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Abstract

Existing methods to learn visual attributes are prone to
learning the wrong thing—namely, properties that are cor-
related with the attribute of interest among training sam-
ples. Yet, many proposed applications of attributes rely
on being able to learn the correct semantic concept corre-
sponding to each attribute. We propose to resolve such con-
fusions by jointly learning decorrelated, discriminative at-
tribute models. Leveraging side information about seman-
tic relatedness, we develop a multi-task learning approach
that uses structured sparsity to encourage feature competi-
tion among unrelated attributes and feature sharing among
related attributes. On three challenging datasets, we show
that accounting for structure in the visual attribute space
is key to learning attribute models that preserve semantics,
yielding improved generalizability that helps in the recog-
nition and discovery of unseen object categories.

1. Introduction
Visual attributes are human-nameable mid-level seman-

tic properties. They include both holistic descriptors, such
as “furry”, “dark”, or “metallic”, as well as localized parts,
such as “has-wheels”, or “has-snout”. Recent research
demonstrates that attributes provide a useful bridge between
low-level image features and high-level entities like object
or scene categories [5, 14, 17]. Methods for attribute learn-
ing typically follow the standard discriminative learning
pipeline that has been successful in other visual recognition
problems. Using training images labeled by the attributes
they exhibit, low-level image descriptors are extracted, and
used to independently train a discriminative classifier for
each attribute in isolation [14, 5, 17, 3, 22].

The problem is that this standard approach is prone to
learning image properties that are correlated with the at-
tribute of interest, rather than the attribute itself. Fig 1 helps
illustrate why. Suppose you are tasked with learning the
attribute present in the first three images, but absent in the
others. Even if you restrict yourself to “nameable” proper-
ties, there are many plausible hypotheses for the attribute:
brown? furry? has-ears? land-dwelling?

Fig 1: What attribute is present in the first three images, but not the
last two? Standard methods attempting to learn “furry” from such
images are prone to learn “brown” instead—or some combination
of correlated properties. We propose a multi-task attribute learning
approach that resists the urge to share features between attributes
that are semantically distinct yet often co-occur.

A key underlying challenge is that the hypothesis space
for attribute learning is very large. A standard discrimina-
tive model can associate an attribute with any direction in
the feature space that happens to separate positive and neg-
ative instances in the training dataset, resulting very often in
the learning of properties correlated with the attribute of in-
terest. The issue is exacerbated by the fact that many name-
able visual properties will occupy the same spatial region in
an image. For example, a “brown” object might very well
also be “round” and “shiny”. In contrast, when learning
object categories, each pixel is occupied by just one object
of interest, decreasing the possibility of learning incidental
classes. Furthermore, even if we attempt stronger training
annotations, spatial extent annotation for attributes is harder
and more ambiguous than it is for objects. Consider, for
example, how one might mark the spatial extent of “pointi-
ness” in the images in Fig 1.

But does it even matter if we inadvertently learn a cor-
related attribute? After all, weakly supervised object recog-
nition systems have long been known to exploit correlated
background features appearing outside the object of interest
that serve as “context”. For attribute learning, however, it is
a problem, on two fronts. First of all, with the large number
of possible combinations of attributes (up to 2k for k binary
attributes), we may see only a fraction of plausible ones dur-
ing training, making it risky to treat correlated cues as a
useful signal. In fact, semantic attributes are touted for their
extendability to novel object categories, where correlation
patterns may easily deviate from those observed in training
data. Secondly, many attribute applications—such as image
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search [14, 12, 22], zero-shot learning [17], and textual de-
scription generation [5]—demand that the named property
align meaningfully with the image content. For example, an
image search user querying for “pointy-toed” shoes would
be frustrated if the system (wrongly) conflates pointiness
with blackness due to training data correlations. We con-
trast this with the object recognition setting, where object
categories themselves may be thought of as co-occurring,
correlated bundles of attributes. Learning to recognize an
object thus implicitly involves learning these correlations.

