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Abstract

Behavioral cloning provides a simple and general mechanism for training policies
for autonomous agents; it reduces policy learning to supervised learning, where
a standard discriminative model, such as a deep net, is trained to predict expert
actions given observations. Such discriminative models are non-causal: the training
procedure is unaware of the particular causal structures of the underlying dynamical
system. In this paper, we point out that ignoring causality in this manner is
particularly damaging in imitation learning. In particular, it leads to a surprising
“causal confusion” phenomenon: fixed-capacity policies that are trained to fixed
training error on the same demonstrations with access to more information can
actually yield worse performance. We investigate how this problem arises and how
its occurrence may be predicted for different behavioral cloning tasks. Further,
we propose a solution to combat causal confusion, which involves first inferring
a distribution over potential causal models consistent with the behavioral cloning
objective, then identifying the correct hypothesis through “intervention”. Our
approach permits intervention in the form either of expert queries or of policy
execution in the environment. Our experiments both verify the presence of causal
confusion in behavioral cloning on various benchmark domains and validate our
solution against DAgger and other baselines and ablations.

1 Introduction

Imitation learning allows for control policies to be learned directly from example demonstrations
provided by human experts. The benefits of imitation learning are clear: it is easy to implement, and
exploiting expert knowledge largely reduces or completely removes the need for extensive interaction
with the environment during training [34, 2, 1, 14].

However, imitation learning suffers from a fundamental problem: distributional shift [5, 35]. Unlike
supervised learning, training and testing states are drawn from different distributions, induced by
the expert and learned policies, respectively. Therefore, the training objective of imitating expert
behavior along the imitation trajectories is not perfectly aligned with the true objective of performing
the task correctly. This general problem is widely acknowledged [5, 35, 36]. Despite this, naïve
behavioral cloning continues to be yield excellent results in practice [29, 34, 30, 2, 26]. This might
lead one to conclude that, for many practical problems, behavioral cloning is a viable method for
imitation.

In this paper, we identify a specific and very problematic manifestation of distributional shift that
might at first come as a surprise: “causal confusion.” Correlates of expert actions in the demonstration
set are impossible to distinguish from true causes. While this problem exists in standard supervised
learning too, causal confusion is particularly pronounced and important to address in behavior cloning
for two reasons: (i) the temporal structure of sequential action, where future observations are effects
of current actions, induces complex causal structures, and (ii) the aforementioned distributional shift
makes correct causal models particularly valuable, as we will show.
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Figure 1: Causal confusion: more information yields worse imita-
tion learning performance. Here, an imitator with access to the full
scene including the brake indicator etc. (left) performs worse than
an imitator whose inputs are partially ablated (right). See text.

To illustrate, consider behavior
cloning to train a neural network to
drive a car. Consider two models: (i)
model A, whose input is an image of
the dashboard and windshield, and (ii)
model B, with identical architecture,
whose input is the same image but
with the dashboard blacked out (see
Fig 1). Both cloned policies achieve
low training losses, but when tested
on the road, model B drives well,
while model A struggles. It turns out that the dashboard has an indicator light that comes on
instantaneously to indicate when the brake is applied. Model A wrongly learns that it must apply
the brake whenever it sees the brake light on—even though the brake light is the effect of braking,
treating it as the cause is sufficient to achieve low training loss.

This illustrates a classic symptom of causal confusion: access to more information leads a fixed-size
model to exhibit worse generalization performance in the presence of distributional shift. This is
neither standard overfitting, where larger models memorize training data and fail to generalize to
other samples from the same distribution, nor is it related to any optimization difficulties associated
with access to more information—it occurs even when both models are trained to the same training
error.

Our first contribution in this paper is to point out the causal confusion problem in imitation learning
and investigate its symptoms. We show that simply adding a little bit of additional information to
the observation vector can cause this problem to appear in a number of simple benchmark control
domains. Fortunately, sequential decision making offers a way to conduct interventional queries
to resolve causal confusion, by letting the learned model control the system and observe outcomes.
Based on this, our second contribution is to propose a solution to overcome this causal confusion
issue by learning the correct causal model, even when using complex deep neural network models.
We devise an efficient intervention strategy by first performing variational inference over causal
models to infer a diverse hypothesis set, and then use targeted intervention to efficiently search
over this hypothesis set, either by querying an expert, or by executing behaviorally cloned policies
corresponding to different hypotheses in the environment.

