
Versatile Offline Imitation from Observations and Examples via
Regularized State-Occupancy Matching

Yecheng Jason Ma 1 Andrew Shen 2 Dinesh Jayaraman 1 Osbert Bastani 1

Abstract
We propose State Matching Offline DIstribution
Correction Estimation (SMODICE), a novel and
versatile regression-based offline imitation learn-
ing (IL) algorithm derived via state-occupancy
matching. We show that the SMODICE objective
admits a simple optimization procedure through
an application of Fenchel duality and an analytic
solution in tabular MDPs. Without requiring ac-
cess to expert actions, SMODICE can be effec-
tively applied to three offline IL settings: (i) imita-
tion from observations (IfO), (ii) IfO with dynam-
ics or morphologically mismatched expert, and
(iii) example-based reinforcement learning, which
we show can be formulated as a state-occupancy
matching problem. We extensively evaluate
SMODICE on both gridworld environments as
well as on high-dimensional offline benchmarks.
Our results demonstrate that SMODICE is effec-
tive for all three problem settings and significantly
outperforms prior state-of-art. Project website:
https://sites.google.com/view/smodice/home

1. Introduction
The offline reinforcement learning (RL) framework (Lange
et al., 2012; Levine et al., 2020) aims to use pre-collected,
reusable offline data—without further interaction with the
environment—for sample-efficient, scalable, and practical
data-driven decision-making. However, this assumes that
the offline dataset comes with reward labels, which may
not always be possible. To address this, offline imitation
learning (IL) (Zolna et al., 2020; Chang et al., 2021; Kim
et al., 2022) has recently been proposed as an alternative
where the learning algorithm is provided with a small set of
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expert demonstrations and a separate set of offline data of
unknown quality. The goal is to learn a policy that mimics
the provided expert data while avoiding test-time distribu-
tion shift (Ross et al., 2011) by using the offline dataset.

Expert demonstrations are often much more expensive to
acquire than offline data; thus, offline IL benefits signifi-
cantly from minimizing assumptions about the expert data.
In this work, we aim to remove two assumptions about the
expert data in current offline IL algorithms: (i) expert ac-
tion labels must be provided for the demonstrations, and
(ii) the expert demonstrations are performed with identical
dynamics (same embodiment, actions, and transitions) as
the imitator agent. These requirements preclude applica-
tions to important practical problem settings, including (i)
imitation from observations, (ii) imitation with mismatched
expert that obeys different dynamics or embodiment (e.g.,
learning from human videos), and (iii) learning only from
examples of successful outcomes rather than full expert
trajectories (Eysenbach et al., 2021).

For these reasons, many algorithms for online IL have al-
ready sought to remove these assumptions (Torabi et al.,
2018; 2019; Liu et al., 2019; Radosavovic et al., 2020; Ey-
senbach et al., 2021), but extending them to offline IL re-
mains an open problem.

We propose State Matching Offline DIstribution Correction
Estimation (SMODICE), a general offline IL framework that
can be applied to all three problem settings described above.
At a high level, SMODICE is based on a state-occupancy
matching view of IL:

min
π

DKL(d
π(s)∥dE(s)), (1)

which aims to minimize the KL-divergence of the state-
occupancy d between the imitator π and the expert E. This
state-occupancy matching objective intuitively demands in-
ferring the correct actions from the offline data in order to
match the state-occupancy of the provided expert demon-
strations. This formulation naturally enables imitation when
expert actions are unavailable, and even when the expert’s
embodiment or dynamics are different, as long as there is a
shared task-relevant state. Finally, we show that example-
based RL (Eysenbach et al., 2021), where only examples
of successful states are provided as supervision, can be for-
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Figure 1. Diagram of SMODICE. First, a state-based discriminator is trained using the offline dataset dO and expert observations (resp.
examples) dE . Then, the discriminator is used to train the Lagrangian value function. Finally, the value function provides the importance
weights for policy training, which outputs the learned policy d∗.

mulated as a state-occupancy matching problem between
the imitator and a “teleporting” expert that is able to reach
success states in one step. Hence, SMODICE can also be
used as an offline example-based RL1 method without any
modification.