Given these issues, our goal is to decorrelate attributes at
the time of learning. To this end, we propose a multi-task
learning framework that encourages each attribute classifier
to use a disjoint set of image features to make its predic-
tions. This idea of feature competition is central to our ap-
proach. Whereas conventional models train each attribute
classifier independently, and therefore are prone to re-using
image features for correlated attributes, our multi-task ap-
proach resists the urge to share. Instead, it aims to iso-
late distinct low-level features for distinct properties. In the
example in Fig 1, dimensions corresponding to color his-
togram bins might be used to detect “brown”, whereas those
corresponding to texture in the center of the image might be
reserved to detect “furry”. Moreover, since some attributes
naturally should share features, we leverage side informa-
tion about the attributes’ semantic relatedness to encourage
feature sharing among closely related properties (e.g., re-
flecting that “red” and “brown” are likely to share).

Our method takes as input images labeled according to
the presence/absence of each attribute, as well as a set of at-
tribute “groups” reflecting those that are mutually semanti-
cally related. As output, it produces one binary classifier for
each attribute. Attributes in the same group are encouraged
to share low-level feature dimensions, while unrelated at-
tributes compete for them. We formulate these preferences
using structured sparsity regularization on a multi-task clas-
sification learning objective for principled feature selection.

We show that our approach helps disambiguate attributes
and thus preserves semantics better—through standard tests
such as attribute localization and zero-shot category recog-
nition, as well as through a new application of semantic vi-
sual attributes for category discovery. Our results on three
datasets consistently show that the proposed approach helps
“learn the right thing.”

2. Related Work
Attributes as semantic features A visual attribute is a bi-
nary predicate for an image that indicates whether or not a
property is present [14, 5, 17]. Recent research focuses on
attributes as vehicles of semantics in human-machine com-
munication. For example, using attributes for image search
lets a user specify precise semantic queries (“find smiling
Asian men”) [14, 12, 22]; using them to augment stan-

dard training labels offers new ways to teach vision systems
about objects (“zebras are striped”, “this bird has a yellow
belly”, etc.) [17, 3, 23]; deviations from an expected config-
uration of attributes may be used to generate textual descrip-
tions of what humans would find remarkable [5, 21]. In all
such applications, inadvertently learning correlated visual
properties is a real problem; the system and user’s interpre-
tations must align for their communication to be meaning-
ful. However, despite all the attention to attribute applica-
tions, there is very little work on how to learn attributes
accurately, preserving their semantics.

Attribute correlations While most methods learn at-
tributes independently, some initial steps have been taken
towards modeling their relationships. Modeling co-
occurrence between attributes helps ensure predictions fol-
low usual correlations, even if image evidence for a certain
attribute is lacking (e.g., “has-ear” usually implies “has-
eye”) [30, 25, 17, 24]. Our goal is essentially the opposite of
these approaches. Rather than equate co-occurrences with
true semantic ties, we argue that it is often crucial that the
learning algorithm avoid conflating pairs of attributes. This
will prevent excessive biasing of the likelihood function to-
wards the training data and thus deal better with unfamiliar
configurations of attributes in novel settings.

Differentiating attributes To our knowledge, the only
previous work that attempts to explicitly decorrelate seman-
tic attributes is [5]. For each attribute, their method selects
discriminative image features for each object class, then
pools the selected features to learn the attribute classifier.
For example, it first finds features good for distinguishing
cars with and without “wheel”, then buses with and without
“wheel”, etc. The idea is that examples from the same class
help isolate the attribute of interest. However, this method
is susceptible to learning chance correlations among the re-
duced number of samples of individual classes and more-
over requires expensive instance-wise attribute annotations.
Our approach overcomes these issues, as we demonstrate
with extensive comparisons to [5] in results.

While this is the only prior work on decorrelating
semantic attributes, some unsupervised approaches at-
tempt to diversify discovered (un-named/non-semantic) “at-
tributes” [31, 18, 5]—for example by designing object class
splits that yield uncorrelated features [31] or converting re-
dundant semantic attributes into discriminative ones [18].
In contrast, we jointly learn a specified vocabulary of se-
mantic attributes.