2 Related Work

Imitation learning. Imitation learning through behavioral cloning dates back to Pomerleau et al,
1989 [34] and remains popular today [29, 30, 2, 8, 26]. The distributional shift problem, wherein
a cloned policy encounters unfamiliar states during autonomous execution, has been addressed by
a host of approaches [5, 35, 36, 19, 13]. Most closely related to us amongst these are [5, 35, 36],
with which we share the idea of iteratively querying an expert based on states encountered by some
intermediate cloned policy. Our solution differs in the following ways: (i) it specifically targets causal
confusion rather than general distributional shift—in other words, while these above approaches
attempt to minimize distributional shift between demonstrations and policy execution by collecting
new “on-policy” demonstrations, our approach attempts to be robust to distributional shift by learning
the correct causal model, (ii) rather than relying on a large number of expert queries to retrain policies,
our approach uses expert queries as causal interventions on the state to disambiguate among various
trained models—it thus requires many fewer expert queries, and (iii) it is also flexible enough to
substitute expert queries with environment rewards when queryable experts are not available. In our
experiments, we compare against the popular DAgger [36] approach to combat distributional shift.

Causal inference. Causal inference is the general problem of deducing cause-effect relationships
among variables [41, 31, 32, 40, 6, 42]. “Causal discovery” approaches allow causal inference from
pre-recorded observations under constraints [43, 12, 22, 10, 23, 24, 20, 9, 27, 45]. Observational
causal inference is known to be impossible in general [31, 33]. We operate in the interventional
regime [44, 7, 39, 38], well-suited to imitation learning, where a user may “experiment” to discover
causal structures by assigning values to some subset of the variables of interest and observing the
effects on the rest of the system.
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Causal inference in the context of imitation learning is to our knowledge unstudied, despite the
fact that, as we will show, ignoring causal structure is particularly problematic in this context.
In [16], cause-effect reasoning is applied to infer high-level intentions of demonstrators from their
actions, given a pre-specified causal graph from intentions to actions. In contrast, we focus on causal
relationships among observations and actions, and discover the causal graph.

3 Identifying Causal Confusion

Figure 2: A graph of the underlying causal dynamics of
imitation learning. Parents of a node represent its causes.
State variables {Xt

i }ni=1 are fully observed.

Consider the graph in Fig 2, showing the un-
derlying dynamics of imitation learning among
states/observations Xt = {Xt

i}ni=1 and expert
actions At over time t. At time t, the expert’s
decisions At are based on an unknown subset of
the state variables Xt. We refer to variables
in this subset as “causes” and the others as
“nuisance variables”. A confounding variable
Zt = [Xt−1, At−1] influences each state vari-
able in Xt, so that some nuisance variables may
still be correlated withAt among (Xt, At) pairs
from demonstration trajectories. In the car ex-
ample, the dashboard light is a nuisance variable,
influenced by the previous expert action, which is contained in Zt.

A standard supervised imitation learner might learn a model that relies on nuisance variables to
predict actions. Note that nuisance variables are true (not spurious) correlates; such a model would
generalize well to held-out (Xt, At) pairs from demonstrations. However, as motivated in Sec 1,
imitation-learned policies face a distributional shift problem when deployed. In the graph of Fig 2,
the distribution of Zt shifts; past states Xt−1 and actions At−1 are generated by the imitation policy
rather than the expert policy. This affects the relationship of the optimal (expert) actionAt to nuisance
variables, but not to true causes.

Thus, in order to be robust to distributional shift, a policy must rely solely on true causes of expert
actions and ignore nuisance variables. Following [31], this amounts to inferring the interventional
query p(At|do(Xt)). In other words, if some external mechanism were able to “intervene” on the
state Xt to assign it some value independent of its parent nodes, what would the distribution of At
be? Inferring this interventional query directly determines robustness to distributional shift. In the car
example, modeling the interventional query would imply “setting” the brake light to on or off and
observing the expert’s behaviour. This would yield a clear signal unobstructed by confounders: the
expert ignores the brake light, and activates the brakes solely based on causes observable through the
windshield. This can be formalised in the language of functional causal models [31].

