of Abeel’s IRL algorithm

We extend the publicly available implementation [26] for our baseline comparison of Abbeel and Ng
[5]. We change their inner loop, to use our model-based trajectory optimisation routine. Further, we
saw fair to use as features ¢ (-) the per-step task objective £, (-) employed in this work. Finally,
[26] had a larger value for the minimal distance from baseline constraint (2 instead of 1) than the
one suggested in the original paper [5]. We found that using 1 as advised by the authors to work
better than [26]. Therefore, the overall algorithm remains similar to the introduced by Abbeel and
Ng [5] and namely,

Algorithm 2 Apprenticeship Learning Algorithm

1: Randomly initialise parameters u(0) and pre-trained fgy,,, compute 1 (0) = p(7(0)).
2: demo Tgemo, With goal state zgoa = Tr
3: initial state so = (80, 80,20)
4: for each epoch do
5 w=0Vvt=1,...,T
6: // Take maximal y by using the expectation of features from the final rollouts.
. . T .
7o LR = maxy jy|,<1Minjc(o. (epoch—1)) ¥ (HE — H(J))
8:  let w(epoch) be the value of y that attains this max.
9: for each i in iterspax do
10: // rollout % from initial state sy and actions u
11: % < rollout(so, u, fayn)
12: // Gradient descent on u with current Cy = vlo(-)
13: Upew — tu— 0.V, Cy(T,¥)
14:  end for
15: // Current expectation of features (i (-) is over all features from the final rollout.
16:  Compute t(-) = E[X] ¥ 9(z).
17: end for

A.5 Details regarding the Evaluation of different cost functions

We evaluate the baseline and learned cost functions by comparing the keypoint from the last step of
planned trajectory they optimize with the goal keypoint. The planned trajectory is extracted using
l|Zr —Zgoal I

Algorithm 3. Our evaluation metric relative distance is defined as ool
goa
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Algorithm 3 Trajectory planning using given Cost

I: Given the cost Cy, planning horizon 7', the forward dynamics model fqy, and the initial state so = 20, 60]
.... where z;, 6; denote the keypoint and joint vector at time # and zgo, denotes the goal keypoint vector.

: Initialize ujpie, =0,V =1,...,T

2

3: // Rollout using the initial actions
4: 20 =20,00 = 6o
5: t={%}

6: for 1< 1:T do A
7 i1 :A[E,:1,6,,1,9,,1]T

8 2,6r,6 = fayn(Si—1, Uinity—1)
9: T+ 1TUZ%

10: end for

~

11: //Action optimization
12: uopt < Ujnjt — a~vuc(%:zgoal)

13: //Get planned trajectory by rolling out uqp
14: 7 = 29,600 = 60,60 = 6o

15: fort <« 1:T do B .

160 %, 0 = fayn([Z—1,0—1,6—1], Uopts—1)
17: end for _

18: Return z,0

A.6 Additional Results

(a) Test Case 1  (b) Test Case 2

Figure 8: The 2 starting configurations for the placing task we evaluate our approach on.

Figure 9 visually depicts the results for starting configuration 2.

(a) Demo (b) Default (c) Weighted (d) TimeDep (e) RBF

Figure 9: Column a) Human Demonstration that is used for the IRL algorithm to extract cost functions.
Column b)-d) Comparison of visual MPC result using the default and learned costs. First row corresponds to
timestep ¢ = 0, middle row to = 5 and bottom row to ¢ = 10 of executing the placing task. The detected and
goal keypoints in each image are depicted using filled and hollow circles respectively.
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