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Abstract

This paper focuses on the problem of 3D human recon-
struction from 2D evidence. Although this is an inherently
ambiguous problem, the majority of recent works avoid the
uncertainty modeling and typically regress a single esti-
mate for a given input. In contrast to that, in this work,
we propose to embrace the reconstruction ambiguity and
we recast the problem as learning a mapping from the in-
put to a distribution of plausible 3D poses. Our approach
is based on the normalizing flows model and offers a se-
ries of advantages. For conventional applications, where
a single 3D estimate is required, our formulation allows
for efficient mode computation. Using the mode leads to
performance that is comparable with the state of the art
among deterministic unimodal regression models. Simul-
taneously, since we have access to the likelihood of each
sample, we demonstrate that our model is useful in a se-
ries of downstream tasks, where we leverage the proba-
bilistic nature of the prediction as a tool for more accu-
rate estimation. These tasks include reconstruction from
multiple uncalibrated views, as well as human model fit-
ting, where our model acts as a powerful image-based prior
for mesh recovery. Our results validate the importance of
probabilistic modeling, and indicate state-of-the-art per-
formance across a variety of settings. Code and models
are available at: https://www.seas.upenn.edu/

˜nkolot/projects/prohmr.

1. Introduction

Reconstructing 3D human pose from any form of 2D
observations (image, 2D keypoints, silhouettes) is a funda-
mentally ambiguous problem. Of course, this is a very old
insight, identified even from the very first approaches [25]
dealing with the problem of single-view human pose recon-
struction. However, the current norm for the state-of-the-art
approaches is to return a single 3D estimate which is typi-
cally computed in a deterministic manner. In this work, we
argue that there is great value at capturing a distribution of
3D poses conditioned on the preferred input.

Our reliance on systems that return a single deterministic

Figure 1: Probabilistic modeling for 3D human mesh re-
covery. We propose to recast the problem of 3D human
reconstruction as learning a mapping from the input to a
distribution of 3D poses. The output distribution has high
probability mass on a diverse set of poses that are consistent
with the 2D evidence.

3D pose output often happens out of convenience; it makes
comparison on conventional benchmarks straightforward
and fair, while a single output is enough for many down-
stream applications. Recent literature for 3D human pose
reconstruction is currently dominated by such approaches
and they are very popular for image [22] or keypoint [43] in-
put, for skeleton-based [32] or mesh-based [23] reconstruc-
tion, as well as regression [17] or optimization-based [4]
approaches. On the other end of the spectrum, there have
always been approaches that advocate in favor of gener-
ating multiple predictions per input. Recent efforts have
demonstrated interesting potential [3, 27], but often rely on
ensemble-type prediction, modifying current systems into
combining N output heads instead of one. This can lead to
cumbersome architectural choices, inability to scale and/or
limited expressivity for the output distribution.

Our approach aims to bridge this gap and demonstrate
the value of predicting a distribution of 3D poses condi-
tioned on the provided 2D input. To achieve this, we pro-
pose an elegant and efficient approach with many desirable
properties missing from recent work, and we demonstrate
its effectiveness. Instead of regressing a single estimate for
the provided input, we use Normalizing Flows to regress
a distribution of plausible poses. This allows us to train
a network which returns a conditional distribution of 3D
poses as a function of the input (e.g., image or 2D key-
points), as depicted in Figure 1. Our probabilistic model
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Figure 2: The value of probabilistic modeling for 3D human mesh estimation. We demonstrate that probabilistic modeling
in the case of 3D human mesh estimation can be particularly useful because of its elegant and flexible form, which enables a
series of downstream applications. First row: In the typical case of 3D mesh regression, we can naturally use the mode of the
distribution and perform on par with approaches regressing a single 3D mesh. Second row: When keypoints (or other types
of 2D evidence) are available we can treat our model as an image-based prior and fit a human body model to the keypoints
by combining it with a 2D reprojection term. Third row: When multiple views are available, we can naturally consolidate all
single-frame predictions by adding a cross-view consistency term. We underline that all these applications refer to test-time
behavior and they use the same trained probabilistic model (no per-task training required).