Multi-task learning (MTL) Multi-task learning jointly
trains predictive functions for multiple tasks, often by se-
lecting the feature dimensions (“supports”) each function
should use to meet some criterion. Most methods empha-
size feature sharing among all classes [1, 19, 11]; e.g., fea-



ture sharing between objects can yield faster detectors [27],
and sharing between objects and their attributes can isolate
features suitable for both tasks [29, 8]. A few works have
begun to explore the value of modeling negative correla-
tions [33, 15, 7, 20]. For example, in a hierarchical classi-
fier, feature competition is encouraged via disjoint sparsity
or “orthogonal transfer”, in order to remove redundancies
between child and parent node classifiers [15, 7]. These
methods exploit the inherent mutual exclusivity among ob-
ject labels, which does not hold in our attributes setting.
Unlike any of these approaches, we model semantic struc-
ture in the target space using multiple task groups.

While most MTL methods enforce joint learning on
all tasks, a few explore ways to discover groups of tasks
that can share features [9, 10, 13]. Our method involves
grouped tasks, but with two crucial differences: (1) we ex-
plicitly model between-group competition along with in-
group sharing to achieve inter-group decorrelation, and (2)
we treat external knowledge about semantic groups as su-
pervision to be exploited during learning. In contrast, the
prior methods [9, 10, 13] discover task groups from data,
which is prone to suffer from correlations in the same way
as a single-task learner.

3. Approach

Our goal is to learn attribute classifiers that fire only
when the correct semantic property is present. In particu-
lar, we want them to generalize to test images where the
attribute co-occurrence patterns may differ from what is ob-
served in training. The key to our approach is to jointly
learn all attributes in a vocabulary, while enforcing a struc-
tured sparsity prior that aligns feature sharing patterns with
semantically close attributes and feature competition with
semantically distant ones.

In the following, we first describe the inputs to our
algorithm: the semantic relationships among attributes
(Sec. 3.1) and the low-level image descriptors (Sec. 3.2).
Then we introduce our learning objective and optimization
framework (Sec. 3.3), which outputs a classifier for each
attribute in the vocabulary.

3.1. Semantic Attribute Groups

Suppose we are learning attribute classifiers1 for
a vocabulary of M nameable attributes, indexed by
{1, 2, . . . ,M}. To represent the attributes’ semantic rela-
tionships, we use L attribute groups, encoded as L sets of
indices S1, . . . , SL, where each Sl = {m1,m2,m3, . . . }
contains the indices of the specific attributes in that group,
and 1 ≤ mi ≤ M . While nothing in our approach restricts
attribute groups to be disjoint, for simplicity in our experi-
ments each attribute appears in one group only.

1We use “attribute”, “classifier” and “task” interchangeably.

If two attributes are in the same group, this reflects that
they have some semantic tie. For instance, in Fig 2, S1 and
S2 correspond to texture and shape attributes respectively.
For attributes describing fine-grained categories, like bird
species, a group can focus on domain-specific aspects in-
herent to the taxonomy—for example, one group for beak
shape (hooked, curved, dagger, etc.) and another group for
belly color (red belly, yellow belly, etc.). While such groups
could conceivably be mined automatically (from text data,
WordNet, or other sources), we rely on existing manually
defined groups [17, 28] in our experiments.

As we will see below, group co-membership signals to
our learning algorithm that the attributes are more likely to
share features. For spatially localized attribute groups (e.g.,
beak shape), this could guide the algorithm to concentrate
on descriptors originating from the same object part; for
global attribute groups (e.g., colors), this could guide the
algorithm to focus on a subset of relevant feature channels.
We do not claim there exists a single “optimal” grouping;
rather, we expect such partial side information about seman-
tics to help intelligently decide when to allow sharing.

Our use of attribute label dimension-grouping to ex-
ploit relationships among tasks is distinct from and not to
be confused with descriptor dimension grouping to repre-
sent feature space structure, as in the single-task “group
lasso” [32]. While simultaneously exploiting feature space
structure could conceivably further improve our method’s
results, we restrict our focus in this paper to modeling and
exploiting task relationships.

