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End-to-end policy learning for active visual
categorization

Dinesh Jayaraman and Kristen Grauman

Abstract—Visual recognition systems mounted on autonomous moving agents face the challenge of unconstrained data, but
simultaneously have the opportunity to improve their performance by moving to acquire new views at test time. In this work, we first
show how a recurrent neural network-based system may be trained to perform end-to-end learning of motion policies suited for this
“active recognition” setting. Further, we hypothesize that active vision requires an agent to have the capacity to reason about the
effects of its motions on its view of the world. To verify this hypothesis, we attempt to induce this capacity in our active recognition
pipeline, by simultaneously learning to forecast the effects of the agent’s motions on its internal representation of the environment
conditional on all past views. Results across three challenging datasets confirm both that our end-to-end system successfully learns
meaningful policies for active category recognition, and that “learning to look ahead” further boosts recognition performance.
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1 INTRODUCTION

People consistently direct their senses in order to better
understand their surroundings. For example, one might
swivel around in an armchair to observe a person behind
him, rotate a coffee mug on his desk to read an inscription,
or walk to a window to observe the rain outside.

In sharp contrast to such scenarios, recent recognition
research has been focused almost exclusively on static image
recognition: the system takes a single snapshot as input, and
produces a category label estimate as output. The ease of
collecting large labeled datasets of images has enabled major
advances on this task in recent years, as evident for example
in the striking gains made on the ImageNet challenge [46].
Yet, despite this recent progress, recognition performance
remains low for more complex, unconstrained images [37].

To illustrate the problem, Figure 1 shows some examples
of Web images and images captured by a human head-
mounted camera that was not explicitly controlled to cap-
ture well-framed images. Recognition systems mounted on
autonomous moving agents acquire unconstrained visual
input which may be difficult to recognize effectively, one
frame at a time. However, similar to the human actor in the
opening examples above, such systems have the opportu-
nity to improve their performance by moving their camera
apparatus or manipulating objects to acquire new informa-
tion, as shown in Figure 2. This control of the system over
its sensory input has tremendous potential to improve its
recognition performance. While such mobile agent settings
(such as mobile robots and autonomous vehicles) are closer
to reality today than ever before, the problem of learning
to actively move to direct the acquisition of data remains
underexplored in modern visual recognition research.

The problem we are describing fits into the realm of ac-
tive vision, which has a rich history in the literature (e.g., [3],
[5], [16], [20], [47], [57]). Active vision offers several technical
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Fig. 1: Examples of Web images from ImageNet [46] (left) and
randomly chosen frames from a human head-worn camera [35]
(right). Cameras mounted on autonomous agents often acquire
ill-framed images that can be very hard to recognize one
frame at a time, compared to Web images which are human-
captured and usually capture important content prominently
in the foreground. However, autonomous moving visual agents
can direct their cameras to acquire multiple views. Our active
recognition approach employs reinforcement learning to learn
policies to intelligently acquire views to facilitate scene and
object category recognition.

challenges that are unaddressed in today’s standard passive
scenario. In order to perform active vision, a system must
learn to intelligently direct the acquisition of input to be
processed by its recognition pipeline. In addition, recog-
nition in an active setting places different demands on a
system than in the standard passive scenario. To take one
example, “nuisance factors” in still image recognition—such
as pose, lighting, and viewpoint changes—become avoidable
factors in the active vision setting, since in principle, they
can often be overcome merely by moving the agent to the
right location.

This calls for a major change of approach. Rather than
strive for invariance to nuisance factors as is the standard in
static image recognition, an intriguing strategy is to learn
to identify when conditions are non-ideal for recognition and
to actively select the correct agent motion that will lead to
better conditions. In addition, recognition decisions must be
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mug / bowl / frying pan? mug / bowl / frying pan?

Fig. 2: A schematic illustrating the active categorization of two objects. A moving vision system may not recognize objects after
just one view, but may intelligently choose to acquire new views to disambiguate amongst its competing hypotheses.

Fig. 3: A generic active recognition pipeline illustrating the
three functions of an active vision system—control, per-view
perception, and evidence fusion. We aim to learn all three
functions jointly and end-to-end.

made based on intelligently fusing evidence from multiple
observations.

Figure 3 illustrates a generic active recognition pipeline,
which involves three modules—control, per-view percep-
tion, and evidence fusion. We contend that these these
modules have closely intertwined functions, and must be
tailored to work together. In particular, as the first contribu-
tion of this paper, we propose to learn all three modules of
an active vision system simultaneously and end-to-end. We
employ a stochastic neural network to learn intelligent mo-
tion policies (control), a standard neural network to process
inputs at each timestep (per-view perception), and a modern
recurrent neural network (RNN) to integrate evidence over
time (evidence fusion). Given an initial view and a set of
possible agent motions, our approach uses reinforcement
learning to learn how to move in the 3D environment to
produce accurate categorization results.

Additionally, we hypothesize that motion planning for
active vision requires an agent to internally “look before
it leaps”. That is, it ought to simultaneously reason about
the effect of its motions on future inputs. To demonstrate
this, as a second contribution, we jointly train our active
vision system to have the ability to predict how its internal
representation of its environment will evolve conditioned on its
choice of motion. As we will explain below, this may be seen
as preferring equivariance, i.e., predictable feature responses
to pose changes, rather than invariance as is standard in
passive recognition pipelines.

Through experiments on three datasets, we validate both
our key ideas: (1) RNN-based end-to-end active categoriza-
tion and (2) learning to forecast the effects of self-motion
at the same time the agent learns how to move to solve
the recognition task. We study both a scene categorization
scenario, where the system chooses how to move around
a previously unseen 3D scene, and an object categorization
scenario, where the system chooses how to manipulate a
previously unseen object that it holds. Our results establish
the advantage of our end-to-end approach over both passive
and traditional active methods.

2 RELATED WORK

Active vision The idea that a subject’s actions may play
an important role in perception can be traced back almost
150 years [13] in the cognitive psychology literature [5].
“Active perception”, the idea of exploiting intelligent con-
trol strategies (agent motion, object manipulation, camera
parameter changes etc.) for goal-directed data acquisition to
improve machine vision, was pioneered by [3], [7], [8],
[57]. While most research in this area has targeted low-
level vision problems such as segmentation, structure from
motion, depth estimation, optical flow estimation [3], [8],
[40], or the “semantic search” task of object localization [4],
[15], [24], [25], [26], [33], [39], [50], [63], approaches targeting
active recognition are most directly related to our work.