Functional Causal Models: A functional causal model (FCM) over a set of variables {Yi}ni=1
is a tuple (G, θG) containing a graph G over {Yi}ni=1, and deterministic functions fi(·; θG) with
parameters θG describing how the causes of each variable Yi determine it:

Yi = fi(YPa(i;G), Ei; θG), (1)

where Ei is a stochastic noise variable that represents all external influences on Yi, and Pa(i;G)
denote the indices of parent nodes of Yi, which correspond to its causes.

An intervention on Yi to set its value may now be represented by a structural change in this graph to
produce the “mutilated graph” GȲi , in which incoming edges to Yi are removed. For a more thorough
overview of FCMs, see [31].

Proposition 1. Let the expert’s functional causal model be (G∗, θ∗G∗), with causal graph G∗ ∈ G
and function parameters θ∗G∗ . We assume some faithful1 learner (Ĝ, θĜ), Ĝ ∈ G that agrees on the
interventional query:

∀X,A : pG∗,θ∗
G∗

(A|do(X)) = pĜ,θĜ
(A|do(X))

1A causal model is faithful when all conditional independence relationships if the distribution are represented
in the graph.
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Then it must be that G∗ = Ĝ.2

Proof. For graph G, define the index set of state variables that are independent of the action in the
mutilated graph GX̄ :

IG = {i|Xi ⊥⊥
GX̄

A}

From the assumption of matching interventional queries and the assumption of stability, it follows
that: IG∗ = IĜ. From the graph, we observe that IG = {i|(Xi → A) 6∈ G} and thus G∗ = Ĝ.

In other words, in keeping with our intuition above, correctly modeling interventional queries requires
learning the correct causal graph G. In realistic learning scenarios, direct intervention such as setting
the state of a car’s brake light may be impossible. However, as we will argue in Sec 4.2, interaction
with the environment may be a viable indirect substitute for intervention.
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Figure 3: Diagnosing causal
confusion: net reward (y-axis)
vs number of training samples
(x-axis) for ORIGINAL and CON-
FOUNDED, compared to expert re-
ward (mean and stdev over 5 runs).
Also see Appendix A.

Causal confusion testbeds: To study causal confusion further, we
first construct tasks that exhibit causal confusion. We start from
widely studied benchmark control tasks from OpenAI Gym [3] and
simply append the previous action to the observation vector. This
is a proxy for scenarios like our car example, in which traces of past
actions are observable in the state. Producing causal confusion in
this manner relies on actions at past times being predictive of future
actions, so that the past action is an effective nuisance variable. This
is a common feature of many control tasks, where optimal actions
vary smoothly over time. We select three such tasks from Gym:
MountainCar, Hopper, and Walker2d.

For each task, we first train “expert” policies through reinforcement
learning (Q-learning [28] for MountainCar, TRPO [37] for others).
Then, we train two imitation policies with identical architectures on
the same state-action pairs from demonstrations from the experts,
yielding near-zero validation error on held-out demonstration data.
The input to the first imitator (CONFOUNDED) is the augmented obser-
vation vector containing the previous action nuisance variable. The
second imitator (ORIGINAL) receives the original observation vector
augmented with a random noise variable in place of the nuisance
variable. Finally, we train each imitator on different-sized datasets.

Fig 3 shows the total reward received by the different policies for
Mountain Car, Hopper, and Walker2d. ORIGINAL yields rewards
tending towards expert performance as the size of the imitation
dataset increases. CONFOUNDED improves much more slowly in
MountainCar and Hopper, and fails to improve at all in Walker2d.
Overall, the results are clear: in all three cases, adding information
leads to the inferior performance of CONFOUNDED, compared with
the control setting, ORIGINAL. As Figure 9 in the appendix shows,
this difference is not due to different training/validation losses on
the expert demonstrations—for example, in Walker2d, CONFOUNDED

yields lower validation loss than ORIGINAL on held-out demonstration
samples, but yields much lower rewards. This not only validates the existence of the causal confusion
problem which we have motivated and described above, but also provides us with testbeds for a
solution. In particular, we will evaluate causal confusion resolution on the modified MountainCar
and Hopper environments.

4 Resolving Causal Confusion Through Discovery and Intervention

We propose to infer the expert’s causal model in two stages. First, we propose a causal discovery
approach to find the set of all functional causal models, parameterized by deep neural networks,

2For notational simplicity, we drop time t from the superscript when exclusively discussing states and actions
from the same time.
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consistent with the expert demonstrations (Sec 4.1). Then, we perform targeted interventions to
efficiently search over the hypothesis set for the correct causal model (Sec 4.2).