3.2. Image Feature Representation

When designating the low-level image feature space
where the classifiers will be learned, we are mindful of one
main criterion: we want to expose to the learning algorithm
spatially localized and channel localized features. By spa-
tially localized, we mean that the image content within dif-
ferent local regions of the image should appear as different
dimensions in an image’s feature vector. Similarly, by chan-
nel localized, we mean that different types of descriptors
(color, texture, etc.) should occupy different dimensions.
This way, the learner can pick and choose a sparse set of
both spatial regions and descriptor types that best discrimi-
nate attributes in one semantic group from another.

To this end, we extract a series of histogram features for
multiple feature channels pooled within grid cells at multi-
ple scales. We reduce the dimension of each component his-
togram (corresponding to a specific window+feature type)
using PCA. This alleviates gains from trivially discarding
low-variance dimensions and isolates the effect of attribute-
specific feature selection. Since we perform PCA per chan-
nel, we retain the desired localized modality and loca-
tion associations in the final representation. More dataset-
specific details are in Sec. 4.
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Fig 2: Sketch of our idea. We show weight vectors (absolute
value) for attributes learnt by standard (left) and proposed (right)
approaches. The higher the weight (lighter colors) assigned to a
feature dimension, the more the attribute relies on that feature. In
this instance, our approach would help resolve “silky” and “boxy”,
which are highly correlated in training data and consequently con-
flated by standard learning approaches.

3.3. Joint Attribute Learning with Feature Sharing
and Competition

The input to our learning scheme is (1) the descriptors
forN training images, each represented as aD-dimensional
vector xn, (2) the corresponding (binary) attribute labels for
all attributes, which are indexed by a = 1, . . . ,M , and (3)
the semantic attribute groups S1, . . . , SL. Let XN×D be the
matrix composed by stacking the training image descrip-
tors. We denote the nth row of X as the row vector xn and
the dth column of X as the column vector xd. The scalar xd

n

denotes the (n, d)th entry of X. Similarly, the training at-
tribute labels are represented as a matrix YN×M , with rows
yn and columns ym.

Because we wish to impose constraints on relationships
between attribute models, we learn all attributes simulta-
neously in a multi-task learning setting, where each “task”
corresponds to an attribute. The learning method outputs a
parameter matrix WD×M whose columns encode the clas-
sifiers corresponding to the M attributes. We use logistic
regression classifiers, with the loss function

L(X,Y;W) =
∑
m,n

log(1+exp((1− 2ym
n )xT

nwm)). (1)

Each classifier has an entry corresponding to the “weight”
of each feature dimension for detecting that attribute. Note
that a row wd of W represents the usage of feature dimen-
sion d across all attributes; a zero in wm

d means that feature
d is not used for attribute m.

Formulation Our method operates on the premise that se-
mantically related attributes tend to be determined by (some
of) the same image features, and that semantically distant
attributes tend to rely on (at least some) distinct features. In
this way, the support of an attribute in the feature space—
that is, the set of dimensions with non-zero weight—is
strongly tied to its semantic associations. Our goal is to
effectively exploit the supplied semantic grouping by induc-
ing (1) in-group feature sharing (2) between-group compe-
tition for features. We encode this as a structured sparsity
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Fig 3: “Collapsing” of grouped columns of the feature selection
matrix W prior to applying the lasso penalty

∑
l
‖vl‖1. Non-

zero entries in W and V are shaded. Darkness of shading in V
represents how many attributes in that group selected that feature.

problem, where structure in the output attribute space is rep-
resented by the grouping. Fig 2 illustrates the envisioned
effect of our approach.

To set the stage for our method, we next discuss two ex-
isting sparse feature selection approaches, both of which we
will use as baselines in Sec. 4. The first is a simple adapta-
tion of the single-task lasso method [26]. The original lasso
regularizer applied to learning a single attribute m in our
setting would be ‖wm‖1. As is well known, this convex
regularizer yields solutions that are a good approximation
to sparse solutions that would have been generated by the
count of non-zero entries, ‖wm‖0.

By summing over all tasks, we can extend single-
task lasso [26] to the multi-task setting to yield an “all-
competing” lasso minimization objective:

W∗ = arg min
W

L(X,Y;W) + λ
∑
m

‖wm‖1, (2)

where λ ∈ R is a scalar regularization parameter balanc-
ing sparsity against classification loss. Note that the reg-
ularizing second term may be rewritten

∑
m ‖wm‖1 =∑

d ‖wd‖1 = ‖W‖1. This highlights how the regularizer
is symmetric with respect to the two dimensions of W, and
may be thought of, respectively, as (1) encouraging sparsity
on each task column wm, and (2) imposing sparsity on each
feature row wd. The latter effectively creates competition
among all tasks for the feature dimension d.