Most prior active recognition approaches attempt to
identify during training those canonical/“special” views
that minimize ambiguity among candidate labels [16], [19],
[20], [47], [57]. At test time, such systems iteratively estimate
the current pose, then select moves that take them to such
pre-identified informative viewpoints. These approaches are
typically applicable only to instance recognition problems,
since broader categories can be too diverse in appearance
and shape to fix “special viewpoints”.

In contrast, our approach handles real world categories.
To the best of our knowledge, very little prior work attempts
this challenging task of active category recognition (as op-
posed to instance recognition) [11], [27], [32], [44], [59], [62].
The increased difficulty is due to the fact that with complex
real world categories, it is much harder to anticipate new
views conditioned on actions. Since new instances will be
seen at test time, it is not sufficient to simply memorize the
geometry of individual instances, as many active instance
recognition methods effectively do.
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Recent work uses information gain in view planning for
active categorization [27], [59]. Both methods learn to predict
the next views of unseen test objects conditioned on various
candidate agent motions starting from the current view,
either by estimating 3D models from 2.5D RGBD images [59]
or by learning to predict feature responses to camera mo-
tions [27]. They then estimate the information gain on their
category beliefs from each such motion, and finally greedily
select the estimated most informative “next-best” move.
While our idea for learning to predict action-conditional
future views of novel instances is similarly motivated, we
refrain from explicit greedy reasoning about the next move.
Instead, our approach uses reinforcement learning (RL)
in a stochastic recurrent neural network to learn optimal
sequential movement policies over multiple timesteps. The
closest methods to ours in this respect are [43] and [38],
both of which employ Q-learning in feedforward neural
networks to perform view selection, and target relatively
simpler visual tasks compared to this work.

In addition to the above, an important novelty of our
approach is in learning the entire active recognition pipeline
end-to-end. Active recognition, and more generally, active
vision approaches must broadly perform three separate
functions: action selection, per-instant view processing, and
belief updates based on the history of observed views. Previ-
ous approaches typically tackle these three tasks separately.
For per-instant view processing, nearly all prior work trains
a “passive” single view recognition module offline [11], [19],
[20], [27], [32], [38], [44], [47], [59]. For action selection,
some approaches attempt to navigate towards pre-selected
discriminative viewpoints [19], [20], [47]. In addition, as
described above, there are some approaches that greedily
maximize information gain one step at a time [11], [27], [44],
[59] and some others that employ reinforcement learning to
learn policies [38], [43]. Finally, for evidence fusion, there are
several manually defined heuristics in place. Some methods
simply consider per-view predictions and wait for them to
agree on consecutive time-steps [20], [47]. Other methods
employ heuristics to allow the application of Bayes rule to
update beliefs at each timestep [19], [38], [43], [44]. Recently,
in [32], a system is proposed to produce predictions for
each pair of observations in its history, then average over
all those predictions weighting each pair with a confidence
score. What is common to all these approaches is that they
treat the three subproblems of active recognition as largely
separate and independent components. In contrast, we train
all three modules jointly for the overall active recognition
objective.

Saliency and attention Visual saliency and attention
are related to active vision [6], [9], [41], [48], [61]. While
active vision systems aim to form policies to acquire new
data, saliency and attention systems aim to block out “dis-
tractors” in existing data by identifying portions of input
images/video to focus on, often as a faster alternative
to sliding window-based methods. Attention systems thus
sometimes take a “foveated” approach [14], [41]. In contrast,
in our setting, the system never holds a snapshot of the en-
tire environment at once. Rather, its input at each timestep is
one portion of its complete physical 3D environment, and it
must choose motions leading to more informative—possibly

non-overlapping—viewpoints. Another difference between
the two settings is that the focus of attention may move
in arbitrary jumps (saccades) without continuity, whereas
active vision agents may only move continuously.

Sequential attention systems using recurrent neural net-
works in particular have seen significant interest of late [41],
with variants proving successful across several attention-
based tasks [6], [48], [61]. We adopt the basic attention
architecture of [41] as a starting point for our model, and
develop it further to accommodate the active vision setting,
instill look-ahead capabilities, and select camera motions
surrounding a 3D object that will most facilitate categoriza-
tion.

Predicting related features There is recent interest in
“visual prediction” problems in various contexts [21], [22],
[23], [27], [34], [45], [54], [55], [59], often using convolu-
tional neural networks (CNNs). For example, one can train
CNNs [29], [54] or recurrent neural networks (RNNs) to
predict future video frames based on previously observed
frames [45] in an entirely passive setting. These methods do
not attempt to reason about causes of view transformations,
such as camera motions. Methods for view synthesis, such
as [21], [34], allow synthesis of simple synthetic images with
specified factors of variation (such as pose and lighting).
Given surrounding views, high quality unseen views are
predicted in [23], effectively learning 3D geometry end-to-
end. The methods of [1], [22], [27], [30], [42] model pixel
space or feature space responses to a discrete set of observer
motions. Different from all the above, we learn to predict
the evolution of temporally aggregated features—computed
from a complete history of seen views—as a function of
observer motion choices. Furthermore, we integrate this
idea with the closely tied active recognition problem.

Integrating sensors and actions Our work is also related
to research in sensorimotor feature embeddings [12], [17],
[18], [27], [36], [51], [56]. There the idea is to combine (possi-
bly non-visual) sensor streams together with proprioception
or other knowledge about the actions of the agent on which
the sensors are mounted. Various methods learn features
that transform in simple ways in response to an agent’s
actions [1], [2], [12], [18], [27] or reflect the geometry of an
agent’s environment [51]. Neural nets are trained to perform
simple robotic tasks in [17], [36]. Perhaps conceptually most
relevant to our work among these is [56]. Their method
learns an image feature space to determine control actions
easily from visual inputs, with applications to simulated
control tasks. In contrast, we learn embeddings encoding
information from complete histories of observations and
agent actions, with the aim of exposing this information to
an active visual recognition controller.

Finally, this manuscript builds upon our previous work
published in ECCV 2016 [28]. Specifically, we further val-
idate our method against additional baselines and on a
new 3D object dataset (Section 4.2.2), propose a method
to qualitatively analyze the effectiveness of motion policies
(Section 4.2.3), and present additional details throughout.
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3 APPROACH

First, we define the setting and data flow for active recog-
nition (Section 3.1). Then we define our basic system ar-
chitecture (Section 3.2). Finally, we describe our look-ahead
module (Section 3.3).

3.1 Setting

We first describe our active vision setting at test time, using
a 3D object category recognition scenario as a running ex-
ample. Our results consider both object and scene category
recognition tasks.

