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Figure 2. KITTI zθ architecture producing D =64-dim. features:
3 convolution layers and a fully connected feature layer (non-
linear operations specified along the bottom).

1. KITTI and SUN dataset samples

Some sample images from KITTI and SUN are shown in
Fig 1. As they show, these datasets have substantial domain
differences. In KITTI, the camera faces the road and has
a fixed field of view and camera pitch, and the content is
entirely street scenes around Karlsruhe. In SUN, the images
are downloaded from the internet, and belong to 397 diverse
indoor and outdoor scene categories—most of which have
nothing to do with roads.

2. Optimization and hyperparameter selection
(Main Sec 4.1)

(Elaborating on para titled “Network architectures and
Optimization” 4.1) As mentioned in the paper, for KITTI,
we closely follow the cuda-convnet [1] recommended
CIFAR-10 architecture: 32 conv(5x5)-max(3x3)-ReLU
→ 32 conv(5x5)-ReLU-avg(3x3) → 64 conv(5x5)-ReLU-
avg(3x3) → D =64 full feature units. A schematic repre-
sentation for this architecture is shown in Fig 2.

We use Nesterov-accelerated stochastic gradient descent
as implemented in Caffe [5], starting from weights ran-
domly initialized according to [3]. The base learning
rate and regularization λs are selected with greedy cross-
validation. Specifically, for each task, the optimal base
learning rate (from 0.1, 0.01, 0.001, 0.0001) was identi-
fied for CLSNET. Next, with this base learning rate fixed,

the optimal regularizer weight (for DRLIM, TEMPORAL
and EQUIV) was selected from a logarithmic grid (steps
of 100.5). For EQUIV+DRLIM, the DRLIM loss regularizer
weight fixed for DRLIM was retained, and only the EQUIV
loss weight was cross-validated. The contrastive loss mar-
gin parameter δ in Eq (6) in DRLIM, TEMPORAL and EQUIV
were set uniformly to 1.0. Since no other part of these ob-
jectives (including the softmax classification loss) depends
on the scale of features,1 different choices of margins δ
in these methods lead to objective functions with equiva-
lent optima - the features are only scaled by a factor. For
EQUIV+DRLIM, we set the DRLIM and EQUIV margins re-
spectively to 1.0 and 0.1 to reflect the fact that the equiv-
ariance maps Mg of Eq (5) applied to the representation
zθ(gx) of the transformed image must bring it closer to the
original image representation zθ(x) than it was before i.e.
‖Mgzθ(gx)− zθ(x)‖2 < ‖zθ(gx)− zθ(x)‖2.

In addition, to allow fast and thorough experimentation,
we set the number of training epochs for each method on
each dataset based on a number of initial runs to assess the
scale of time usually taken before the classification softmax
loss on validation data began to rise i.e. overfitting began.
All future runs for that method on that data were run to
roughly match (to the nearest 5000) the number of epochs
identified above. For most cases, this number was of the or-
der of 50000. Batch sizes (for both the classification stack
and the Siamese networks) were set to 16 (found to have
no major difference from 4 or 64) for NORB-NORB and
KITTI-KITTI, and to 128 (selected from 4, 16, 64, 128)
for KITTI-SUN, where we found it necessary to increase
batch size so that meaningful classification loss gradients
were computed in each SGD iteration, and training loss be-
gan to fall, despite the large number (397) of classes.

On a single Tesla K-40 GPU machine, NORB-NORB
training tasks took ≈15 minutes, KITTI-KITTI tasks took
≈30 minutes, and KITTI-SUN tasks took ≈2 hours.

1Technically, the EQUIV objective in Eq (5) may benefit from setting
different margins corresponding to the different ego-motion patterns, but
we overlook this in favor of scalability and fewer hyperparameters.
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Figure 1. (top) Figure from [2] showcasing images from the 4 KITTI location classes (shown here in color; we use grayscale images), and
(bottom) Figure from [8] showcasing images from a subset of the 397 SUN classes (shown here in color; see text in main paper for image
pre-processing details).