In contrast, the “all-sharing” `21 multi-task lasso ap-
proach for joint feature selection [1] promotes sharing
among all tasks, by minimizing the following objective
function:

W∗ = arg min
W

L(X,Y;W) + λ
∑

d

‖wd‖2. (3)

To see that this encourages feature sharing among all at-
tributes, note that the regularizer may be written as the `1
norm ‖V‖1 =

∑
d ‖wd‖2, where the single-column ma-

trix V is formed by collapsing the columns of W with the
`2 operator, i.e. its dth entry vd = ‖wd‖2. The `1 norm
of V prefers sparse-V solutions, which in turn means the
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Lasso (Eq 2) Proposed (Eq 4) All-sharing (Eq 3)
Fig 4: A part of the W matrix (thresholded, absolute value)
learned by the different structured sparsity approaches on CUB
data. The thin white vertical lines separate attribute groups.

individual classifiers must only select features that also are
helpful to other classifiers. That is, W should tend to have
rows that are either all-zero or all-nonzero.

We now define our objective, which is a semantics-
informed intermediate approach that lies between the ex-
tremes in Eqs 2 and 3 above. Our minimization objective re-
tains the competition-inducing `1 norm of the conventional
lasso across groups, while also applying the `21-type shar-
ing regularizer within every semantic group:

W∗ = arg min
W

L(X,Y;W) + λ

D∑
d=1

L∑
l=1

‖wSl

d ‖2, (4)

where wSl

d is a row vector containing a subset of the en-
tries in row wd, namely, those specified by the indices in
semantic group Sl. This regularizer restricts the column-
collapsing effect of the `2 norm to within the semantic
groups, so that V is no longer a single column vector but a
matrix with L columns, one corresponding to each group.
Fig 3 visualizes the idea. Note how sparsity on this V
corresponds to promoting feature competition across unre-
lated attributes, while allowing sharing among semantically
grouped attributes.

Our model unifies the previous formulations and repre-
sents an intermediate point between them. With only one
group S1 = {1, 2, . . . ,M} containing all attributes, Eq 4
simplifies to Eq 3. Similarly, setting each attribute to be-
long to its own singleton group Sm = {m} produces the
lasso formulation of Eq 2. Fig 4 illustrates their respec-
tive differences in structured sparsity. While standard lasso
aims to drop as many features as possible across all tasks,
standard “all-sharing” aims to use only features that can be
shared by multiple tasks. In contrast, the proposed method
seeks features shareable among related attributes, while it
resists feature sharing among less related attributes.

As we will show in results, this mitigates the impact of
incidentally correlated attributes. Pushing attribute group
supports away from one another helps decorrelate unre-
lated attributes within the vocabulary. Even if “brown” and
“furry” always co-occur at training time, there is pressure
to select distinct features in their classifiers. Meanwhile,
feature sharing within the group essentially pools in-group
labels together for feature selection, mitigating the risk of
chance correlations—not only within the vocabulary, but
also with visual properties (nameable or otherwise) that

Categories Attributes Features
Datasets seen unseen num (M ) groups (L) # win D

CUB 100 100 312 28 15 375
AwA 40 10 85 9 1,21 290

aPY-25 20 12 25 3 7 105

Table 5: Summary of dataset statistics

are not captured in the vocabulary. For example, suppose
“hooked beak” and “brown belly” are attributes that often
co-occur; if “brown belly” shares a group with the easier-
to-learn “yellow belly”, the pressure to latch onto feature
dimensions shareable between brown and yellow belly in-
directly leads “hooked beak” towards disjoint features.

We stress, however, that the groups are only a prior.
While our method prefers sharing for semantically related
attributes, it is not a hard constraint, and misclassification
loss also plays an important role in deciding which features
are relevant.