allows for fast sampling of diverse outputs, we can effi-
ciently compute the likelihood of each sample, and there
is a fast and closed form solution to compute the mode of
the distribution. The importance of the above is manifested
in a variety of ways, which are summarized in Figure 2.
First, we can easily compute the mode of the distribution,
which returns the most likely 3D pose for the particular in-
put. This is convenient, when a single estimate is required
for some applications. Interestingly, this regressed value is
on par with the state-of-the-art deterministic methods, so
our model can be valuable even in the more conventional
settings. More importantly though, by treating our trained
probabilistic model as a conditional distribution, we can use
it in many downstream applications to combine information
from different sources. For example, when 2D keypoints
are available, optimization approaches [4, 38], are used to
fit parametric human body models to these 2D locations.
In this case, our model can act as a powerful image-based
prior that can guide the optimization towards accurate solu-
tions that satisfy both 2D keypoint reprojection and image
evidence. Similarly, when multiple views are available, we

can consolidate information from all conditional distribu-
tions, by optimizing for cross-view consistency and recover
a 3D result that is consistent with the available observations.
Last but not least, we highlight that all these applications
are available at test-time with the same trained probabilistic
model, without any need for task-specific retraining.

We conduct extensive experiments to demonstrate the
importance of our learned probabilistic model. We focus
primarily on image-based mesh recovery [17], proposing
the ProHMR model, but we also investigate 2D keypoint
input [32]. We achieve particularly strong performance
across different tasks and evaluation settings. Our contri-
butions can be summarized as follows:

• We propose a probabilistic model for human mesh re-
covery and demonstrate its value in various tasks.

• In the conventional evaluations with single estimate
methods, our model is on par with the state of the art.

• We demonstrate that in the presence of additional in-
formation sources, e.g., multiple views or 2D key-
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points, our model offers an elegant and effective way
to consolidate said sources.

• In the setting of human body model fitting, our model
acts as a powerful image-based prior, achieving signif-
icant boost over previous baselines.

2. Related work

Although our formulation is quite general and can han-
dle different inputs/outputs, here we focus mainly on human
mesh recovery from a single image [17], while we briefly
touch upon other settings, specifically 3D pose estimation
from 2D keypoints [32]. Since the related work is vast, here
we discuss the more relevant approaches. We direct the in-
terested reader to a recent and extensive survey [51].

2.1. Human mesh recovery from a single image

Regression: Recent approaches for mesh recovery are fol-
lowing the regression paradigm, where the parameters of
a parametric model [30, 38, 48, 36] are regressed from a
deep network, given a single image as input. The canon-
ical example here is HMR [17], with many of the de-
sign decisions being adopted also by follow-up works,
e.g., [2, 11, 23, 39, 6, 9, 15]. Here, our regression network
also follows the principles of HMR, however, instead of re-
gressing a single 3D pose estimate, it regresses a whole dis-
tribution of plausible 3D poses given the input image.
Optimization: These methods estimate iteratively the pa-
rameters of the body model, such that it is consistent with
a set of 2D cues. The canonical example of SMPLify [4]
optimizes SMPL parameters given 2D keypoints. Follow-
up works investigate other inputs, e.g., silhouettes [24],
POFs [47], dense correspondences [11] or contact [34, 44].
However, most recent approaches [2, 22, 38] rely almost ex-
clusively on 2D keypoints; losing the majority of pictorial
cues, but gaining robustness. In this work, we demonstrate
how our probabilistic model can leverage image-based in-
formation to guide the keypoint-based optimization.
Optimization-Regression hybrids: The idea of building a
hybrid between the two paradigms has been explored ex-
tensively in recent work. HMR [17] and HUND [50] use
a network to mimic the optimization steps and regress the
updates to the model parameters. Song et al. [43] use the re-
projection error of the model joints to guide their learning-
based gradient descent approach. SPIN [22] initializes the
optimization with a regression network and supervises the
network with the output of the optimization. EFT [16]
builds on that by updating the network weights during the
fitting procedure. Our probabilistic model also investigates
this type of collaboration by regressing a distribution of
poses which can then be used as a prior term for the fitting.

2.2. Multiple hypotheses for 3D human pose

Multiple hypotheses methods have been used in the con-
text of 3D human pose estimation to deal with the inherent
ambiguities of the reconstruction such as occlusions, trun-
cations or depth ambiguities. Jahangiri and Yuille [14] use a
compositional model and anatomical constraints to generate
multiple hypotheses consistent with 2D keypoint evidence.
Li and Lee [27] use a Mixture Density Network instead and
generate a fixed number of proposals based on the centroids
of the Gaussian kernels, while Sharma et al. [42] tackle the
same problem using a Conditional VAE. Recently, Biggs et
al. [3] extend HMR [18] with N prediction heads. This
leads to a discrete set of hypotheses, instead of a full proba-
bility of poses as we do. In a concurrent work, Sengupta et
al. [41] use a Gaussian posterior to model the uncertainty in
the parameter prediction. Differently from these methods,
our approach is not limited to learning a generative model
of plausible 3D poses, but rather shows how one can use
such a model for useful downstream applications.