In the 3D object setting, the active recognition system
can issue motor commands to move a camera within a
viewing sphere around the 3D object X of interest. Each
point on this viewing sphere is indexed by a corresponding
2D camera pose vector p indexing elevation and azimuth.
An agent’s manipulations of a 3D object in front of it can
now be represented as a trajectory over the elevation and
azimuth.

The system is allowed T timesteps to recognize every
object instance X . At every timestep t = 1, 2, . . . T :
• The system issues a motor command mt e.g. “increase

camera elevation by 20◦, azimuth by 10◦”, from a setM
of available camera motions. In our experiments,M is a
discrete set consisting of small camera motions to points
on an elevation-azimuth grid centered at the previous
camera pose pt−1. At time t = 1, the “previous”
camera pose p0 is set to some random unknown vector,
corresponding to the agent initializing its recognition
episode at some arbitrary position with respect to the
object.

• Next, the system is presented a new 2D view xt =
P (X,pt) of X captured from the new camera pose
pt = pt−1 + mt, where P (., .) is a projection function.
This new evidence is now available to the system while
selecting its next action mt+1.

At the final timestep t = T , the system must additionally
predict a category label ŷ forX , e.g., the object category it be-
lieves is most probable. In our implementation, the number
of timesteps T is fixed, and all valid motor commands have
uniform cost. The system is evaluated only on the accuracy
of its prediction ŷ. However, the framework generalizes to
the case of variable-length episodes.

3.2 Active recognition system architecture

Our basic active recognition system is modeled on the
recurrent architecture first proposed in [41] for visual at-
tention. Our system is composed of four basic modules: AC-
TOR, SENSOR, AGGREGATOR and CLASSIFIER, with weights
Wa,Ws,Wr,Wc respectively. At each step t, ACTOR issues
a motor command mt, which updates the camera pose
vector to pt = pt−1 + mt. Next, a 2D image xt cap-
tured from this pose is fed into SENSOR together with
the motor command mt. SENSOR produces a view-specific
feature vector st = SENSOR(xt,mt), which is then fed into
AGGREGATOR to produce aggregate feature vector at =
AGGREGATOR(s1, . . . , st). The cycle is completed when, at
the next step t + 1, ACTOR processes the aggregate feature

Fig. 4: A schematic of our system architecture depicting the
interaction between ACTOR, SENSOR and AGGREGATOR and
CLASSIFIER modules, unrolled over timesteps. This schematic
depicts an unrolled version of our network architecture, where
each module is repeated once for each timestep. At training
time, LOOKAHEAD acts across two timesteps, learning to predict
the evolution of the output of AGGREGATOR conditional on the
selected motion. See Section 3.2 for details.

from the previous timestep to issue mt+1 = ACTOR(at). Fi-
nally, after T steps, the category label beliefs are predicted as
ŷ(W,X) = CLASSIFIER(at), where W = [Wa,Ws,Wr,Wc]
is the vector of all learnable weights in the network, and
for a C-class classification problem, ŷ is a C-dimensional
multinomial probability density function representing the
likelihoods of the 3D object X belonging to each of the
C classes. See Figure 4 for a schematic showing how the
modules are connected. Procedure block 6 lists the steps
involved in the forward pass during training/inference.

In our setup, AGGREGATOR is a recurrent neural net-
work, CLASSIFIER is a simple fully-connected hidden layer
followed by a log-softmax and SENSOR separately processes
the view xt and the motor signal mt in disjoint neural
network pipelines before merging them through more lay-
ers of processing to produce the per-instance view feature
st = SENSOR(xt,mt). ACTOR has a non-standard neural net
architecture involving stochastic units: at each timestep, it
internally produces an |M|-dimensional multinomial den-
sity function π(mt) over all candidate camera motions in
M, from which it samples one motion. For more details
on the internal architectures of these modules, see Figure 5
(bottom).

Training

At training time, the network weights W are trained jointly
to maximize classifier accuracy at time T . Following [41],
training W follows a hybrid procedure involving both
standard backpropagation and “connectionist reinforcement
learning” [58]. The modules with standard deterministic
neural network connections (CLASSIFIER, AGGREGATOR and
SENSOR) can be trained directly by backpropagating gra-
dients from a softmax classification loss, while the ACTOR
module which contains stochastic units can only be trained
using the REINFORCE procedure of [58].

Roughly, REINFORCE treats the ACTOR module as a
Partially Observable Markov Decision Process (POMDP),
with the pdf π(mt|at−1,W ) representing the policy to be
learned. In a reinforcement learning (RL)-style approach,
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time t time t+1

Fig. 5: (Top) A high-level schematic of our system architecture depicting the interaction between ACTOR, SENSOR, AGGREGATOR,
and CLASSIFIER modules, unrolled over timesteps. Information flows from left to right. At training time, the additional
LOOKAHEAD acts across two timesteps, learning to predict the evolution of the aggregate feature at into at+1 conditional on
the selected motion mt. (Bottom) A detailed schematic diagram showing the architectures of and connections amongst our
active vision system modules. The small schematic at the top presents a succinct bird’s-eye view of information flow within as
well as between time steps, and the large schematic below zooms into the operations at some given time step t in more detail.
Processing proceeds from left to right, with arrows to disambiguate where necessary. In the bottom schematic, “Linear(a,b)”
denotes fully connected layers which transform a-length vector inputs to b-length vector outputs. The “Clamp” operator in
ACTOR is a squashing function that sets both upper and lower limits on its inputs. The red “Sample” layer in ACTOR takes the
weights of a multinomial pdf as input and samples stochastically from the distribution to produce its output (gradients cannot be
backpropagated through this layer; it is trained through REINFORCE [58] instead of SGD from the classification loss). “Delay”
layers store inputs internally for one time-step and output them at the next time-step. Other layer names in the schematic are
self-explanatory. Input and output sizes of some layers are marked in red to denote that these are parameters derived from
dataset-related choices — these are set for our SUN360 experiments in this schematic, and explanations are shown below each
module. Note that AGGREGATOR is a recurrent neural network, and LOOKAHEAD may be considered a “predictive” autoencoder,
that reduces its input features (appended together with the current agent motion mt) to a more compact representation in its
bottleneck layer before producing its prediction of its next time-step input.