Optimization Mixed norm regularizations of the form of
Eq 4, while convex, are non-smooth and non-trivial to opti-
mize. Such norms appear frequently in the structured learn-
ing literature [32, 2, 1, 11]. As in [11], we reformulate the
objective by representing the 2-norm in the regularizer in its
dual form, before applying the smoothing proximal gradient
descent [4] method to optimize a smooth approximation of
the resulting objective. See supp.

4. Experiments and results
Datasets We use three datasets with 422 total attributes:
(1) the CUB-200-2011 Birds (“CUB”) [28], (2) Ani-
mals with Attributes (“AwA”) [17] (3) aPascal/aYahoo
(“aPY”) [5]. Dataset statistics are summarized in Table 5.
Following common practice, we separate the datasets into
“seen” and “unseen” classes. The idea is to learn attributes
on one set of seen object classes, and apply them to new
unseen objects at test time. This stress-tests the generaliza-
tion power, since correlation patterns will naturally deviate
in novel objects. The seen and unseen classes for AwA and
aPY come pre-specified. For CUB, we randomly select 100
of the 200 classes to be “seen”.

Features Sec. 3.2 defines the basic feature extraction pro-
cess. On AwA, we use the features provided with the dataset
(global bag-of-words on 4 channels, 3-level pyramid with
4×4+2×2+1=21 windows on 2 channels). For CUB and
aPY, we compute features with the authors’ code [5]. On
aPY, we use a one-level pyramid with 3×2+1=7 windows
on four channels, following [5]. On CUB, we extract fea-
tures at the provided annotated part locations. To avoid oc-
cluded parts, we restrict the dataset to instances that have
the most common part visibility configuration (all parts vis-
ible except “left leg” and “left eye”). See supp. for details.

Semantic groups To define the semantic groups, we
rely largely on existing data. CUB specifies 28 attribute



Tasks Attribute detection scores (mean average precision) Zero-shot DAP acc.(%)
Datasets CUB AwA aPY-25 CUB AwA aPY-25
Methods U H S U S U H S [100 cl] [10 cl] [12 cl]
lasso 0.1783 0.2552 0.2219 0.5274 0.6175 0.2713 0.2925 0.3184 7.345 25.32 9.88
all-sharing [1] 0.1778 0.2546 0.2217 0.5378 0.6021 0.2601 0.2934 0.2560 7.339 19.40 6.95
classwise [5] 0.1909 0.2756 0.2406 N/A N/A 0.2729 0.2776 0.3595 9.149 N/A 20.00
standard 0.1836 0.2706 0.2369 0.5366 0.6687 0.2727 0.2845 0.3772 9.665 26.29 20.09
proposed 0.2114 0.2962 0.2654 0.5497 0.6480 0.2989 0.3318 0.3021 10.696 30.64 19.43

Table 6: Scores on attribute detection (left, AP) and zero-shot object recognition (right, accuracy). Higher is better. U, H and S refer
respectively to unseen, hard-seen and all-seen test sets (Sec. 4.1). Our approach generally outperforms existing methods, and especially
shines when attribute correlations differ between train and test data (i.e., the U, H, and zero-shot (Sec. 4.2) scenarios).
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Fig 7: Attribute detection results across all datasets (Sec 4.1)

groups [28] (head color, back pattern etc.). For AwA, the
authors suggest 9 groups in [16] (color, texture, shape etc.).
For aPY, which does not have pre-specified attribute groups,
we group 25 attributes (of the 64 total) into shape, material
and facial attribute groups guided by suggestions in [16]
(“aPY-25”). See supp. for full groupings.

As discussed in Sec 3.2, our method requires attribute
groups and image descriptors to be mutually compatible.
For example, grouping attributes based on their locations
would not be useful if combined with a bag-of-words de-
scription that captures no spatial ordering. However, our
results suggest that this compatibility is easy to satisfy.
Our approach successfully exploits pre-specified attribute
groups with independently pre-specified feature representa-
tions.