2.3. Normalizing Flows

Normalizing Flows are used to represent complex dis-
tributions as a series of invertible transformations of a
simple base distribution. They were originally developed
for modeling posterior distributions for variational infer-
ence [40, 20]. Popular examples include MADE [10],
NICE [7], MAF [37], RealNVP [8] and Glow [19].

Normalizing Flows have been used in the context of 3D
human pose estimation to learn a prior on the distribution of
plausible poses [3, 48, 49]. These priors are usually trained
using unpaired MoCap data [31]. Our work is fundamen-
tally different from these methods in the sense that we are
interested in learning a pose prior conditioned on 2D image
evidence rather than a generic prior on the 3D pose space.

3. Method

In this Section, we present in detail our proposed ap-
proach. We start with an outline of Normalizing Flows [40]
and the SMPL body model [30]. Then, we describe the
model architecture and the training procedure. Finally, we
show how our trained model can be used in downstream ap-
plications in a simple and straightforward manner.

3.1. Normalizing Flows

LetZ ∈ Rd be a random variable with distribution pZ(z)
and f : Rd → Rd an invertible mapping. If we transform Z
with f , then the resulting random variable X = f(Z) has
probability density function:

pX(x) = pZ(z)

∣∣∣∣det
∂f

∂z

∣∣∣∣−1

(1)
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Figure 3: Architecture of the proposed probabilistic model for human mesh recovery, ProHMR. Left: Our image
encoder regresses a hidden vector c, which is used as the conditioning input to the flow model. In parallel, it is also decoded
to shape parameters β and camera π. Right: Our flow model learns an invertible mapping which allows for two processing
directions; depending on the desired function, we can perform both sampling and fast likelihood computation.

Normalizing Flow models are used to model arbitrar-
ily complex distributions as a series of invertible transfor-
mations of a simple base distribution. Typically, the base
distribution pZ(z) is chosen to be the standard multivariate
GaussianN (0, I). If we write f as a composition of invert-
ible transformations {fk}Kk=1 with Z0 = Z, Zi = fi(Zi−1)
and ZK = X , then the log-probability density of X can be
computed as:

ln pX(x) = ln pZ(z)−
K∑
k=1

ln

∣∣∣∣det
∂fi
∂zi−1

∣∣∣∣ . (2)

Winkler et al. [46] extended Normalizing Flow mod-
els to model conditional distributions pX|Y (x|y) by using
transformations x = f(z;y) that are bijective in x and z.

3.2. SMPL model

SMPL [30] is a parametric human body model. It defines
a mappingM(θ,β) that takes as input a set of pose param-
eters θ and shape parameters β and outputs a body mesh
M ∈ RN×3, where N = 6890 is the number of mesh ver-
tices. Additionally, given an output mesh, the body joints J
can be expressed as a linear combination of the mesh ver-
tices, J = WM , where W is a pretrained linear regressor.

3.3. Model design

Without loss of generality, we present our pipeline for
the case where the input is an image of a person and the
target output is the set of SMPL body model parameters.
We call this model ProHMR, with the goal of Probabilistic
Human Mesh Recovery. At the end of this section we also
show how the same method can be applied in alternative
scenarios with different input and output representations.

In our setting, we are given an input image I containing
a person, and our goal is to learn a distribution of plausible
poses for that person conditioned on I . Since we do not
have access to accurate pairs of images-shape annotations,
we choose to only model the uncertainty of the SMPL pose
parameters θ. Our architecture follows closely the HMR

paradigm [17]. The output of our network is the conditional
probability distribution pΘ|I(θ|I) as well as point estimates
for the shape and camera parameters β and π respectively.

The complete pipeline is depicted in Figure 3. Given
an input image I , we encode it using a CNN g and obtain
a context vector c = g(I). We model pΘ|I(θ|c = g(I))
using Conditional Normalizing Flows. We learn a mapping
f : Rd × Rc → Rd that is bijective in z and θ, i.e., θ =
f(z; c) and z = f−1(θ; c).

