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ABSTRACT 

Subjective studies have been conducted in the past to obtain 
human judgments of visual quality on distorted images in or­
der, among other things, to benchmark objective image qual­
ity assessment (lQA) algorithms. Existing subjective studies 
primarily have records of human ratings on images that were 
corrupted by only one of many possible distortions. However, 
the majority of images that are available for consumption are 
corrupted by multiple distortions. Towards broadening the 
corpora of records of human responses to visual distortions, 
we recently conducted a study on two types of multiply dis­
torted images to obtain human judgments of the visual qual­
ity of such images. Further, we compared the performance 
of several existing objective image quality measures on the 
new database and analyze the effects of multiple distortions 
on commonly used quality-determinant features and on hu­
man ratings. 

Index Terms- Image quality assessment, Subjective 
study, Multiple distortions 

1. INTRODUCTION 

With the explosion of camera usage, visual traffic over net­
works and increasing efforts to improve bandwidth usage, it 
is important to be able to monitor the quality of visual con­
tent that may be corrupted by multiple distortions. There is an 
increasing demand to develop quality assessment algorithms 
which can supervise this vast amount of data and ensure its 
perceptually optimized delivery. 

The performance of existing objective IQA models such 
as [1, 2, 3, 4] has previously been measured on databases such 
as [5, 6] containing images corrupted by one of several pos­
sible distortions. However, images available to consumers 
usually reaches them after several stages - acquisition, com­
pression, transmission and reception, in which process, they 
may suffer multiple distortions. Hence it is important to study 
the performance of IQA algorithms applied to multi-distorted 
images. The relatively few existing studies [7][8] of image 
quality in multiple distortion scenarios have used databases 
that are limited by the content and size of the data used. To 
bridge this gap, we have conducted a large study involving 37 
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subjects and 8880 human judgments on 15 pristine reference 

images and 405 multiply distorted images of two types. 

2. DETAILS OF THE EXPERIMENT 

A subjective study was conducted in two parts to obtain hu­
man judgements on images corrupted under two multiple 
distortion scenarios: 1) image storage where images are first 
blurred and then compressed by a JPEG encoder. 2) camera 
image acquisition process where images are first blurred due 
to narrow depth of field or other defocus and then corrupted 
by white Gaussian noise to simulate sensor noise. We an­
alyzed the performance of full-reference and no-reference 
algorithms to gauge their performance on our dataset and 
demonstrate how multiple distortions affect the quality judg­
ments of humans and objective algorithms. 

2.1. Compilation of image dataset 

Images in the study dataset were derived from 15 high-quality 
pristine images, chosen to span a wide range of content, col­
ors, illumination levels and foreground/background configu­
rations. Distorted images were generated from each of these 
images as follows: 

2.1.1. Single distortions 

• Blur: Gaussian kernels (standard deviation CTo) were 
used for blurring with a square kernel window of side 
3CT (rounded off) using the Matlab jspecial and imfilter 
cOlmnands. Each of the R, G and B planes of the image 
was blurred using the same kernel. 

• JPEG: The Matlab imwrite command was used to 
generate JPEG compressed images by varying the 
Q parameter (whose range is from 0 to 100) which 
parametrizes the DCT quantization matrix. 

• Noise: Noise generated from a standard normal pdf of 
variance CT'fv was added to each of the three planes R,G 
and B using the imnoise Matlab function. 

Three different values each were used for each distortion 
parameter: CTo = 3.2, 3.9, 4.6 pixels, Q = 27, 18, 12 and CT'fv 
= 0.002,0.008 and 0.032 were chosen. They were selected to 
keep the distorted images perceptually separable from each 
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other and from the references, and to keep the distortions 
within a realistic range. 

2.1.2. Multiple Distortions 

Four levels of blur, JPEG compression and noise - the 0 level 
(no distortion) and levels 1, 2 and 3 with above mentioned 
values were considered. 

• Blur followed by JPEG: Each of the four blurred im­
ages was compressed using the JPEG encoder bank. 16 
images Ii�,

l 
were generated from the k-th reference im­

age Rk, 0 ::; i, j ::; 3 where i denotes the degree of blur 
and j the degree of JPEG compression . 

• Blur followed by Noise: Noise at each of the four lev­
els was added to each of the four images generated by 

the blurring stage. Therefore, 16 images Ii�,
2 

were gen­

erated from Rk, where i denotes the degree of blur and 
j the degree of noise. 