3. Equivariance measurement (Main Sec 4.2)

Computing ρg - details In Sec 4.2 in the main paper, we
proposed the following measure for equivariance. For each
ego-motion g, we measure equivariance separately through
the normalized error ρg:

ρg = E

[‖zθ(x)−M ′gzθ(gx)‖2
‖zθ(x)− zθ(gx)‖2

]
, (1)

where E[.] denotes the empirical mean, M ′g is the equiv-
ariance map, and ρg = 0 would signify perfect equivari-
ance. We closely follow the equivariance evaluation ap-
proach of [6] to solve for the equivariance maps of features
produced by each compared method on held-out validation
data (cf. Sec 4.1 from the paper), before computing ρg .
Such maps are produced explicitly by our method, but not
the baselines. Thus, as in [6], we compute their maps2 by
solving a least squares minimization problem based on the
definition of equivariance in Eq (2) in the paper:

M ′g = arg min
M

∑
m(yi,yj)=g

‖zθ(xi)−Mzθ(xj)‖2. (2)

M ′g’s computed as above are used to compute ρg’s as in
Eq (1). M ′g and ρg are computed on disjoint subsets of the
validation data. Since the output features are relatively low
in dimension (D = 100), we find regularization for Eq (2)
unnecessary.

Equivariance results - details While results in the main
paper (Table 1) were reported as averages over atomic and
composite motions, we present here the results for individ-
ual motions in Table 1. While relative trends among the
methods remain the same as for the averages reported in the
main paper, the new numbers help demonstrate that ρg for
composite motions is no bigger than for atomic motions, as
we would expect from the argument presented in Sec 3.2 in
the main paper.

To see this, observe that even among the atomic motions,
ρg for all methods is lower on the small “up” atomic ego-
motion (5°) than it is for the larger “right” ego-motion (20°).
Further, the errors for “right” are close to those for the com-
posite motions (“up+right”, “up+left” and “down+right”),
establishing that while equivariance is diminished for larger
motions, it is not affected by whether the motions were used
in training or not. In other words, if trained for equivariance
to a suitable discrete set of atomic ego-motions (cf. Sec 3.2
in the paper), the feature space generalizes well to new ego-
motions.

2For uniformity, we do the same recovery of M ′
g for our method; our

results are similar either way.

Tasks → atomic composite
Datasets ↓ “up (u)” “right (r)” “u+r” “u+l” “d+r”
random 1.0000 1.0000 1.0000 1.0000 1.0000
CLSNET 0.9276 0.9202 0.9222 0.9138 0.9074
TEMPORAL [7] 0.7140 0.8033 0.8089 0.8061 0.8207
DRLIM [4] 0.5770 0.7038 0.7281 0.7182 0.7325
EQUIV 0.5328 0.6836 0.6913 0.6914 0.7120
EQUIV+DRLIM 0.5293 0.6335 0.6450 0.6460 0.6565

Table 1. The “normalized error” equivariance measure ρg for in-
dividual ego-motions (Eq (1)) on NORB, organized as “atomic”
(motions in the EQUIV training set) and “composite” (novel) ego-
motions.

4. Recognition results (Main Sec 4.3)
Restricted slowness is a weak prior We now present ev-
idence supporting our claim in the paper that the principle
of slowness, which penalizes feature variation within small
temporal windows, provides a prior that is rather weak. In
every stochastic gradient descent (SGD) training iteration
for the DRLIM and TEMPORAL networks, we also com-
puted a “slowness” measure that is independent of feature
scaling (unlike the DRLIM and TEMPORAL losses of Eq 7
themselves), to better understand the shortcomings of these
methods.

Given training pairs (xi,xj) annotated as neighbors or
non-neighbors by nij = 1(|ti − tj | ≤ T ) (cf. Eq (7)
in the paper), we computed pairwise distances ∆ij =
d(zθ(s)(xi), zθ(s)(xj)), where θ(s) is the parameter vec-
tor at SGD training iteration s, and d(., .) is set to the `2
distance for DRLIM and to the `1 distance for TEMPORAL
(cf. Sec 4).

We then measured how well these pairwise distances ∆ij

predict the temporal neighborhood annotation nij , by mea-
suring the Area Under Receiver Operating Characteristic
(AUROC) when varying a threshold on ∆ij .

These “slowness AUROC”s are plotted as a function of
training iteration number in Fig 3, for DRLIM and COHER-
ENCE networks trained on the KITTI-SUN task. Compared
to the standard random AUROC value of 0.5, these slow-
ness AUROCs tend to be near 0.9 already even before opti-
mization begins, and reach peak AUROCs very close to 1.0
on both training and testing data within about 4000 itera-
tions (batch size 128). This points to a possible weakness in
these methods—even with parameters (temporal neighbor-
hood size, regularization λ) cross-validated for recognition,
the slowness prior is too weak to regularize feature learning
effectively, since strengthening it causes loss of discrimina-
tive information. In contrast, our method requires system-
atic feature space responses to ego-motions, and offers a
stronger prior.