We employ Normalizing Flows instead of simpler al-
ternatives such as Mixture Density Networks (MDN) [27]
because of their expressiveness and ability to model more
complex distributions, as we show later in the evaluation
section. In our setting, Normalizing Flows have also clear
advantages over VAEs, since VAEs do not offer an easy way
to compute the likelihood of a given output sample, which
is crucial when using our model in downstream tasks.

Our Normalizing Flow model is based on the Glow ar-
chitecture [19]. Each building block fi is comprised of 3
basic transformations:

fi = fcoupl ◦ flin ◦ fnorm, (3)

where fnorm(z) = a � z + b (Instance Normalization),
flin(z) = Wz + b (Linear transformation) and fcoupl =
[z1:k, zk+1:d + t(z1:d, c)] (Additive coupling). To make the
inversion and the Jacobian computation faster, in the lin-
ear transformation we parametrize the LU decomposition
of W . The final flow model is obtained by composing four
of these building blocks.

The selected flow model allows us to perform both fast
likelihood computation and fast sampling from the distribu-
tion. At the same time, a very important property is that the
determinant of the Jacobian does not depend on z, which in
turn means that the mode of the output distribution is:

θ∗I = argmaxθ pΘ|I(θ|c) = f(0; c). (4)

This result allows us to use our model as a predictive model
in a straightforward way; in the absence of any additional
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side-information, we make predictions using the mode of
the output distribution.

To regress the camera and the SMPL shape parameters,
we use a small MLP h that takes as input the context vec-
tor c and outputs a single point estimate, i.e., [β,π] = h(c).
We also experimented with having β and π depend on θ,
but there was no observable improvement.

3.4. Training objective

Let us assume that we have a collection of images paired
with SMPL pose annotations. Typically, Normalizing Flow
models are trained to minimize the negative log-likelihood
of the ground truth examples θgt, i.e. the loss function is:

Lnll = − ln pΘ|I(θgt|c). (5)

However, for the task of 3D pose estimation, 3D annota-
tions are generally not available except for a small number
of indoor datasets captured in constrained studio environ-
ments [13, 33] and methods trained on those datasets fail to
generalize in challenging in-the-wild scenes. Consequently,
previous methods like [17] propose to use examples with
only 2D keypoint annotations and minimize the keypoint
reprojection loss jointly with an adversarial prior. To make
such a mixed training possible within our framework, we
propose to minimize the expectation of the above error with
respect to the learned distribution, i.e.,

Lexp = Eθ∼pΘ|I [L2D(θ,β,π) + Ladv(θ,β)]. (6)

To make this loss differentiable we use the Law of the Un-
conscious Statistician and rewrite the expectation as:

Lexp = Ez∼pZ [L2D(f(z; c),β,π) + Ladv(f(z; c),β)].
(7)

Conceptually, even though we do not have ground truth
annotations, to maximize the conditional probability of
these examples we can still constrain the form of the output
distribution by forcing the output samples to have low re-
projection error on average and lie on the manifold of valid
poses. As in the case of VAEs [21], we approximate the
expectation by drawing a single sample from the prior.

As mentioned previously, our goal is to use our model
not only as a generative model but also as a predictive
model. Thus, we propose to exploit the property that for
each image I , the mode θ∗I of the output distribution cor-
responds to the transformation of z = 0. We do this by
explicitly supervising θ∗I with all the available annotations
as in a standard regression framework and minimize:

Lmode = L3D(θ∗I ,β)+L2D(θ∗I ,β,π)+Ladv(θ
∗
I ,β), (8)

where L3D is the loss on the available 3D annotations (3D
joints and/or SMPL parameters) whenever they are avail-
able. As we show in the experimental section, this explicit

supervision of the mode of the output distribution helps
boost the performance of our model in predictive tasks.

It is important to mention that Lexp is not redundant in
the presence of Lmode; the behavior of the mode is not in-
dicative of the full distribution, whereas Lexp encourages
the distribution to have certain desirable properties.