4.1 Variational Inference for Causal Discovery

Figure 4: Training architecture for variational
inference-based causal discovery as described in
Eq 4.1. The policy network fφ represents a mix-
ture of policies, one corresponding to each value of
the binary causal graph structure variable G. This
variable in turn is sampled from the distribution
qψ(G|u) produced by an inference network from
an input latent U . Further, a network bη regresses
back to the latent U to enforce that G should not be
independent of U .

The problem of discovering causal graphs from pas-
sively observed data is called causal discovery. The
PC algorithm [41] is arguably the most widely used
and easily implementable causal discovery algo-
rithm. In the case of Fig 2, the PC algorithm would
imply the absence of the arrow Xt

i → At, if the con-
ditional independence relation At ⊥⊥ Xt

i |Z holds,
which can be tested by measuring the mutual in-
formation. However, the PC algorithm relies on
faithfulness of the causal graph i.e. conditional in-
dependence must imply d-separation in the graph.
However, faithfulness is easily violated in a Markov
Decision Process. If for some i, Xt

i is a cause of the
expert’s action At (the arrow Xi → At should ex-
ist), butXi is the result of a deterministic function of
Zt, then always At ⊥⊥ Xt

i |Z and the PC algorithm
would wrongly conclude that the arrow Xi → At is
absent.3

We take a Bayesian approach to causal discovery [12] from demonstrations. Recall from Sec 3 that
the expert’s actions A are based on an unknown subset of the state variables {Xi}ni=1. Each Xi

may either be a cause or not, so there are 2n possible graphs. We now define a variational inference
approach to infer a distribution over functional causal models (graphs and associated parameters)
such that its modes are consistent with the demonstration data D.

While Bayesian inference is intractable, variational inference can be used to find a distribution that is
close to the true posterior distribution over models. We parameterize the structure G of the causal
graph as a vector of n correlated Bernoulli random variables Gk, each indicating the presence of
a causal arrow from Xk to A. We assume a variational family with a point estimate θG of the
parameters corresponding to graph G and use a latent variable model to describe the correlated
Bernoulli variables, with a standard normal distribution q(U) over latent random variable U :

qψ(G, θ) = qψ(G)[θ = θG] =

∫
q(U)

n∏
k=1

qψ(Gk|U)[θ = θG]dU (2)

We now optimise the evidence lower bound (ELBO):

argmin
q

DKL(qψ(G, θ)|p(G, θ|D)) =

argmax
ψ

∑
i

EU∼q(U),Gk∼qψ(Gk|U) [log p(Ai|Xi, G, θG) + log p(G)] +Hq(G). (3)

The terms in this ELBO are intuitive:

• Likelihood: p(Ai|Xi, G, θG) is the likelihood of the observations X under the FCM (G, θG). It
is modelled by a single neural network fφ([X �G,G]), where � is the element-wise multipli-
cation, [·, ·] denotes concatenation and φ are neural network parameters.

• Entropy Regularizer: Hq acts as a regularizer to prevent the graph distribution from collapsing to
the maximum a-posteriori estimate. It is intractable to directly maximize entropy, but a tractable
variational lower bound can be formulated. Using the product rule of entropies, we may write:

Hq(G) = Hq(G|U)−Hq(U |G) +Hq(U) = Hq(G|U) + Iq(U ;G)

3More generally, faithfulness places strong constraints on the expert graph. For example, a visual state may
contain unchanging elements such as the car frame in Fig 1, which are by definition deterministic functions of
the past. As another example, goal-conditioned tasks must include a constant goal in the state variable at each
time, which once again has deterministic transitions, violating faithfulness.
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In this expression, Hq(G|U) promotes diversity of graphs, while Iq(U ;G) encourages corre-
lation among {Gk}. Iq(U ;G) can be bounded below using the same variational bound used
in InfoGAN [4], with a variational distribution bη: Iq(U ;G) ≥ EU,G∼qψ log bη(U |G). Thus,
during optimization, in lieu of entropy, we maximize the following lower bound:

Hq(G) ≥ EU,G∼q

[
−
∑
k

log qψ(Gk|U) + log bη(U |G)

]
• Prior over graph structures: The prior p(G) over graph structures is set to prefer graphs with

fewer causes for action A—it is thus a sparsity prior.