Baselines We compare to four methods throughout. Two
are single-task learning baselines, in which each attribute
is learned separately: (1) “standard”: `2-regularized logis-
tic regression, and (2) “classwise”: the object class-label
based feature selection scheme proposed in [5] described
in Sec. 2 (with logistic regression in the final stage replac-
ing the SVM, for uniformity). The other two are the sparse
multi-task methods in Sec. 3: (3) “lasso” (Eq 2), and (4)
“all-sharing” (Eq 3). All methods produce logistic regres-
sion classifiers and use the same input features. All parame-
ters (λ for all methods, plus a second parameter for [5]) are
validated with held out unseen class data.

4.1. Attribute Detection Accuracy
First, we test basic attribute detection accuracy. For this

task, every test image is to be labeled with a binary label
for each attribute in the vocabulary. Attribute models are
trained on a randomly chosen 60% of the “seen” class data
and tested on three test sets: (1) unseen: unseen class in-

stances (2) all-seen: other instances of seen classes and (3)
hard-seen: a subset of the all-seen set that is designed to
consist of outliers within the seen-class distribution. To
create the hard-seen set, we first compute a binary class-
attribute association matrix as the thresholded mean of at-
tribute labels for instances of each seen class. Then hard
sets for each attribute are composed of instances that vio-
late their class-level label for that attribute in the matrix,
e.g. albino elephants (gray), cats with occluded ears (ear).

Overall results Table 6 (left) shows the mean AP scores
over all attributes, per dataset.2 On all three datasets, our
method generalizes significantly better than all baselines to
unseen classes and hard seen data.

While the “classwise” technique of [5] helps decorre-
late attributes to some extent, improving over “standard”
on aPY-25 and CUB, it is substantially weaker than the pro-
posed method. That method assumes that same-object ex-
amples help isolate the attribute; yet, if two attributes al-
ways co-vary in the same-object examples (e.g., if cars with
wheels are always metallic) then the method is still prone to
exploit correlated features. Furthermore, the need for suf-
ficient positive and negative attribute examples within each
object class can be a practical burden (and makes it inap-
plicable to AwA). In contrast, our idea to jointly learn at-
tributes and diffuse features between them is less suscep-
tible to same-object correlations and does not make such
label requirements. Our method outperforms this state-of-
the-art approach on each dataset.

The two multi-task baselines (lasso and all-sharing) are
typically weakest of all, verifying that semantics play an im-
portant role in deciding when to share. In fact, we found that
the all-sharing/all-competing regularization generally hurt
the models, leading the validated regularization weights λ
to remain quite low.

Fig 7 plots the unseen set results for the individual 422
attributes from all datasets. Here we show paired com-
parisons of the three best performing methods: proposed,
classwise [5], and standard. For each plot, attributes are ar-

2AwA has only class-level attribute annotations, so (i) the classwise
baseline [5] is not applicable and (ii) the “hard-seen” test set is not defined.
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Fig 8: Success cases: Annotations shown are our method’s attribute predictions, which match ground truth. The logistic regression
baseline (“standard”) fails on all these cases.
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Fig 9: Failure cases: Cases where our predictions (shown) are
incorrect and the “standard” baseline succeeds.

ranged in order of increasing detectability for one method.3

For nearly all of the 422 attributes, our method outperforms
both the standard learning approach (first plot) and state-of-
the-art classwise method (second plot).

Evidence of “learning the right thing” Comparing re-
sults between the all-seen and hard-seen cases, we see evi-
dence that our method’s gains are due to its ability to pre-
serve attribute semantics. On aPY-25 and AwA, our method
underperforms the standard baseline on the all-seen set,
whereas it improves performance on the unseen and hard-
seen sets. This matches the behavior we would expect from
a method that successfully resolves correlations in the train-
ing data: it generalizes better on novel test sets, sometimes
at the cost of mild performance losses on test sets that have
similar correlations (where a learner would benefit by learn-
ing the correlations).

In Fig 8, we present qualitative evidence in the form
of cases that were mislabeled by the standard baseline but
correctly labeled by our approach, e.g., the wedge-shaped
“Flatiron” building (row 1, end) is correctly marked not “3D
boxy” and the bird in the muck (row 2, end) is correctly
marked as not having “brown underparts” because of the
black grime sticking to it. In contrast, the baseline predicts
the attribute based on correlated cues (e.g., city scenes are
usually boxy, not wedge-shaped) and fails on these images.