Finally, for modeling rotations we use the 6D represen-
tation proposed in [52]. One issue with this particular rep-
resentation is that it is not unique. For example, for any
3D vectors x and y, [x, y] and [αx, βx+ γy] are mapped to
the same rotation matrix. Empirically we found that putting
no constraints on the 6D representation results in large dis-
crepancy between examples with full 3D SMPL parameter
supervision and examples with only 2D keypoint annota-
tions. Among other things, this caused mode collapse for
the examples without 3D ground truth. Thus, we introduce
another loss function Lorth that forces the 6D representa-
tions of the samples drawn from the distribution to be close
to the orthonormal 6D representation.

Eventually, the final training objective becomes:

L = λnllLnll+λexpLexp+λmodeLmode+λorthLorth. (9)

3.5. Downstream applications

In this part we show how our learned conditional distri-
bution can be used in a series of downstream applications.
We highlight that all these applications refer to test-time
processing with the same trained model without any spe-
cial per-task training. Examples of such tasks are shown
in Figure 2. These applications fall under the more general
umbrella of Maximum a Posteriori estimation where we use
all available evidence to make more informed predictions.

3D pose regression As already discussed in previous sec-
tions, we can use our model in conventional tasks such as
3D pose regression from a single image. In the absence of
additional evidence, the most appropriate choice for making
predictions is to pick the mode θ∗I of the distribution.

Body model fitting SMPLify [4] is a popular method that
fits the SMPL body model to a set of 2D keypoints using a
traditional optimization approach. The objective is:

λJEJ + λθEθ + λαEα + λβEβ , (10)

where EJ penalizes the weighted 2D distance between the
projected model joints and the detected joints, Eθ is a Mix-
ture of Gaussian 3D pose prior, Eα is a pose prior penal-
izing unnatural rotations of elbows and knees and Eβ is a
quadratic penalty on the shape coefficients.

Fitting a parametric body model to 2D image landmarks
is a very challenging and inherently ambiguous problem.
The data term EJ is purely driven by the 2D keypoints and
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disregards rich information contained in the input image.
SPIN [22] partially addresses this issue by using an image-
based regression network that provides a good initialization
for the optimization, helping the fitting to converge to a bet-
ter minimum. However, the image information is only used
in the initialization phase, as SMPLify does not incorporate
explicit image-specific priors that prevent the pose to de-
viate arbitrarily far from the set of plausible poses for the
given image. The drifting problem is also an important lim-
itation of [16], forcing the approach to rely on good initial-
ization and carefully chosen stopping criteria.

Motivated by these limitations, we propose to replace the
weaker generic 3D priors Eθ and Eα with an explicit pose
prior Eθ|I = − ln pΘ|I(θ|c) that models the likelihood of
a given pose conditioned on the image evidence. Thus, the
final optimization objective becomes:

λJEJ − ln pΘ|I(θ|c) + λβEβ . (11)

As initialization for the fitting we use the mode θ∗I of the
conditional distribution. In the experimental section we
show that by using this learned image-based prior we are
able to consistently improve the fitting results, both qualita-
tively and quantitatively, as reflected in the 3D metrics.

Multiple views fusion Although our model has been
trained for single-image reconstruction, we can still use the
learned conditional distribution to obtain refined pose esti-
mates in the presence of multiple views of a person. Let us
assume that we have a set {In}N1 of uncalibrated views of
the same subject. We partition the pose vector of each frame
as θn = (θgn,θ

b
n) where θgn corresponds to the global rota-

tion of the model and θbn is the body pose. We propose to
refine the pose by minimizing the following objective:

−
N∑
n=1

ln p(θn|cn) + λ

N∑
n=1

||θbn − θ̄
b||22, (12)

where θ̄
b

= 1
N

∑N
n=1 θ

b
n. The second term of the objective

is equivalent to minimizing the squared distance between
all pairs of poses.

3.6. Additional details

ProHMR. Following previous works [17, 22] we use
ResNet-50 [12] as the encoder. For the Normalizing Flows
we use 4 building blocks fi. For more details about the
architecture, datasets and the training hyperparameters we
refer the reader to the supplementary material.
2D pose lifting. Complementary to ProHMR, we use our
approach to lift 2D poses to 3D skeletons, as in Martinez et
al. [32]. We use the same Normalizing Flow architecture as
in ProHMR. In this case the input is a set of 2D Hourglass
detections [35] and the output is the 3D pose coordinates.