Note that G is a discrete variable, so we cannot use the reparameterization trick [18]. Instead, we
use the Gumbel Softmax trick [15, 25] to compute gradients for training a small network qψ(Gk|U).
Note that this does not affect fφ, which can be trained with standard backpropagation.

Note that the loss of Eq 3 is easily interpretable independent of the formalism of variational Bayesian
causal discovery. A mixture of predictors fφ is jointly trained, each paying attention to diverse sparse
subsets (identified by G) of the inputs. This is related to variational dropout [17]. Once this model
is trained, qψ(G) represents the hypothesis distribution over graphs, and πG(x) = fφ([x �G,G])
represents the imitation policy corresponding to a graph G. Fig 4 shows the architecture.

4.2 Targeted Intervention Through Expert Queries and Environment Rewards

The discovery posterior over hypotheses inferred in Sec 4.1 now functions as the intervention prior for
causal inference through intervention. We propose two variants for targeted intervention to compute
the likelihood p(O|G), for optimality random variable O, of each hypothesis:

• Intervention by expert queries: This is the standard intervention approach applied to imitation
learning i.e., intervene on Xt to assign it a value, and observe the expert response A. This requires
an interactive expert, as in [35], but the expert can be queried efficiently.

• Intervention by policy execution: In the absence of a queryable expert, environmental rewards
rt may be used to conduct indirect intervention in the imitation learning setting. The policies
πG corresponding to different hypotheses G are evaluated in the environment and rewards rt are
collected. The likelihood is proportional to exp

∑
t rt. The intuition is simple: environmental

rewards from policy rollouts contain information about optimal expert policies even when those
experts are not queryable.

Once the likelihood is determined by intervention, it is combined with the intervention prior p0(G)
using Bayes rule to compute the final posterior distribution over functional causal models p(G|O).
Note that both above intervention approaches evaluate individual hypotheses in isolation, but the
number of hypotheses grows exponentially in the number of state variables. To handle larger
states, we infer a graph distribution π(G), by assuming an energy based model with a linear energy
Q(G) = 〈w,G〉+ b, so the graph distribution is π(G) =

∏
i π(Gi) =

∏
i Bernoulli(Gi|σ(wi/τ)),

where σ is the sigmoid, which factorizes in independent factors. The independence assumption is
sensible as we are interested in the mode of this distribution, instead of in capturing all modes, as
during the discovery phase. Q(G) is inferred from linear regression on dataset (G,L(G)+log p0(G)),
where p0(G) is the posterior from the causal discovery. G can be sampled arbitrarily.

For intervention by policy execution, L(G) is the reward obtained by executing policy πG. The
current graph distribution is used to sample G. For intervention by expert queries, L(G) is the
mean-squared error of the policy fφ([· �G,G]) on expert query data. In this case, the number of G’s
for which we evaluate the policy is only constrained by computational considerations. In practice, it
may be feasible to execute the policy for all G.

The above method can be formalized within the reinforcement learning framework [21]. As we show
in Appendix C, the energy-based model can be seen as an instance of Soft Q-Learning [11].

5 Causal Inference Evaluation

We now use the modified MountainCar and Hopper environments from Sec 1 as our testbeds to
evaluate the solution described in Sec 4. We compare against three baselines: (i) DAGGER [36], which
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Figure 6: Reward of selected model after intervention by policy execution. (Left) MountainCar (Right) Hopper.

attempts to minimize distributional shift through iterative imitation policy training and on-policy
dataset aggregation, (ii) UNIFORM, which ablates out the effect of the hypothesis generation scheme
described in Sec 4.1, instead sampling hypotheses uniformly at random for intervention, and (iii)
W/O SPARSITY PRIOR, which sets the prior over graphs p(G) to be uniform in Eq 3. We also study the
effect of intervention with a learned linear energy based model (EB). For Hopper, we found that only
the energy based method yielded successful intervention posteriors, due to the higher dimensionality.
We evaluate each approach by plotting net returns (sum of rewards) vs. intervention cost. Intervention
cost may be measured either in terms of number of expert queries, or the number of policy rollouts.
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Figure 5: Posterior after causal discov-
ery of different hypotheses on Moun-
tainCar.