REINFORCE iteratively increases weights in the pdf π(m)
on those candidate motions m ∈ M that have produced
higher “rewards”, as defined by a reward function. A sim-
ple REINFORCE reward function to promote classification
accuracy could be Rc(ŷ) = 1 when the most likely label in
ŷ is correct, and 0 when not. To speed up training, we use a
variance-reduced version of this loss R(ŷ) = Rc(ŷ)−Rc(z),
where z is set to the most commonly occuring class. Beyond
the stochastic units, the REINFORCE algorithm produces
gradients that may be propagated to non-stochastic units
through standard backpropagation. In our hybrid training
approach, these REINFORCE gradients from ACTOR are
therefore added to the softmax loss gradients from CLAS-
SIFIER before backpropagation through AGGREGATOR and

SENSOR.
More formally, given a training dataset of instance-label

pairs {(Xi, yi) : 1 ≤ i ≤ N}, the gradient updates are as
follows. Let W\c denote [Wa,Ws,Wr], i.e. all the weights in
W except the CLASSIFIER weights Wc, and similarly, let W\a
denote [Wc,Wr,Ws]. Then:

∆WRL
\c ≈

N∑
i=1

T∑
t=1

∇W\c log π(mi
t|ai

t−1;W\c)R
i, (1)

∆WSM
\a = −

N∑
i=1

∇W\aLsoftmax(ŷi(W,X), yi), (2)

where indices i in the superscripts denote correspondence
to the ith training sample Xi. Equation (1) and (2) show



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Input: 3D instance X , together with:
• projection function P (X,p) denoting the view cap-

tured from camera pose p
• proprioception function f(p) of the current position,

which is known to the active vision system, e.g., wrist
position, or gravity direction.

Output: ŷ, the predicted label for instance X .

1: procedure FORWARDONESTEP(t,at−1,pt−1, ât) . 1
forward propagation step

2: mt ← ACTOR(at−1, f(pt−1)) . motor command
sampled from C to adjust camera

3: pt ← pt−1 + mt . camera pose update
4: xt ← P (X,pt) . capture new view
5: st ← SENSOR(xt,mt) . per-view processing
6: at ← AGGREGATOR(at−1, st) . evidence fusion
7: if t > 1 then . relevant only at training time
8: ât ← LOOKAHEAD(at−1,mt−1, f(pt)) .

look-ahead prediction of current time-step feature
9: look-ahead error ζt ← d(at, ât)

10: end if
11: return at,pt, ζt
12: end procedure

13: a0 ← 0 . initialization
14: p0 ← random position
15: for t =1,2,. . . T do . move, observe, aggregate in a loop
16: at,pt, ζt ← FORWARDONESTEP(t,at,pt−1)
17: end for
18: ŷ ← CLASSIFIER(at) . final class prediction
19: return ŷ

Proc. 6: Pseudocode for forward propagation through our
active recognition network at training/inference time

the gradients computed from the REINFORCE rewards
(RL) and the softmax loss (SM) respectively, for different
subsets of weights. The notation in the RHS of Equation (1)
makes explicit the fact that the conditional action proba-
bility π(mi

t|ai
t−1) is influenced by all the parameters in

the network, except classifier weights. The REINFORCE
gradients ∆WRL are computed using the approximation
proposed in [58]. Final gradients with respect to the weights
of each module used in weight updates are given by:
∆Wa = ∆WRL

a , ∆Ws = ∆WRL
s + ∆WSM

s , ∆Wr =
∆WRL

r + ∆WSM
r , ∆Wc = ∆WSM

c . Training is through
standard stochastic gradient descent with early stopping
based on a validation set.

3.3 Look-ahead: predicting the effects of motions

Active recognition systems select the next motion based
on some expectation of the next view. Though non-trivial
even in the traditional instance recognition setting [16], [20],
[47], [57], with instances one can exploit the fact that pose
estimation in some canonical pose space is sufficient in itself
to estimate properties of future views. In other words, with
enough prior experience seeing the object instance, it is

largely a 3D (or implicit 3D) geometric model formation
problem.

In contrast, as discussed in Section 2, this prob-
lem is much harder in active categorization with realistic
categories—the domain we target. Predicting subsequent
views in this setting is severely under-constrained, and
requires reasoning about semantics and geometry together.
In other words, next view planning requires some element
of learning about how 3D objects in general change in their
appearance as a function of observer motion.

Concretely, we hypothesize that the ability to predict the
next view conditional on the next camera motion is closely
tied to the ability to select optimal motions. Thus, rather
than learn separately the model of view transitions and
model of motion policies, we propose a unified approach to
learn them jointly. Our idea is that knowledge transfer from
a view prediction task will benefit active categorization. In
this formulation, we retain the system from Section 3.2, but
simultaneously learn to predict, at every timestep t, the
impact on aggregate features at+1 at the next timestep,
given at and any choice of motion mt ∈ M. In other
words, we simultaneously learn how the accumulated history
of learned features—not only the current view—will evolve
as a function of our candidate motions.

For this auxiliary task, we introduce an additional mod-
ule, LOOKAHEAD, with weights Wl into the setup of Sec-
tion 3.2 at training time. At timestep t, LOOKAHEAD takes
as input the previous timestep aggregate feature vector
at−1 and the last motion command issued by ACTOR mt,
and produces ât as an estimate of the current timestep
aggregate features, i.e.,ât = LOOKAHEAD(at−1,mt). This
module may be thought of as a “predictive auto-encoder”
in the space of aggregate features at output by AGGRE-
GATOR. A look-ahead error loss is computed at every
timestep between the predicted and actual aggregate fea-
tures: d(ât,at|at−1,mt). We use the cosine distance to com-
pute this error. This per-timestep look-ahead loss provides
a third source of training gradients ∆WLA

\ca for the network
weights, as it is backpropagated through AGGREGATOR and
SENSOR:

∆WLA
\ca =

N∑
i=1

T∑
t=2

∇W\cad(ât,at|at−1,mt), (3)

where W now includes Wl and LA denotes lookahead. The
LOOKAHEAD module itself is trained solely from this error,
so that ∆Wl = ∆WLA

l . The final gradients used to train
SENSOR and AGGREGATOR change to include this new loss:
∆Ws = ∆WRL

s + ∆WSM
s + λ∆WLA

s , ∆Wr = ∆WRL
r +

∆WSM
r +λ∆WLA

r . λ is a new hyperparameter that controls
how much the weights in the core network are influenced
by the look-ahead error loss.

The look-ahead error loss of Equation 3 may also be
interpreted as an unsupervised regularizer on the classifica-
tion objective of Equation 1 and 2. This regularizer encodes
the hypothesis that good features for the active recognition
task must respond in learnable, systematic ways to camera
motions.

This is related to the role of equivariant image features
in [27], where we showed that regularizing image features
to respond predictably to observer egomotions improves
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performance on standard static image categorization tasks.
However, this work differs from [27] in several important
ways. First, we explore the utility of look-ahead for the
active categorization problem, not recognition of individual
static images. Second, the proposed look-ahead module is
conceptually distinct. In particular, we propose to regular-
ize the aggregate features from a sequence of activity, not
simply per-view features. Whereas in [27] the effect of a
discrete ego-motion on one image is estimated by linear
transformations in the embedding space, the proposed look-
ahead module takes as input both the history of views
and the selected motion when estimating the effects of
hypothetical motions.