For the encoder g, instead of a CNN, we use the backbone
from [32]. Since all examples have full 3D supervision, our
training objective consists only of Lnll and Lmode.
Downstream tasks. For the fitting procedure employed in
the downstream tasks, we found it beneficial to perform the
optimization in the latent space instead of the pose space di-
rectly (similarly to SMPLify-X [38]). Thus, we leave z as a
free variable and decode it into the pose vector θ = f(z; c).
Also, since for our Normalizing Flow model the determi-
nant of the Jacobian does not depend on z, the likelihood
term becomes ln p(θ|c) = −||z||22 + const.

4. Experimental evaluation

In this Section we present the experimental evaluation of
our approach. First we provide an outline of the datasets
used for training and evaluation and then we will present
detailed quantitative and qualitative evaluation results.

4.1. Datasets

We report results on Human3.6M [13], MPI-INF-
3DHP [33], 3DPW [45] and Mannequin Challenge [28],
where we use the annotations produced by Leroy et al. [26].
For training, we use datasets with 3D ground truth (Hu-
man3.6M [13] and MPI-INF-3DHP [33]), as well as
datasets with 2D keypoint annotations (COCO [29] and
MPII [1]) augmented with pseudo ground truth SMPL pa-
rameters from SPIN [22], whenever they are available.

4.2. Quantitative evaluation

In this part we evaluate different aspects of our proposed
approach. We compare the predictive accuracy of our model
with standard regression methods and show that it achieves
comparable performance with the state of the art in human
mesh recovery. We also benchmark the generative capabili-
ties of our method in multiple hypotheses scenarios, where
we outperform previous approaches. Finally, we demon-
strate that our learned image-conditioned prior can boost
the performance in downstream applications such as model
fitting and multi-view refinement.
Human mesh recovery. First, we focus on the predictive
performance of our model, comparing it against other state-
of-the-art methods that regress SMPL body model param-
eters. For the evaluation of ProHMR, we use the mode θ∗I
of the learned distribution. For Biggs et al. [3] we report
the metrics after quantizing to n = 1 sample. Based on the
results of Table 1, using ProHMR as a regressor, leads to
performance comparable to the state of the art. This shows
that we can indeed recast the problem from point to density
estimation without any significant loss in performance.
Multiple hypotheses. Next, we compare the representa-
tional power of ProHMR with different multiple hypotheses
baselines, including Biggs et al. [3], as well as the MDN

11610



Figure 4: Samples from the learned distribution. Pink colored mesh corresponds to the mode.

3DPW H36M MPI-INF-3DHP

HMR [17] 81.3 56.8 89.8
SPIN [22] 59.1 41.1 67.5

Biggs et al. [3] 59.9 41.6 N/A
ProHMR 59.8 41.2 65.0

Table 1: Evaluation on human mesh recovery. Our model
achieves accuracy comparable with the state of the art.
Numbers reported are PA-MPJPE in mm.

n = 5 n = 10 n = 25 min

[45] [13] [45] [13] [45] [13] [45] [13]

[3] (MDN) 61.2 43.3 60.7 43.0 60.1 42.7 60.1 42.7
[3] (CVAE) 60.7 46.4 60.5 46.3 60.3 46.2 60.3 46.2
[3] (NF) 57.1 42.0 56.6 42.2 55.6 42.2 55.6 41.6
ProHMR 56.5 39.4 54.6 38.3 52.4 36.8 40.8 29.9

Table 2: Multiple hypotheses evalutation. Numbers are
PA-MPJPE in mm. We report errors for small n and the
minimum error over samples drawn from the distribution.

and Conditional VAE variants explored in the same paper.
Following [3], we report results for small sample sizes n.
Since we are interested in measuring the representational
power of the learned distribution, we also compare the min-
imum 3D pose error of samples drawn from each distribu-
tion as proposed in [42]. We present the detailed results for
Human3.6M and 3DPW in Table 2.
Model fitting. In this part we evaluate the accuracy of dif-
ferent methods that fit the SMPL body model to a set of 2D
keypoints. The body model fitting baselines we compare
include the standard SMPLify [4, 38], EFT [16], and our
proposed fitting with the learned image-conditioned prior.
For both SMPLify and EFT we use publicly available im-
plementations and initialize the fitting process with SPIN,
while for SMPLify we use two different versions for the
pose prior, GMM [4] and VPoser [38]. For a fair evaluation

3DPW H36M (OP) H36M (GT)

SPIN [22] 59.2 41.8 41.8
SPIN+SMPLify (GMM) [4] 66.5 54.6 43.3
SPIN+SMPLify (VPoser) [38] 70.9 53.5 39.9
SPIN+EFT [16] 56.6 41.6 38.7