5. Next-best view selection (Main Sec 4.4)
We now describe our method for next-best view selection

for recognition on NORB. Given one view of a NORB ob-
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Figure 4. (Contd. from Fig 4) More examples of nearest neighbor image pairs (cols 3 and 4 in each block) in pairwise equivariant feature
difference space for various query image pairs (cols 1 and 2 per block). For comparison, cols 5 and 6 show pixel-wise difference-based
neighbor pairs. The direction of ego-motion in query and neighbor pairs (inferred from ego-pose vector differences) is indicated above
each block.
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Figure 3. Slowness AUROC on training (left) and testing (right)
data for (top) DRLIM (bottom) COHERENCE, showing the weak-
ness of slowness prior.

ject, the task is to tell a hypothetical robot how to move next
to help recognize the object i.e. which neighboring view
would best reduce object prediction uncertainty. We exploit
the fact that equivariant features behave predictably under
ego-motions to identify the optimal next view.

We limit the choice of next view g to { “up”, “down”,
“up+right” and “up+left” } for simplicity in this prelimi-
nary test. We build a k-nearest neighbor (k-NN) image-
pair classifier for each possible g, using only training image
pairs (x, gx) related by the ego-motion g. This classifier
Cg takes as input a vector of length 2D, formed by append-
ing the features of the image pair (each image’s represen-

tation is of length D) and produces the output probability
of each class. So, Cg([zθ(x), zθ(gx)]) returns class like-
lihood probabilities for all 25 NORB classes. Output class
probabilities for the k-NN classifier are computed from the
histogram of class votes from the k nearest neighbors. We
set k = 25.

At test time, we first compute features zθ(x0) on the
given starting image x0. Next we predict the feature
zθ(gx0) corresponding to each possible surrounding view
g, asM ′gzθ(x0), per the definition of equivariance (cf. Eq 2
in the paper).3

With these predicted transformed image features and
the pair-wise nearest neighbor class probabilities Cg(.), we
may now pick the next-best view as:

g∗ = arg min
g

H(Cg([zθ(x0), M ′gzθ(x0)])), (3)

where H(.) is the information-theoretical entropy function.
This selects the view that would produce the least predicted
image pair class prediction uncertainty.

6. Qualitative analysis (Main Sec 4.5)

To qualitatively evaluate the impact of equivariant fea-
ture learning, we pose a pair-wise nearest neighbor task
in the feature difference space to retrieve image pairs re-
lated by similar ego-motion to a query image pair (details
in Supp). Given a learned feature space z(.) and a query

3Equivariance maps M ′
g for all methods are computed as described in

Sec 3 in this document (and Sec 4.2 in the main paper)



image pair (xi,xj), we form the pairwise feature differ-
ence dij = z(xi)− z(xj). In an equivariant feature space,
other image pairs (xk,xl) with similar feature difference
vectors dkl ≈ dij would be likely to be related by simi-
lar ego-motion to the query pair.4 This can also be viewed
as an analogy completion task, xi : xj = xk :?, where
the right answer should apply pij to xk to obtain xl. For
the results in the paper, the closest pair to the query in the
learned equivariant feature space is compared to that in the
pixel space. Some more examples are shown in Fig 4.

References
[1] Cuda-convnet. https://code.google.com/p/

cuda-convnet/. 1
[2] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets

Robotics: The KITTI Dataset. IJRR, 2013. 2
[3] X. Glorot and Y. Bengio. Understanding the difficulty of train-

ing deep feedforward neural networks. AISTATS, 2010. 1
[4] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality Reduc-

tion by Learning an Invariant Mapping. CVPR, 2006. 3
[5] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
architecture for fast feature embedding. arXiv, 2014. 1

[6] K. Lenc and A. Vedaldi. Understanding image representa-
tions by measuring their equivariance and equivalence. CVPR,
2015. 3

[7] H. Mobahi, R. Collobert, and J. Weston. Deep Learning from
Temporal Coherence in Video. ICML, 2009. 3

[8] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba.
Sun database: Large-scale scene recognition from abbey to
zoo. CVPR, 2010. 2

4Note that in our model of equivariance, this isn’t strictly true, since
the pair-wise difference vector Mgzθ(x) − zθ(x) need not actually be
fixed for a given transformation g, ∀x. For small motions (and the right
kinds of equivariant maps Mg), this still holds approximately, as we find
in practice.

https://code.google.com/p/cuda-convnet/
https://code.google.com/p/cuda-convnet/