Causal discovery. In modified MountainCar, there are exactly
eight possible causal graphs G, corresponding to each of three
state variables (position, velocity, previous action) either caus-
ing or not causing the next action. We represent these in binary
form – e.g. the true causal model is “110” (position and velocity
cause next action, and previous action is ignored). Fig 5 shows
the discovered posterior using the causal discovery approach of
Sec 4.1. The true causal model is assigned the second highest
posterior after the model that accesses all three observations
when we take the prior over graphs to be uniform. When the
sparsity prior is included, the true causal model is the mode of
the posterior. Modified Hopper has 14 state variables (11 original state variables corresponding to
joint states, plus 3 past action variables), and the number of candidate graphs is 214 = 16, 384. In
our Hopper experiments, the highest probabilities were assigned to confounded models, but the true
causal model was also assigned a significantly above-average probability as expected, ranked 743 out
of 16, 384. We use this discovery posterior as the prior for causal inference during intervention (see
Sec 4.2).

Intervention by policy execution. In this experiment, we evaluate two methods of intervention
through policy execution. In the first, we sample and execute the hypotheses learned in the first stage
in order of their discovery posteriors, highest first. The model with the highest mean reward over
these intervention rollouts is maintained as the “selected” model. In the second method, we learn the
energy based model through Soft Q-Learning. Fig 6 plots the mean reward computed vs. number
of intervention rollouts, comparing sampling hypotheses in order of the discovery posterior against
sampling in random order. As Fig 6 shows, all methods converge to a model yielding similar reward,
which we verified to be the correct causal models of MountainCar and Hopper.

For the non-energy based model, with MountainCar, a small difference is noticeable in the used prior.
The uniform prior requires about four runs on average, while the learned prior without sparsity needs
only two, as the causal model is assigned the second highest probability by the discovery posterior.
The learned prior with sparsity selects the causal model even without intervention.

These results show that our method successfully performs causal inference within a few trials.
They also validate that indirect intervention through policy execution is indeed a valid intervention
approach, as argued in Sec 4.2.

Intervention by expert queries. Next, we perform direct intervention by querying the expert on
samples from trajectories produced by the different causal graphs, where the number of trajectories
per graph is weighed by the discovery posterior. Of these trajectories, the states are sampled on
which the graphs disagree most. This allows us to compute the intervention likelihood and posterior
over hypotheses after each query, shown in Fig 7. In this setting, we can also directly compare to
DAgger [36].
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Figure 7: Reward of selected model after intervention by expert queries. (Left) MountainCar (Right) Hopper.

Our approach not only correctly identifies the causal model efficiently, but also exceeds the rewards
achieved by a policy trained with DAgger, while using far fewer expert queries. In Appendix B, we
show that DAgger requires hundreds of queries to achieve similar rewards for MountainCar and tens
of thousands for Hopper.

Of the two intervention approaches, policy execution converges to better final rewards—we believe
this is because optimizing for agreement with the expert is only a proxy for optimizing for reward. For
example, two quite different policies may both be optimal. Finally, for both environments, UNIFORM is
actually feasible and does not perform very poorly in both intervention settings—however, this would
not be feasible in larger problems with more state variables, where the benefits of causal inference
would be clearer.
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Figure 8: Rewards intervention by policy
execution with VAE encoded state on Moun-
tainCar.

VAE-encoded latent space. Does our approach con-
tinue to work with more complex state spaces? We
encode MountainCar states into a 10-D latent space
through a variational autoencoder [18]. First, does the
causal confusion effect persist? Comparing ORIGINAL-
VAE and CONFOUNDED-VAE in Fig 8 shows that indeed, it
does. Next, does our method successfully relieve causal
confusion? CAUSAL-VAE (EB) is our energy-based ap-
proach without sparsity applied with the VAE-encoded
confounded state. As Fig 8 shows, our method improves
the performance of CONFOUNDED-VAE to be on par with the
imitator on the true non-VAE-encoded state space. This
result holds promise for the ability of our approach to handle more general cases of causal confusion.

6 Conclusions

We have identified and described a basic problem in imitation learning through behavior cloning:
causal confusion. We have shown how to identify this problem, and constructed simple tasks
exhibiting the problem by modifying commonly used control benchmarks. Further, we have proposed
a causally motivated approach to solve this problem by first constructing a mix of hypotheses
through variational inference, then using targeted interventions to evaluate and select hypotheses.
Our experiments on MountainCar and Hopper show the promise of this approach, compared to the
widely used DAgger approach for behavior cloning.