Despite its generality, naively optimizing the state-
occupancy matching objective would result in an actor-critic
style IL algorithm akin to prior work (Ho & Ermon, 2016;
Kostrikov et al., 2018; 2020); however, these algorithms
suffer from training instability in the offline regime (Kumar
et al., 2019; Lee et al., 2021; Kim et al., 2022) due to the
entangled nature of actor and critic learning, leading to erro-
neous value bootstrapping (Levine et al., 2020). SMODICE
bypasses this issue by first introducing a f -divergence reg-
ularized state-matching objective and then using its dual
optimal solution to formulate a weighted regression policy
objective that amounts to behavior cloning of the optimal
policy. Specifically, leveraging the notion of Fenchel conju-
gacy (Rockafellar, 2015; Nachum & Dai, 2020), SMODICE
reduces the dual problem of the proposed regularized state-
occupancy matching problem to an unconstrained convex
optimization problem over a value function (Step 2 in Fig-
ure 1). This unconstrained problem admits closed-form
solutions in the tabular case and can be easily optimized
using stochastic gradient descent (SGD) in the deep RL
setting. Then, without any additional learning step, apply-
ing Fenchel duality to the optimal value function directly
obtains the optimal primal solution, which recovers the op-
timal importance weights for weighted regression (Step 3
in Figure 1). Note that SMODICE does not optimize this
policy objective until the value function has converged; de-
spite forgoing direct minimization of the state-matching
objective, this uninterleaved optimization is favorable in the
offline setting due to its much improved training stability.

Through extensive experiments, we show that SMODICE is
effective for all three problem settings we consider and out-
performs all state-of-art methods in each respective setting.
We obtain all SMODICE results using a single set of hyper-

1We refer to this problem as “offline imitation learning from
examples” to unify nomenclature with the other two problems.

(a) Mismatched experts (b) Offline IL from examples

Figure 2. Illustrations of tabular SMODICE for offline imitation
learning from mismatched experts and examples.

parameters, modulo a choice of f -divergence which can be
tuned offline. In contrast, prior methods suffer from much
greater performance fluctuation across tasks and settings,
validating the stated stability improvement of our optimiza-
tion approach. Altogether, our proposed method SMODICE
can serve as a versatile offline IL algorithm that is suitable
for a wide range of assumptions on expert data.

In summary, our contributions are: (i) SMODICE: a simple,
stable, and versatile state-occupancy matching based offline
IL algorithm for both tabular and high-dimensional continu-
ous MDPs, (ii) a reduction of example-based reinforcement
learning to state-occupancy matcjomg, and (iii) extensive
experimental analysis of SMODICE in offline imitation
from observations, mismatched experts, and examples; in
all three, SMODICE outperforms competing methods.

Pedagogical examples. To illustrate SMODICE’s versatil-
ity, we have applied it to two gridworld tasks, testing offline
IL from mismatched experts and examples, respectively.
Figure 2(a) shows an expert agent that can move diagonally
in any direction, whereas the imitator can only move hori-
zontally or vertically. In Figure 2(b), only a success state
(the star) is provided as supervision. An offline dataset col-
lected by a random agent is given to SMODICE for training
in both cases. As shown, SMODICE recovers an optimal
policy (i.e. minimum state-occupancy divergence to that of
the expert) in both cases. See Appendix D.2 for details.
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2. Preliminaries
Markov decision processes. We consider a time-discounted
Markov decision process (MDP) (Puterman, 2014) M =
(S,A,R, T, µ0, γ) with state space S, action space A, de-
terministic rewards R(s, a), stochastic transitions s′ ∼
T (s, a), initial state distribution µ0(s), and discount fac-
tor γ ∈ (0, 1]. A policy π : S → ∆(A) determines the
action distribution conditioned on the state.