ProHMR 59.8 41.2 41.2
ProHMR + fitting 55.1 39.3 34.8

Table 3: Evaluation of different model fitting methods.
The fitting algorithms are initialized by the corresponding
regression results. All numbers are PA-MPJPE in mm.

of the performance benefit, we compare methods that are
trained on the same datasets and have similar regression per-
formance. The results are presented in Table 3. While per-
forming SMPLify on top of regression improves the model-
image alignment, it increases the 3D pose errors, especially
when using OpenPose detections [5]. We hypothesize that
this happens because of the generic 3D pose prior terms of
SMPLify. EFT on top of regression improves the 3D pose
metrics, however our method manages to push the accuracy
even further. In 3DPW our approach has a 4.7mm relative
error improvement vs. 2.6mm for EFT, while if we use the
ground truth 2D keypoints in Human3.6M we get a 6.3mm
improvement vs 3.1mm for EFT.
Multi-view refinement. We evaluate the effect of our
learned image-conditioned prior at refining the pose predic-
tions in uncalibrated multi-view scenarios. For benchmark-
ing, we use Human3.6M and the more challenging Man-
nequin Challenge dataset. We compare our fitting-based
method against the individual per-view predictions and a
baseline that performs rotation averaging in Table 4. For
the rotation averaging we first average the per-view rotation
matrices and then project them back to SO(3) using SVD.
Ablation study. We also assess the significance of the term

11611



Figure 5: Model fitting results. Pink: Regression. Green: ProHMR + fitting. Grey: Regression + SMPLify

H36M Mannequin

MPJPE PA-MPJPE MPJPE PA-MPJPE

ProHMR 65.1 43.7 176.0 91.9
ProHMR + rot avg 64.8 35.2 174.4 85.1
ProHMR + fitting 62.2 34.5 171.3 83.9

Table 4: Evaluation of multi-view refinement. We
compare single-image 3D reconstruction with a base-
line refinement using rotation averaging and the proposed
optimization-based refinement scheme.

3DPW H36M MPI-INF-3DHP

ProHMR (w/o Lmode) 67.4 54.8 76.5
ProHMR 59.8 41.2 65.0

Table 5: Ablation for Lmode. Numbers are PA-MPJPE.

Lmode that we use to explicitly supervise the mode of the
learned distribution. We report results for training ProHMR
with and without this loss in Table 5. We can see that includ-
ing Lmode is crucial to achieve competitive performance in
conventional regression tasks.
Additional evaluations. Finally, we show that the pro-
posed modeling is general enough to handle different in-
put and output representations. Here, we consider the set-
ting of lifitng a 2D pose input to a 3D skeleton output [32]
and present results in Table 6. Our model performs on par
with an equivalent regression approach [32], while it out-
performs the MDN method of Li and Lee [27].

4.3. Qualitative results

In Figure 4 we show sample reconstructions of our
method. Additionally, in Figure 5 we show comparisons of
our model fitting approach with SMPLify. Our method pro-
duces more realistic reconstructions overall, particularly in

MPJPE PA-MPJPE

Martinez et al. [32] 62.9 47.7
Li and Lee [27] (mode) 64.5 47.8
Ours 62.9 47.6

Li and Lee [27] (min) 42.6 34.4
Ours (min) 42.4 32.9

Table 6: Evaluation of 3D pose accuracy for skeleton-
based 2D pose lifting on Human3.6M. Top: Regression
accuracy. Bottom: Minimum error of the distributions.

cases where there are missing or very low confidence key-
point detections. In cases like that (e.g., example of last
row), our image-based prior, unlike SMPLify, does not let
the pose deviate far from the image evidence.

5. Summary

This work presents a probabilistic model for 3D human
mesh recovery from 2D evidence. Unlike most approaches
that output a single point estimate for the 3D pose, we pro-
pose to learn a mapping from the input to a distribution of
plausible poses. We model this distribution using Condi-
tional Normalizing Flows. Our probabilistic model allows
for sampling of diverse outputs, efficient computation of the
likelihood of each sample, and a fast and closed-form solu-
tion for the mode. We demonstrate the effectiveness of our
method with empirical results in several benchmarks. Fu-
ture work could consider extending our approach to other
classes of articulated or non-articulated objects and poten-
tially model other ambiguities like the depth-size trade-off.
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