Proprioceptive knowledge

Another useful feature of our approach is that it allows
for easy modeling of proprioceptive knowledge such as
the current position pt of a robotic arm. Since the ACTOR
module is trained purely through REINFORCE rewards, all
other modules may access its output mt without having
to backpropagate extra gradients from the softmax loss. For
instance, while the sensor module is fed mt as input, it does
not directly backpropagate any gradients to train ACTOR.
Since pt is a function solely of (m1...mt), this knowledge is
readily available for use in other components of the system
without any changes to the training procedure described
above. We append appropriate proprioceptive information
to the inputs of ACTOR and LOOKAHEAD, detailed in exper-
iments.

Greedy softmax classification loss

We found it beneficial at training time to inject softmax clas-
sification gradients after every timestep, rather than only at
the end of T timesteps. To achieve this, the CLASSIFIER mod-
ule is modified to contain a bank of T classification networks
with identical architectures (but different weights, since in
general, AGGREGATOR outputs at at different timesteps may
have domain differences). Note that the REINFORCE loss
is still computed only at t = T . Thus, given that softmax
gradients do not pass through the ACTOR module, it remains
free to learn non-greedy motion policies.

4 EXPERIMENTS

We evaluate our approach for object and scene categoriza-
tion. In both cases, the system must choose how it will move
in its 3D environment such that the full sequence of its
actions leads to the most accurate categorization results.

4.1 Datasets and baselines

While active vision systems have traditionally been tested
on custom robotic setups [44] (or simple turn-table-style
datasets [47]), we aim to test our system on realistic, off-
the-shelf datasets in the interest of benchmarking and repro-
ducibility. To this end, we work with three publicly available
datasets, SUN360 [60], GERMS [38] and ModelNet10 [59].

Our SUN360 [60] experiments test a scenario where the
agent is exploring a 3D scene and must intelligently turn to
see new parts of the scene that will enable accurate scene

categorization (bedroom, living room, etc.). SUN360 con-
sists of spherical panoramas of various indoor and outdoor
scenes together with scene category labels. We use the 26-
category subset (8992 panoramic images) used in [60]. Each
panorama by itself represents a 3D scene instance, around
which an agent “moves” by rotating its head, as shown in
Figure 7. For our experiments, the agent has a limited field
of view (45◦) at each timestep. We sample discrete views
in a 12 elevations (camera pitch) × 12 azimuths (camera
yaw) grid. The pitch and yaw steps are both spaced 30◦apart
(12×30=360), so that the entire viewing sphere is uniformly
sampled on each axis. Starting from a full panorama of size
1024 × 2048, each 45◦ FOV view is represented first as a
224 × 224 image, from which 1024-dim. GoogleNet [53]
features are extracted from the penultimate layer.1 At each
timestep, the agent can choose to move to viewpoints on a
5×7 grid centered at the current position. We set T = 5
timesteps.2 Proprioceptive knowledge in the form of the
current camera elevation angle is fed into ACTOR and
LOOKAHEAD. We use a random 80-20 train-test split. Our
use of SUN360 to simulate an active agent in a 3D scene is
new and offers a realistic scenario that we can benchmark
rigorously; note that previous work on the dataset does a
different task, i.e., recognition with the full panorama in
hand at once [60], and results are therefore not comparable
to our setting.

Our GERMS [38] experiments consider the scenario
where a robot is holding an object and must decide on its
next best motion relative to that object, e.g., to gain access to
an unseen facet of the object, so as to recognize its instance
label. GERMS has 6 videos each (3 train, 3 test) of 136
objects being rotated around different fixed axes, against
a television screen displaying moving indoor scenes (see
Figure 8). Each video frame is annotated by the angle at
which the robotic arm is holding the object. Each video pro-
vides one collection of views that our active vision system
can traverse at will, for a total of 136 × 6 = 816 train/test
instances (compared to 8992 on SUN360). While GERMS is
small and targets instance rather than category recognition,
aside from SUN360 it is the most suitable prior dataset
facilitating active recognition. Each frame is represented by
a 4096-dim. VGG-net feature vector [49], provided by the
authors [38]. We set episode lengths to T = 3 steps. As
proprioceptive knowledge, we feed the current position of
the robotic hand into ACTOR and LOOKAHEAD. We use the
train-test subsets specified by the dataset authors.

Finally, our ModelNet10 [59] experiments also consider
an active object recognition setup, but with synthetic 3D ob-
ject models. ModelNet10 contains 4899 synthetic models of
10 household furniture categories (such as “bathtub”, “bed”,
and “chair”). We use the pre-specified train-test split (3991
training and 908 testing models). In our experimental setup,
the active agent views one 2D projection of the 3D model at
each timestep, and can choose to rotate the object to access
neighboring 2D views, replicating the setup of [32] for direct

1. While our experiments assume pretrained features as input to the
SENSOR module for speed and memory efficiency, it is also possible to
treat the feature extractor as part of the SENSOR module, so that the
pipeline is trained directly on pixel inputs.

2. Episode lengths were set based on learning time for efficient
experimentation.
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Fig. 7: (Best seen in color) An “airplane interior” class example showing how SUN360 spherical panoramas (equirectangular
projection on the left) are converted into 12× 12 45◦FOV view grid. As an illustration, the view at grid coordinates x = 4, y = 6
outlined in green in the view grid on the right corresponds approximately to the overlap region (also outlined in green) on the
left (approximate because of panorama distortions—rectangles in the panorama are not rectangles in the rectified views present
in the grid). The 5 × 7 red shaded region in the view grid (right) shows the motions available to ACTOR when starting from the
highlighted view.

Fig. 8: The GERMS active object instance recognition dataset [38] contains videos of a single-axis robotic hand rotating 136 toys
against a moving background.

Fig. 9: Examples of synthetic 3D models from ModelNet10, used in our active object recognition experiments.

comparison. Specifically, we capture 84 views of each model
(7 elevations × 12 azimuths) in a viewing grid surrounding
the object. At each timestep, the agent can choose to ro-
tate the object to access one of the eight “adjacent” views
within this grid. As in SUN360, elevation is available to
the agent as proprioceptive information. To represent each
view, we use the publicly available ImageNet-pretrained
VGG16 model [49] and finetune it on ModelNet10 single
view classification, before extracting fc7 features. While
this dataset is synthetic unlike SUN360 and GERMS, we
use it for direct comparison against two recently proposed
deep learning-based active recognition approaches [32], [59].
Some examples of 3D models from ModelNet10 are shown
in Figure 9.