The state-action occupancies (also known as stationary dis-
tribution) dπ(s, a) : S ×A → [0, 1] of π is

dπ(s, a) := (1− γ)

∞∑
t=0

γtPr(st = s, at = a |

s0 ∼ µ0, at ∼ π(st), st+1 ∼ T (st, at))

(2)

which captures the relative frequency of state-action visita-
tions for a policy π. The state occupancies then marginalize
over actions: dπ(s) =

∑
a d

π(s, a). The state-action occu-
pancies satisfy the single-step transpose Bellman equation:

dπ(s, a) = (1− γ)µ0(s)π(a | s) + γ · T π
⋆ dπ(s, a), (3)

where T π
⋆ is the adjoint policy transition operator,

T π
⋆ dπ(s, a) := π(a | s)

∑
s̃,ã

T (s | s̃, ã)d(s̃, ã) (4)

Divergences and Fenchel conjugates. Next, we briefly
introduce f -divergence and their Fenchel conjugates.

Definition 1 (f -divergence). Given a continuous, convex
function f and two probability distributions p, q ∈ ∆(X )
over a domain X , the f -divergence of p at q is

Df (p∥q) = Ex∼q

[
f

(
p(x)

q(x)

)]
(5)

A common f -divergence in machine learning is the KL-
divergence, which corresponds to f(x) = x log x. Now, we
introduce Fenchel conjugate for f -divergences.

Definition 2 (Fenchel conjugate). Given a vector space Ω
with inner-product ⟨·, ·⟩, the Fenchel conjugate f⋆ : Ω⋆ →
R of a convex and differentiable function f : Ω → R is

f⋆(y) := max
x∈Ω

⟨x, y⟩ − f(x) (6)

and any maximizer x∗ of f⋆(y) satisfies x∗ = f ′
⋆(y).

For an f -divergence, under mild realizability assump-
tions (Dai et al., 2016) on f , the Fenchel conjugate of
Df (p∥q) at y : X → R is

D⋆,f (y) = max
p∈∆(X )

Ex∼p[y(x)]−Df (p∥q) (7)

= Ex∼q[f⋆(y(x))] (8)

and any maximizer p∗ of D⋆,f (y) satisfies

p∗(x) = q(x)f ′
⋆(y(x)). (9)

This result can be seen as an application of the KKT condi-
tions to problems involving f -divergence regularization.

Offline imitation learning. Many imitation learning ap-
proaches rely on minimizing the f -divergence between the
state-action occupancies of the imitator and the expert (Ho
& Ermon, 2016; Ke et al., 2020; Ghasemipour et al., 2019):

min
π

Df

(
dπ(s, a)∥dE(s, a)

)
(10)

In imitation learning, we do not have dE ; instead, we are pro-
vided with expert demonstrations DE := {(s(i), a(i))}Ni=1.

In offline imitation learning, the agent further cannot interact
with the MDP M; instead, they are given a static dataset
of logged transitions DO := {τi}Mi=1, where each trajectory
τ (i) = (s

(i)
0 , a

(i)
0 , s

(i)
1 , ...) with s

(i)
0 ∼ µ0; we denote the

empirical state-action occupancies of DO as dO(s, a).

3. The SMODICE Algorithm
In this section, we derive the SMODICE algorithm. We
begin by introducing our f -divergence regularized offline
state-matching objective (Section 3.1). Then, we describe
the 3 disjoint training steps of SMODICE in order (Sec-
tion 3.2–3.4). Finally, we present SMODICE tailored to
tabular MDPs (Section 3.5).

3.1. f -Divergence Regularized State-Matching

Recall that the state-occupancy matching objective takes the
form

min
π

DKL(d
π(s)∥dE(s)), (11)

which requires on-policy samples from π, as the expectation
is over dπ. To enable offline optimization, we necessarily
need to involve the offline dataset distribution dO in our
objective.

First, we assume expert coverage of the offline data:
Assumption 1. dO(s) > 0 whenever dE(s) > 0.