In all, 15 reference images were used to generate 225 im­
ages for each part of the study of which 90 are singly distorted 
(45 of each type) and 135 are multiply distorted. Both parts of 
the study were conducted under identical conditions with sep­
arate sets of subjects. To confirm that the human scores from 
both parts of the study may be analyzed together, the same 
blurred images were used in both parts of study, hence there 
are 405 images in all.l The dataset compilation is schemati­
cally represented in Fig l. 

2.2. Study conditions 

2.2.1. Equipment and Display Configuration 

Images of size 1280 x 720 were displayed on an LCD mon­
itor with 73.4 ppi resolution, calibrated in accordance with 
the recommendations in [10]. The study was conducted in 
a workspace environment under normal indoor illumination 
levels. The subjects viewed the monitor from a distance ap­
proximately equal to 4 times the screen height. The Matlab 
Psychometric Toolbox [11] was used to render images on the 
screen and acquire human ratings. 

2.2.2. Study design 

The study was conducted using a single stimulus (SS) with 
hidden reference [12] method with numerical non-categorical 
assessment [10]. Each image was presented for a duration 
of 8 seconds after which the rating acquisition screen was 
displayed containing a slider with a continuous scale from 
o to 100. Semantic labels 'Bad', 'Poor', 'Fair', 'Good' and 
'Excellent' were marked at equal distances along the scale to 
guide the subjects. 

I It was verified that the human scores on these blurred images from the 
two parts of the study did not differ significantly. This was taken as evidence 
that the scores from the two parts of the study could be combined for analysis 
without the need for realignment as in [9] 
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Fig. 1. Schematic of the image dataset compilation 

At the beginning of each session, the subject was briefed 
based on recOlmnendations in [10] and then asked to rate 6 
training images, carefully selected to approximately span the 
range of image qualities in the test dataset. In the test session 
that followed, subjects were asked to rate images from the 
test dataset. The test images were presented in random order, 
different for each subject, to eliminate memory effects on the 
mean scores. No two images derived from the same reference 
were shown one after the other. Subjects were not informed of 
the presence or location of reference images in the test image 
sequence. The rating procedure was thus completely blind to 
the reference images. 

Ratings for each part of the study were acquired during 
the test phase from each subject for all the 240 images, of 
which 15 were reference. To minimize subject fatigue[lO], 
each subject therefore rated images in two sessions lasting no 
longer than 30 minutes each.Analysis from part 1 showed that 
the difference mean opinion (DMOS) scores did not change 
significantly if the reference image was displayed in only one 
of the sessions. Each reference was presented only once to 
each subject in part 2 and the acquired ratings were used for 
difference score computations over both sessions. 

2.2.3. Subjects 

Subjects for the study were mostly graduate students at The 
University of Texas at Austin (UT) who volunteered to take 
the study. A majority of the subjects were male, and between 
23 and 30 years old. Subjects were allowed to continue to 
wear corrective lenses if they thought it necessary to do so. 
The study was conducted over a period of four weeks and 
ratings were acquired from each subject in two sessions as 
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Fig. 2. Distribution of DMOS scores 

described above. A total of 19 and 18 subjects participated in 
the first and second parts of the study respectively. 

2.3. Processing of scores 

To simplify our notation, we drop the superscript l labelling 
the study part with the understanding that the rest of our dis­
cussion is applicable to each of the two parts of the study. 
Further, we used three labels for each test image: i, j and k , 
which we now collapse into one subscript y = i, j, k. Then let 
Sxyz be the score assigned by subject x to image ly in session 
z. Further let lYre! be the reference image corresponding to 
ly, which is displayed in one/both sessions z = 1,2 and Nzm 
be the number of images rated by subject x in session z. 

• Difference Scores: As a first step, the raw rating as­
signed to an image was subtracted from the rating as­
signed to its reference image in that session to form the 
difference score dxyz = Sxyz - SXY.re! z . In this scheme, 
all reference images are assigned the same difference 
score of zero. This eliminates rating biases associated 
with image content. 

• Mean Human Score: We then computed a Difference 
Mean Opinion Score(DMOS) for each image ly as 
J x L:x dxym , where N x is the number of subjects. 
The distributions of DMOS scores for parts I and II of 
the study are shown in Fig 2. We found that analysis 
done using Z scores in place of DMOS scores as in [13] 
did not offer any new insights. Hence, we only report 
analysis using DMOS scores here. 

• Subject Screening: This mean score may be easily 
contaminated by outliers such as inattentive subjects. 
To prevent this, we follow a procedure recommended 
in [10] to screen subjects. No outlier subjects were de­
tected in either part of the study. 