Fig 9 shows some failure cases. Common failure cases
for our method are when the image is blurred, the object
is very small or information is otherwise deficient—cases
where learning context from co-occurring aspects helps. In
the low-resolution “feather” case, for instance, recognizing
bird parts might have helped to correctly identify “feather”.

Still more qualitative evidence that we preserve seman-

3Since “classwise” is inapplicable to AwA, its scores are set to 0 for
that dataset (hence the circles along the x-axis in plots 2 and 3).
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Fig 10: Contributions of bird parts (shown as highlights) to the
correct detection of specific attributes. Our method looks in the
right places more often than the standard single-task baseline.

tics comes from studying the features that influence the de-
cisions of different methods. The part-based representation
for CUB allows us to visualize the contributions of different
bird parts to determine any given attribute (see supp). Fig 10
shows how our method focuses on the proper spatial regions
associated with the bird parts, whereas the baseline picks up
on correlated features. For example, on the “brown wing”
image, while the baseline focuses on the head, our approach
almost exclusively highlights the wing.

4.2. Zero-shot Object Recognition

Next we show the impact of retaining attribute seman-
tics for zero-shot object recognition. Closely following the
setting in [17], the goal is to learn object categories from
textual descriptions, but no training images (e.g., “zebras
are striped and four-legged”), making attribute correctness
crucial. We input attribute probabilities from each method’s
models to the Direct Attribute Prediction (DAP) frame-
work for zero-shot learning [17] (see supp for details). Ta-
ble 6 (right) shows the results. Our method yields substan-
tial gains in multi-class accuracy on the two large datasets
(CUB and AwA). It is marginally worse than “standard” and
“classwise” on the aPY-25 dataset, despite our significantly
better attribute detection (Sec 4.1). We believe that this may
be due to recognition with DAP being less reliable when
working with fewer attributes, as in aPY-25 (25 attributes).

4.3. Category Discovery with Semantic Attributes

Finally, we demonstrate the impact on category discov-
ery. Cognitive scientists propose that natural categories are



Methods / Datasets CUB-s AwA aPY-25 CUB-f
lasso 0.5485 0.1891 0.1915 0.3503
all-sharing [1] 0.5482 0.1881 0.1717 0.3508
classwise [5] 0.5746 N/A 0.1973 0.3862
standard 0.5697 0.2239 0.1761 0.3719
proposed 0.5944 0.2411 0.2476 0.4281
GT annotations 0.6489 1.0000 0.6429 0.4937

Table 11: NMI scores for discovery of unseen categories
(Sec 4.3). Higher is better.

convex regions in conceptual spaces whose axes correspond
to “psychological quality dimensions” [6]. This motivates
us to perform category discovery with attributes. Treating
semantic visual attributes as a conceptual space for visual
categorization, we cluster each method’s attribute presence
probabilities (on unseen class instances) using k-means to
discover the convex clusters. We set k to the true num-
ber of classes. We compare each method’s clusters with
the true unseen classes on all three datasets. For CUB, we
test against both the 100 species (CUB-s) as well as the
taxonomic families (CUB-f). Performance is measured us-
ing the normalized mutual information (NMI) score which
measures the information shared between a given clustering
and the true classes without requiring hard assignments of
clusters to classes.

Table 11 shows the results. Our method performs sig-
nificantly better than the baselines on all tasks. If we were
to instead cluster the ground truth attribute signatures, we
get a sense of the upper bound (last row). This shows that
(1) visual attributes indeed constitute a plausible “concep-
tual space” for discovery and (2) improved attribute learning
models could yield large gains for high-level visual tasks.

5. Conclusions

We introduced a method for using semantics to guide
attribute learning. Our extensive experiments across three
datasets support our two major claims: (1) our approach
overcomes misleading training data correlations to success-
fully learn semantic visual attributes, and (2) preserving se-
mantics in learned attributes is beneficial as an intermediate
step in high-level tasks. In future work, we plan to investi-
gate the effect of overlapping attribute groups and explore
methods to automatically mine semantic information.
Acknowledgements: We would like to thank Sung Ju
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