This assumption ensures that the offline dataset has cov-
erage over the expert state-marginal, and is necessary for
imitation learning to succeed. Whereas prior offline RL
approaches (Kumar et al., 2020; Ma et al., 2021a) assume
full coverage of the state-action space, our assumption2 is
considerably weaker since it only requires expert coverage.
Given this assumption, we introduce our f -divergence reg-
ularized state-matching objective, which follows from an

2Furthermore, it is not needed in practice, and is only required
for our technical development to ensure that all state-occupancy
quantities are well-defined (i.e., no division-by-zero).
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upper bound on state-occupancy matching that incorporates
the offline dataset distribution dO:
Theorem 1. Given Assumption 1, we have

DKL(d
π(s)∥dE(s)) ≤

Es∼dπ

[
log

(
dO(s)

dE(s)

)]
+DKL(d

π(s, a)∥dO(s, a))
(12)

Furthermore, for any f -divergence such that Df ≥ DKL,

DKL(d
π(s)∥dE(s)) ≤

Es∼dπ

[
log

(
dO(s)

dE(s)

)]
+Df (d

π(s, a)∥dO(s, a))
(13)

We refer to the RHS of Equation (13) as the f -divergence
regularized state-occupancy matching objective. The proofs
of this theorem and all other theoretical results are in Ap-
pendix A. Intuitively, the upper bound states that that offline
state-occupancy matching can be achieved by matching
states in the offline data that resemble expert states (the first
term) with reward function R(s) = log dE(s)

dO(s)
(we describe

how to compute this reward below), while remaining in the
support of the offline state-action distribution (the second
term). Replacing KL-divergence with other f -divergences
can be useful since the conjugate of KL divergence involves
a log-sum-exp, which has been found to be numerically un-
stable in many RL tasks (Zhu et al., 2020; Lee et al., 2021;
Rudner et al., 2021). Now, we describe the three disjoint
steps of SMODICE as presented in Figure 1.

3.2. Discriminator training

First, we discuss how to compute R(s) = log dE(s)
dO(s)

. In
the tabular case, R(s) can be computed using empirical
estimates of dE(s) and dO(s). In the continuous case, we
can train a discriminator c : S → (0, 1):

min
c

Es∼dE [log c(s)] + Es∼dO [log 1− c(s)] (14)

The optimal discriminator is c⋆(s) = dO(s)
dE(s)+dO(s)

(Goodfel-

low et al., 2014), so we can use R(s) = − log
(

1
c⋆(s) − 1

)
.

3.3. Dual Value Function Training

Note that (13) requires samples from dπ, so it still cannot
be easily optimized without online interaction. To address
this, we first rewrite it as an optimization problem over the
space of valid state-action occupancies (Puterman, 2014):

(P) max
d(s,a)≥0

Es∼d(s,a) [R(s)]−Df (d∥dO) (15)

s.t.
∑
a

d(s, a) = (1− γ)µ0(s) + γT⋆d(s),∀s ∈ S

(16)

where T⋆d(s) =
∑

s̄,ā T (s | s̄, ā)d(s̄, ā); here, (16) ensures
that d is the occupancy distribution for some policy. We
assume that (15) is strictly feasible.

Assumption 2. There exists at least one d(s, a) such that
constraints (16) are satisfied and ∀s ∈ S, d(s) > 0.

This assumption is mild and can be satisfied in practice for
any MDP for which every state is reachable from the initial
state distribution. Next, we can form the dual of (15):

(D) max
d(s,a)≥0

min
V (s)≥0

Es∼d [R(s)]−Df (d∥dO)

+
∑
s

V (s)

(
(1− γ)µ0(s) + γT⋆d(s)−

∑
a

d(s, a)

)
(17)

where V (s) are the Lagrangian multipliers. Now, because
T⋆ is the adjoint of T , we have the following:∑

s

V (s) · T⋆d(s) =
∑
s,a

d(s, a) · (T V )(s, a) (18)

Using this equation, we can write (17) as

(D) max
d(s,a)≥0

min
V (s)≥0

(1− γ)Es∼µ0
[V (s)]

+ E(s,a)∼d [R(s) + γT V (s, a)− V (s)]

−Df (d(s, a)∥dO(s, a))

(19)

We note that the original problem (15) is convex (Lee et al.,
2021). By Assumption 2, it is strictly feasible, so by strong
duality, we can change the order of optimization in (19):

(D) min
V (s)≥0

max
d(s,a)≥0

(1− γ)Es∼µ0 [V (s)]

+ E(s,a)∼d [(R(s) + γT V (s, a)− V (s))]

−Df (d(s, a)∥dO(s, a))

(20)

Finally, using the Fenchel conjugate, (20) can be reduced to
a single unconstrained optimization problem over V : S →
R≥0 that depends on samples from only dO and not d; we
also obtain the importance weight of the state-occupancy of
the optimal policy with respect to the offline data.