Of these datasets, SUN360 is selected to test our system’s
ability to effectively perform active recognition of complex
real-world scene categories. The GERMS (real object in-
stance recognition) and ModelNet (synthetic object category
recognition) tasks reflect the current standard in active
recognition evaluation methods, and thus allow comparison
against prior approaches [32], [38].

Baselines

We extensively evaluate our “Look-ahead active RNN” (Sec-
tion 3.3) and simpler “Active RNN” (Section 3.2) against

eight baselines, including passive single-view methods, ran-
dom view sampling, and traditional prior active vision
approaches upgraded to be competitive in our setting, and
recent work in the literature [32], [59].
• single view (neural net): has access to only one

view, like the starting view provided to the active systems.
A feed-forward neural network is used for this baseline,
composed from the appropriate components of the SEN-
SOR and CLASSIFIER modules of our system. This baseline
is entirely pose-agnostic, i.e., the same classifier is applied
to views from all object poses.

• random views (average): uses the same architecture
as “single view (neural net)”, but has access to T
views, with successive views being related by randomly
selected motions from the same motion set M available
to the active systems. Its output class likelihood at t = T
is the average of its independent estimates of class likeli-
hood for each view.

• random views (recurrent): uses the same core ar-
chitecture as our Active RNN method, except for the
ACTOR module. In its place, random motions (from M)
are selected. Note that this should be a strong baseline,
having nearly all aspects of the proposed approach except
for the active view selection module. In particular, it has
access to its selected motions in its SENSOR module, and
can also learn to intelligently aggregate evidence over
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views in its AGGREGATOR RNN module.
• transinformation: is closely based on [47], in which

views are selected greedily to reduce the information-
theoretic uncertainty of the category hypothesis. We make
modifications for our setting, such as using 1024-D CNN
features in place of the original receptive field histogram
features, and using Monte Carlo sampling to approxi-
mate information gain. Each view is classified with pose-
specific classifiers. When the class hypothesis is identical
between consecutive views, it is emitted as output and
view selection terminates. Like most prior approaches,
this method relies on a canonical world coordinate space
in which all object instances can be registered. Since this
is infeasible in the active categorization setting, we treat
each instance’s coordinates as world coordinates.

• seqDP: is closely based on [19], and extends [47] using a
sequential decision process with Bayesian aggregation of
information between views. It runs to a fixed number of
views.

• transinformation + seqDP: combines the strengths
of [47] and [19]; it uses Bayesian information aggregation
across views, and terminates early when the predicted
class remains unchanged at consecutive timesteps.

• Depth-ShapeNets [59]: assumes access to depth infor-
mation for all observed views, unlike our method, which
only sees RGB information. It hallucinates unobserved
entries in the voxel grid using 3D convolutional deep
belief networks, and uses a mutual-information-based
metric inspired by seqDP [19] to select next-best views.
We compare against this method on ModelNet10 data
using published numbers from [32].

• RGBD-Pairwise [32]: decomposes the sequence of ob-
served views into pairs, classifies each pair using a
CNN, and averages those pairwise classifications over the
full sequence to perform information fusion. For view
selection, it trains a second CNN in supervised man-
ner to directly map the current view to the best next
viewpoint. Aside from the RGB information that our
method accesses, RGBD-Pairwise assumes additional
access to depth information. We compare directly against
this method’s published results on ModelNet-10.

Hyperparameters for all methods were optimized for
overall accuracy on a validation set through iterative search
over random combinations [10].

4.2 Results
In Section 4.2.1, we present results for active recognition of
scene categories and object instances on realistic SUN360
and GERMS data respectively. In Section 4.2.2 we replicate
settings used in recent work [32], [59] for a direct com-
parison on ModelNet synthetic object model categorization.
Finally, in Section 4.2.3, we qualitatively analyze the learned
policies by studying the effect of starting position on recog-
nition accuracy over time.

4.2.1 Active scene and object recognition
Table 1 shows the recognition accuracy results for

scene categorization (SUN360) and object instance recog-
nition (GERMS). Figure 10 and Figure 11 plot the re-
sults as a function of timesteps, comparing against

ablated variants of our approach and against clas-
sic prior approaches (transinformation, seqDP and
transinformation+seqDP) respectively. Both variants of
our method outperform the baselines on both datasets,
confirming that our active approach successfully learns
intelligent view selection strategies. Passive baselines, rep-
resentative of the current standard approaches to visual
categorization that classify Web photos, perform uniformly
poorly, highlighting the advantages of the active setting.
In addition, our Look-ahead active RNN outperforms our
Active RNN variant on both datasets, showing the value in
simultaneously learning to predict action-conditional next
views at the same time we learn the active vision policy. By
“looking before leaping” our look-ahead module facilitates
beneficial knowledge transfer for the active vision task.

On SUN360, even though it represents a much harder
active category recognition problem, the margins between our
method and the random view baselines are pronounced.
Furthermore, while the traditional active baselines do show
significant improvements from observing multiple views,
they fall far short of the performance of our method despite
upgrading them in order to be competitive, such as by using
CNN features, as described above.

On GERMS, our method is once again easily superior
to prior active methods. The margins of our gains over
random-view baselines are smaller than on SUN360. Upon
analysis, it becomes clear that this is due to GERMS being a
relatively small dataset. Not only is (1) the number of active
recognition instances small compared to SUN360 (816 vs.
8992), but (2) different views of the same object instance
are naturally closer to each other than different views from
a SUN360 panorama view-grid (see Figure 7 and Fig 8)
so that even single view diversity is low, and (3) there is
only a single degree of motion compared to two in SUN360.
As a result, the number of possible reinforcement learning
episodes is also much smaller.

Upon inspection, we found that these factors can lead
our end-to-end network to overfit to training data (which
we countered with more aggressive regularization). In par-
ticular, it is problematic if our method achieves zero training
error from just single views, so that the network has no
incentive to learn to aggregate information across views
well. Our active results are in line with those presented as
a benchmark in the paper introducing the dataset [38], and
we expect more training data is necessary to move further
with end-to-end learning on this challenge. This lack of data
affects our prior active method baselines even more since
they rely on pose-specific instance classifiers, so that each
classifier’s training set is very small. This explains their poor
performance.