3. RESULTS 

3.1. Algorithm Performance Evaluation 

In this section, we analyze the performance of a variety of 
existing full-reference image quality algorithms [14], and 
a recently proposed state-of-the-art no-reference algorithm 

Blur JPEG Noise Study 1 Study 2 Overall 
PSNR 0.5000 0.0909 0.8000 0.6634 0.7077 0.6954 
MS-SSIM 0.7579 0.4643 0.8892 0.8350 0.8559 0.8454 
VIF 0.7857 0.6667 0.8524 0.8795 0.8749 0.8874 
IFC 0.8182 0.6264 0.8364 0.8914 0.8716 0.8888 
NQM 0.8462 0.5000 0.7619 0.8936 0.8982 0.9020 
VSNR 0.6685 0.3571 0.8041 0.7761 0.7575 0.7844 
WSNR 0.6190 0.6000 0.7940 0.7692 0.7488 0.7768 
BRISQUE-l 0.8000 0.2909 0.7972 0.7925 0.2139 0.4231 
BRISQUE-2 0.8818 0.6364 0.8799 0.9214 0.8934 0.9111 

Table 1. SRoee of IQA scores with DMOS 

Blur JPEG Noise Study 1 Study 2 Overall 
PSNR 0.5661 0.4161 0.9235 0.7461 0.7864 0.7637 
MS-SSIM 0.8683 0.6090 0.9567 0.8785 0.8951 0.8825 
VIF 0.9079 0.7907 0.9533 0.9214 0.8930 0.9083 
IFC 0.9151 0.8140 0.9403 0.9271 0.8997 0.9137 
NQM 0.8643 0.6367 0.8984 0.9179 0.9126 0.9160 
VSNR 0.7684 0.5304 0.9404 0.8372 0.8090 0.8326 
WSNR 0.6887 0.6759 0.9310 0.8457 0.8108 0.8408 
BRISQUE-l 0.8412 0.5803 0.9349 0.8687 0.3776 0.5001 
BRISQUE-2 0.8918 0.8143 0.9614 0.9462 0.9226 0.9349 

Table 2. Lee of IQA scores with DMOS 

called BRISQUE [15] which uses features from [16] on our 
database. BRISQUE is a learning-based algorithm. We 
tested its performance on our multi-distortion dataset after 
training on two separate training sets: the LIVE single dis­
tortion dataset[5] (BRISQUE-l), and the multi-distortion 
dataset itself, using 4:1 train-test splits (BRISQUE-2). To 
compare algorithms, we ran 1000 iterations with random 
4:1 train-test splits. We report the median performance over 
all iterations. We report Spearman Rank Ordered Correla­
tion Coefficient (SROCC) and Pearson Linear Correlation 
Coefficient (LCC) as a measure of the correlation of IQA 
algorithms with DMOS. To obtain the LCC, a four-parameter 
monotonic function is used to map IQA scores to DMOS: 

h (u) = l+expc%;(u-fh) + /34 where h (u) is the predicted 

human score when the algorithm returns the value u. We 
then compute the LCC between hand DMOS. Results on 
five classes of images and on the complete dataset are shown 
in Tables 1 and 2. The first three columns contain scores on 
single-distortion images from the dataset. The highest score 
in each column is highlighted. 

MS-SSIM tends to perform poorer on our dataset than do 
IFC, VIF and NQM, while it performs on par with VIF in [5]. 
Performance on JPEG distorted images in particular was gen­
erally very poor. Also, several algorithms that perform poorly 
on JPEG images score well on images afflicted with blur fol­
lowed by JPEG (part 1) because human scores on such images 
in our study are mainly dominated by the blur component. 
These observations indicate that there might have been insuf­
ficient perceptual separation of JPEG levels used to generate 
test data for part 1. The NR-IQA BRISQUE-2 outperforms 
all full reference IQA measures on our dataset. However, it 
should be noted that BRISQUE-2 has the advantage of being 
trained on multi-distorted images. 
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Fig. 3. Effect of blur, noise and blur followed by noise on 
normalized luminance histogram used by BRISQUE 

3.2. Impact of multiple distortions on quality features 

Comparison of BRISQUE-l and BRISQUE-2 shows that the 
single-distortion-trained BRISQUE-l performs particularly 
poorly on images afflicted with blur followed by noise (part 
2 of the study), while it does well on the blur and noise sin­
gle distortion classes. Similar to other previously proposed 
successful algorithms such as SSIM, BRISQUE uses the 
statistics of pixel intensities subtracted from local means and 
normalized by local contrasts. Broadly speaking, noise and 
blur tend to widen and narrow the distribution of this feature 
respectively. Thus this distribution for an image afflicted 
with both noise and blur resembles that for pristine images 
as shown in Fig 3. It is conceivable therefore that BRISQUE 
models trained on singly distorted images would overesti­
mate the quality of multi-distorted images. This evidence 
indicates that the behavior of quality-determinant features 
such as these in multi-distortion scenarios warrants further 
study. The vastly improved performance of BRISQUE-2 over 
BRISQUE-l on part 2 shows how a multi-distortion database 
might provide valuable training data for image quality algo­
rithms. 