For these settings, the advantages of the causal discovery phase were not very clear, since for these
environments it is feasible to train policies for all hypotheses jointly. For this same reason, we found
that the variational inference approach for causal discovery proposed in Sec 4.1 did not provide
gains over an “offline” causal discovery approach that simply assigned higher discovery posterior
probabilities to graphs that yielded lower errors after training the policy network fφ. However, we
expect that for problems that are higher dimensional, learning the causal discovery graph distribution
jointly with the policies as in Sec 4.1 would yield larger gains. On the other hand, the benefits of
our targeted intervention approach (Sec 4.2) are already very clear even in these lower-dimensional
problems.

For future work we will attempt to identify and solve causal confusion in visual domains. Additionally,
we will explore the problem in settings such as driving in which the nuisance variables arise more
naturally in the state space, as identified earlier in [29], where behavior cloning failed due to causal
confusion when provided with state history information.
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A Results on Diagnosis of Causal Confusion
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Figure 9: An expanded version of Fig 3 in the main paper, demonstrating diagnosis of the causal
confusion problem in three settings. Here, the final reward, shown in Fig 3 is shown in the third
column. Additionally, we also show the behavior cloning training loss (first column) and validation
loss (second column) on trajectories generated by the expert. The x-axis for all plots is the number of
training examples used to train the behavior cloning policy.

In Fig 9 we show the causal confusion in several environments. We observe that while training and
validation losses for behavior cloning are frequently near-zero for both the original and confounded
policy, the confounded policy consistently yields significantly lower reward when deployed in the
environment. This confirms the causal confusion problem.
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B Results of DAgger
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Figure 10: DAgger results trained on the confounded state.

The results in Fig 10 show that DAgger requires hundreds of samples before reaching rewards
comparable to the rewards achieved by a non-DAgger imitator trained on the original state.

C Intervention posterior inference as reinforcement learning

Given a method of evaluating the likelihood p(O|G) of a certain graph G to be optimal and a prior
p0(G), we wish to infer the posterior p(G|O). The number of graphs is finite, so we can compute this
posterior exactly. However, there may be very many graphs, so that impractically many likelihood
evaluations are necessary. Only noisy samples from the likelihood can be obtained, as in the case of
intervention through policy execution, where the reward is noisy, this problem is exacerbated.

If on the other hand, a certain structure on the policy is assumed, the sample efficiently can be
drastically improved, even though policy can no longer be exactly inferred. This can be done in
the framework of Variational Inference. For a certain variational family, we wish to find, for some
temperature τ :

π(G) = argmin
π(G)

DKL(π(G)||p(O|G)) = argmin
π(G)

Eπ [log p(O|G) + log p0(G)] + τHπ(G) (4)

The variational family we assume is the family of independent distributions:

π(G) =
∏
i

πi(Gi) =
∏
i

Bernoulli(Gi|σ(wi/τ)) (5)

Eq 4 can be interpreted as a 1 step entropy-regularized MDP with reward r̃ = log p(O|G)+log p0(G)
[21]. It can be optimized through a policy gradient, but this would require many likelihood evaluations.
More efficient is to use a value based method. The independence assumption translates in a linear
Q function: Q(G) = 〈w,G〉 + b, which can be simply learned by linear regression on off-policy
pairs (G, r̃). In Soft Q-Learning [11] it is shown that the policy that maximizes Eq 4 is π(G) ∝
expQ(G)/τ , which can be shown to coincide in our case with Eq 5:
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π(G) =
exp(〈w,G〉+ b)/τ∑
G′ exp(〈w,G′〉+ b)/τ

=
exp〈w,G〉/τ∑
G′ exp(〈w,G′〉/τ

=

∏
i exp(wiGi/τ)∑

G′
∏
i exp(wiG

′
i/τ)

=

∏
i exp(wiGi/τ)∏

i

∑
G′i

exp(wiG′i/τ)

=
∏
i

exp(wiGi/τ)∑
G′i

exp(wiG′i/τ)

=
∏
i

exp(wiGi/τ)

1 + expwi/τ
=

∏
i

Bernoulli(Gi|σ(wi/τ))

where in the fourth line we used the identity
∑
G1,G2,...

∏
i →

∏
i

∑
Gi

, which is commonly used in
statistical physics.
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