As an interesting upshot, we see further improvements
on GERMS by averaging the CLASSIFIER modules’ outputs
i.e. class likelihoods estimated from the aggregated features
at each timestep t = 1, .., T (“Look-ahead active RNN + av-
erage”). Since the above factors make it difficult to learn the
optimal AGGREGATOR in an end-to-end system like ours, a
second tier of aggregation in the form of averaging over the
outputs of our system can yield improvements. In contrast,
since SUN offers much more training data, averaging over
per-timestep CLASSIFIER outputs significantly reduces the
performance of the system, compared to directly using the
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Method↓/Dataset→ SUN360 GERMS
Performance measure→ T=2 acc. T=3 acc. T=5 acc. T=2 acc. T=3 acc.

Passive approaches Chance 14.08 14.08 14.08 0.74 0.74
single view (neural net) 40.12±0.45 40.12±0.45 40.12±0.45 40.31±0.23 40.31±0.23

Random view (ablation) random views (average) 45.71±0.29 50.47±0.37 54.21±0.57 45.71±0.30 46.97±0.43
random views (recurrent) 47.74±0.27 51.29±0.21 55.64±0.28 44.85±0.40 44.24±0.24

Prior active approaches
transinformation [47] 40.69 40.69 44.86 28.83 31.02
seqDP [19] 42.41 42.91 42.08 28.83 28.10
transinformation + seqDP 44.69 46.91 48.19 29.93 29.56

ours
Active RNN 50.76±0.41 57.52±0.46 65.32±0.42 47.30±0.73 46.86±0.97
Look-ahead active RNN 51.72±0.29 58.12±0.43 66.01±0.34 48.02±0.68 47.99±0.79
Look-ahead active RNN+average 49.62±0.43 55.43±0.38 62.61±0.33 47.00±0.45 48.31±0.72

TABLE 1: Recognition accuracy on SUN360 and GERMS (neural net-based methods’ scores are reported as mean ± standard error
over 5 runs with different initializations)
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Fig. 10: Evolution of accuracy over time for various ablated variants of our method, on SUN360 (left) and GERMS (right). Our
methods show steady improvement with additional views, and easily outperform the best baselines. Also see Table 1.

Fig. 11: Evolution of accuracy over time for our method, vs. existing active recognition methods transinformation [47],
seqDP [19], and transinformation+seqDP. Our integrated end-to-end solution strongly outperforms these well-known and
widely used classic information-theoretical approaches to active recognition implemented with state-of-the-art CNN features,
identical to our method. Also see Table 1.

last timestep output. This is exactly as one would hope for
a successful end-to-end training. This reasoning is further
supported by the fact that “random views (average)”
shows slightly poorer performance than “random views
(recurrent)” on GERMS, but is much better on SUN360.

Indeed, the significant gains of “random views
(recurrent)” over “random views (average)” on
SUN360 points to an important advantage of treating ob-
ject/scene categorization as a grounded, sequence-based
decision process. The ability to intelligently fuse observa-
tions over timesteps based on both the views themselves
and the camera motions relating them offers substantial
rewards. In contrast, the current computer vision literature
in visual categorization is largely focused on categorization
strategies that process individual images outside the context
of any agent motion or sequential data, much like the

“Single view” or “random views (average)” baselines.
Our empirical results show the exciting promise for future
work in this space. They also suggest the need for increased
efforts creating large 3D and video benchmark datasets (in
the spirit of SUN360 and GERMS and beyond) to support
such vision research, allowing us to systematically study
these scenarios outside of robot platforms.

The result on SUN360 in particular is significant since
no prior active recognition approach has been shown to
successfully handle any comparably complex dataset. While
active categorization is technically challenging compared to
instance recognition as discussed in Section 2, datasets like
SUN360 that contain complex visual data with ambiguous
views may actually be most suited to showing the advan-
tages of the active recognition paradigm.

Figure 13 and Figure 14 show some qualitative examples
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Method↓/Dataset→ ModelNet10
Performance measure→ T=3 acc. T=6 acc.

Chance 11.02 11.02
single view (neural net) 85.65±0.09 85.65±0.09

random views (recurrent) 89.23±0.03 90.10±0.08
single-action 89.81±0.05 90.99±0.08
single-action+ 90.25±0.06 91.77±0.04

Depth-ShapeNets [59] 78.7 81.0
RGBD-Pairwise [32] 88.8 91.6

ours 91.01±0.14 92.50±0.07

TABLE 2: Recognition accuracy on ModelNet, including re-
cently published benchmarks.

Fig. 12: Evolution of accuracy over time for our method
vs. two other recently proposed deep learning-based ap-
proaches, Depth-ShapeNets [59] and RGBD-Pairwise [32],
both of which use depth information. Our integrated end-
to-end solution strongly outperforms both approaches with
significant margins despite using only RGB information (no
depth). While RGBD Pairwise is the strongest baseline, our
method’s performance after seeing only three views (T = 3)
is nearly on par with the strongest baseline’s performance after
selecting 6 views (T = 6). Also see Table 2.

of the view selection behavior of our approach on SUN360
and GERMS respectively.

4.2.2 Active object recognition with synthetic CAD models
The above experiments establish the advantages of our

method over traditional active recognition approaches
in realistic settings using panoramic scenes (SUN360)
and object manipulation videos (GERMS). Next, we use
synthetic ModelNet10 object models in an active ob-
ject recognition experiment to allow direct comparison
against two recently published deep learning-based ac-
tive recognition approaches: Depth-ShapeNets [59] and
RGBD-Pairwise [32], both of which use the VGG-M CNN
architecture, same as ours, to represent input images. We
exactly reproduce the settings described in [32] and com-
pare against the Depth-ShapeNets and RGBD-Pairwise
results presented there. Figure 12 plots the performance of
our method against these baselines. Both these methods
use 2.5D information, i.e., they have additional access to
depth while our method uses only 2D projections. Despite
this handicap, our method significantly outperforms these
baselines.

Table 2 presents the precise accuracy results and includes
a comparison against other baselines: random views
(recurrent), single-action, and single-action+.
As before, random views (recurrent) uses the same

architecture as out method, except that it selects random
motions at each timestep. We define single-action and
single-action+ below:
• single-action: This represents a policy that rotates

the object by a fixed amount along a fixed direction at
every time-step. We exhaustively test all valid rotation
actions and only present results for the action that
works best on the test set.