3.3. Towards understanding interactions of distortions 

In this section we analyze the impact of interaction of dis­
tortions on the DMOS scores in our dataset. To do this, for 
each part of our dataset we arrange the scores for all the dis­
torted variants of each image in a distortion grid, where every 
row represents a constant value of distortion 1 (blur for both 
parts) and every column represents a constant value of distor­
tion 2 (JPEG and noise for the two parts respectively). Such 
a grid is demonstrated in the top-right of Figure 4. This dis­
tortion grid itself demonstrates the expected behavior of low 
DMOS scores near the top-left (close to pristine) and subse­
quently increasing DMOS scores near the bottom-right (most 
distorted). 

If we now form a new grid by subtracting every row from 
its preceding row, we can analyze the incremental impact of 
varying distortion 1 at fixed distortion 2 (impact matrix 1). 
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babygirl.bmp 

blur impact 

Distortion grid 

56 61 62 67 

noise impact 

Fig. 4. Distortion grid analysis of the baby girl image: (top 
left) the pristine image, (top right) distortion grid score ar­
rangement on part 2 of the study, (bottom left) blur impact 
grid and (bottom right) noise impact grid. (see text for de­
tails) 

Similarly, by subtracting every column from its preceding col­
umn, we can analyze the incremental impact of varying dis­
tortion 2 at fixed distortion 1 (impact matrix 2). Examples of 
blur and noise impact grids are presented in Fig 4. From these 
grids, we note that the patterns of incremental noise impact at 
fixed blur vary as a function of the blur and vice versa. 

To demonstrate this, we plot every column of impact ma­
trix I, and similarly, every row of impact matrix 2. These 
plots are shown in Fig 5 for the baby girl image. A gen­
eral trend that can be observed from these plots is that the 
impact on DMOS of increment in distortion A is generally 
lower at higher levels of distortion B. For instance, in the bot­
tom plot in Fig 5, the plots nearly line up one below the other 
in the order of increasing blur levels. Thus the impact of vi­
sual masking of one distortion by another is demonstrated in 
our analysis. 

Another interesting observation is regarding the shape of 
the plots themselves. We expect that the shapes of these plots 
must be a function of the distortion parameters that we have 
chosen for our various distortion levels. An interesting ob­
servation that emerges from the data is that the shape of dis­
tortion incremental impact plots in the presence of a second 
distortion itself varies as a function of the level of the other 
distortion as in Fig 5. For instance, while noise increment 2 
has the largest impact of any for blur levels 0 (pristine) and 
I, it has the smallest impact of any for blur levels 2 and 3, in 
the case that is shown here. Similar trends are observed for 
other images in the dataset. This suggests complex interac­
tions among distortions in determining the perceptual quality 
of visual content. 
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Fig. 5. Plots of distortion impact: (top) impact of blur incre­
ments at constant noise level, (bottom) impact of noise incre­
ments at constant blur level 

4. CONCLUDING REMARKS 

We found that correlation scores of objective FR IQA al­
gorithms with human judgments are lower compared to [5] 
which indicates that the new database is more challeng­
ing. This is attributed to the presence of multi-distorted 
images and individual distortions severities deliberately kept 
within a small range to resemble images that are available 
for consumption. The NR-IQA BRISQUE trained on multi­
distorted images outperforms all full reference measures 
on our database. We proposed a method to understand the 
impact of interaction of distortions on human ratings and 
demonstrated that some interesting trends emerge from the 
data. To understand these trends in further detail requires 
investigation into the nature of the non-linearity of DMOS 
scores as a function of perceived quality. For instance, human 
scores are often collected, as in our experiment, on a fixed 
scale with fixed end points, and it is frequently observed in 
practice that subjects tend to be more conservative with score 
increments or decrements near the end points, which may 
lead to a sigmoidal nonlinearity in the ratings computed from 
this data. Investigations in this direction will help us better 
understand interactions of distortions, and incorporate these 
into our models for image quality. With our database, we 
have taken a step towards investigating image quality in more 
realistic settings. Future work in this direction will involve 
building databases of human scores on more realistic images 
to pave the way for understanding the problem of perceptual 
quality assessment on real visual content. 
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