• single-action+: In our setup, since elevation is lim-
ited to [−90◦,+90◦], a single-action policy that
moves upwards could get stuck at the highest elevation,
for instance. At this point, single-action+ avoids
this by switching directions to move downwards.

random views (recurrent), single-action, and
single-action+ are all ablated variants of our method
which replace the ACTOR module of our system with heuris-
tic action policies while retaining the rest of our pipeline. As
Table 2 shows, our learned action policy does significantly
better than these heuristic policy baselines. At the same
time, it is worth noting that even these ablated variants
outperform the best previously published approaches [32],
[59], suggesting that aside from the learned action policy,
our approach’s sensing and aggregation pipelines are also
key to its superior performance

4.2.3 Qualitative analysis of motion policies

Next we analyze the motion policies learned by our
method. Recall that in our setup, the first view is selected
at random and presented to the agent. Some views of an
object or scene are less discriminative than others, but good
active recognition agents should be able to recover from
poor starting views very quickly, by steering the camera or
manipulating the object intelligently to reach better view-
points.

To assess whether our approach does in fact demonstrate
speedy recovery, we visualize the impact of the starting
viewpoint on active recognition accuracy as a function of
time on SUN360 and ModelNet10 in Figure 15. At T = 1,
accuracy is a strong function of starting position on both
SUN360 and ModelNet. On SUN360, azimuth has no dis-
cernible impact as expected since panoramas in scenes have
no canonical forward direction. Interestingly, however, el-
evations near the horizontal (middle band in the plots of
Figure 15) produce the highest accuracies, suggesting that
the maximum discriminative information for scene catego-
rization exists at approximately eye level. On ModelNet10,
there is a grid-like structure to the position dependence
at T = 1, every 90 degrees along both elevation and
azimuth. Upon examination, this has an interesting explana-
tion. ModelNet10 has several approximately cuboidal object
categories like table, bed, and dresser. For such objects, at
every 90◦rotation, a majority of the faces of the object are
occluded from view, and only one or two faces are visible,
which makes recognition difficult.

There are thus strong position dependencies in both
datasets for individual view discriminativeness. For both
ours and random views (recurrent), the spread of
accuracies is therefore large at T = 1, and accuracies
consistently improve over time. However, the key observa-
tion from this visualization is that for ours, the accuracies
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GT likelihood: 6.28% 11.95% 68.38%
restaurant, train interior, shopTop guesses: theater, restaurant, plaza courtyard plaza courtyard, street, theater

GT likelihood: 0.53% 5.00% 37.89%
forest, cave, beachTop guesses: street, cave, plaza courtyard church, lobby atrium, street

Fig. 13: (Best viewed in color on pdf with zoom) Views selected using our approach on SUN360. Each row, corresponding to a
scene, contains three red panels corresponding to the selected views at t = 1, 2, 3. Each panel shows the current view (left) and
position on view grid (pink highlight is current position, yellow highlights show views reachable at next timestep). In the top
row, given the first view, our method makes reasonable but wrong guesses, but corrects itself within two moves, by observing the
crowd and following their gaze.

Fig. 14: Views selected using our approach for a GERMS
object. The three red panels correspond to the selected views at
t = 1, 2, 3. The predicted instance at each timestep is depicted
along the top. In this case, our approach manages to manipulate
from poorly lit, side-on views to a more frontal, well-lit view to
correctly recognize the object instance.

converge to an approximately uniform distribution over
starting position (i.e., negligible dependence on starting po-
sition) much more quickly on both datasets. Our intelligent
action selection approach is better able to overcome the
disadvantage of bad starting positions.

5 CONCLUSIONS

We presented a new end-to-end approach for active visual
categorization. Our framework simultaneously learns (1)
how an agent should move to improve its observation
sequence, and (2) how its future observations are likely
to change conditioned on its possible motions. We show
the impact on object and scene recognition, where our
active approach makes sizeable strides over single view and
passively moving systems. Furthermore, we establish the
advantage of treating all components of the active recogni-
tion system simultaneously. All together, the results serve

as evidence that modern visual recognition algorithms can
venture further into unconstrained, sequential data, moving
beyond the static image snapshot labeling paradigm.

We have recently proposed an approach for learning
unsupervised generic exploratory policies [31]. Trained by
targeting completion of unobserved portions of a scene,
these policies may then be transfered to new tasks. This
points towards a method for reducing the labeled data
requirement for training the active recognition policies pro-
posed in this paper.

Our treatment of the active recognition problem leaves
open several further directions for follow-up work. While
our model refreshes its category beliefs after every obser-
vation, it does not have the option of terminating. Instead,
we trained fixed time-budgeted models, and in our experi-
ments, we tested accuracy as a function of time with fixed
numbers of observations. An important future challenge is
for the agent to decide when to observe another view and
when that is unnecessary. For example, this could be ac-
complished by setting a confidence threshold on the agent’s
current beliefs at inference time. A more interesting option
would be to include a termination action to learn when to
terminate the observation of an object or scene. A small
negative reward with each elapsed timestep could provide
an agent the incentive to terminate observation early. Other
situations may demand movement or energy-budgeted ex-
ploration, which could be modeled by negative rewards that
are proportional to the magnitude of the selected motion.

Our experiments all assume that the object or scene to
be recognized does not evolve over time. While the GERMS
datset does include moving distractors, the object in the
robot arm is nearly rigid. However, a natural setting might
involve performing active recognition in a scene with mov-
ing objects. Since our method itself is not tied to any static
world assumptions, it would be of interest in future work to
study its performance in more dynamic environments.
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SUN360 Plots (Starting position dependency as a function of time)
Method: ours

Method: random views (recurrent)

ModelNet10 Plots (Starting position dependency as a function of time)
Method: ours

Method: random views (recurrent)

Fig. 15: (Best seen in color) Accuracy as a function of starting position, over time. For each timestep t, a color-coded viewgrid
(12×12 on SUN360, 7×12 on ModelNet) presents the accuracy after t views, when starting from each position in the viewgrid.
The elevation axis spans -90 to +90◦, where 0◦corresponds to the horizontal. The azimuth axis spans 0 to 360◦. At early timesteps,
accuracy is strongly dependent on starting position since some views are more discriminative than others. However, good action
policies must quickly recover from poor starting views, so that active recognition accuracies become less dependent on starting
position over time. On both SUN360 active scene recognition and ModelNet10 active object category recognition, our approach
achieves this much more efficiently than random views (recurrent).

As observed in our experiments, the look-ahead regu-
larizer proved substantially useful only when training data
was limited. This raises the question: are there better ways
to utilize the look-ahead ability within an active recogni-
tion system rather than as just a regularizer? The look-
ahead module is at its essence a model of state transitions
within the system (considering the aggregator output as
the “state”), since it models the next state, conditional
on current state and action. This view of the look-ahead
module brings into focus the connection to model-based
reinforcement learning [52], which aims to more explicitly
use models of the state transition and reward dynamics of
the environment in reinforcement learning systems. This is
a promising direction for potential future investigation.
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