Theorem 2. The optimization problem (20) is equivalent to

(D) min
V (s)≥0

(1− γ)Es∼µ0
[V (s)]

+ E(s,a)∼dO [f⋆ (R(s) + γT V (s, a)− V (s))]

(21)

Furthermore, given the optimal solution V ∗, the optimal
state-occupancy importance weights are

d∗(s, a)

dO(s, a)
= f ′

⋆(R(s) + γT V ∗(s, a)− V ∗(s)) (22)
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Algorithm 1 SMODICE
1: // Discriminator Learning
2: Train discriminator c∗(s) using (14) and derive R(s).
3: // Value Learning
4: Train derived value function V (s) using (21)
5: // Policy Learning
6: Derive optimal ratios ξ∗(s, a) through (22)
7: Train policy π using weighted BC (23)

This result can be viewed as using Fenchel duality to gen-
eralize prior DICE-based offline approaches (Lee et al.,
2021; Kim et al., 2022). In particular, the inner maximiza-
tion problem in (20) is precisely the Fenchel conjugate of
Df (d(s, a)∥dO(s, a)) at R(s) + γT V (s, a)− V (s) (com-
pare (20) to (7)). Similarly, (22) can be derived from leverag-
ing the relationship between the optimal solutions of a pair
of Fenchel primal-dual problems (Equation (9)). This gen-
erality allows us to choose problem-specific f -divergences
that improve stability during optimization. In Appendix
C, we specialize the SMODICE objective for the KL- and
χ2-divergences, which we use in our experiments.

3.4. Weighted-Regression Policy Training

Finally, using the optimal importance weights, we can ex-
tract the optimal policy π using weighted Behavior Cloning:

min
π

−E(s,a)∼d∗ [log π(a | s)]

=min
π

−E(s,a)∼dO [ξ∗(s, a) log π(a | s)]
(23)

where ξ∗(s, a) = d∗(s,a)
dO(s,a)

. Here, V (s) can be viewed as
the value function—it is trained by minimizing a convex
function of the Bellman residuals and the values of the initial
states. Then, it can be used to inform policy learning.

Putting everything together, SMODICE can achieve stable
policy learning through a sequence of three disjoint super-
vised learning problems, summarized in Algorithm 1. The
full pseudo-code is in Algorithm 3 in Appendix 3.

3.5. SMODICE for Tabular MDPs.

An appealing property of SMODICE is that it admits closed-
form analytic solution in the tabular case. The proof is given
in Appendix D.

Theorem 3. Let R(s) = log dE(s)
dO(s)

∈ R|S|
+ , and define

T ∈ R|S||A|×|S| and B ∈ R|S||A|×|S| by (T V )(s, a) =∑
s′ T (s

′|s, a)V (s′) and (BV )(s, a) = V (s). Additionally,
denote µ0 ∈ ∆(|S|) and D = diag(dO) ∈ R|S||A|×|S||A|.
Then, choosing the χ2-divergence in (21), we have

V ∗ =
(
(γT − B)⊤D(γT − B)

)−1(
(γ − 1)µ0 + (B − γT )⊤D(I +BR)

) (24)

In Appendix D, we also derive a finite-sample performance
guarantee of SMODICE in the tabular setting.

4. Offline Imitation Learning from Examples
Next, we describe how SMODICE can be applied to offline
imitation learning from examples. Starting from the original
problem objective from Eysenbach et al. (2021), we derive
a state-occupancy matching objective, enabling us to apply
SMODICE without any modification.

Problem setting. We assume given success examples S∗ =
{s∗ ∼ pU (st | et = 1)}, where e ∈ {0, 1} indicates
whether the current state is a success outcome, and offline
data D = {(s, a, s′)}. Here, U is the state distribution of
the “user” providing success examples. Then, Eysenbach
et al. (2021) proposes the example-based RL objective

argmax
π

log pπ(et+ = 1) = logEs∼µ0
[pπ(et+ = 1|s0)]

(25)
That is, we want a policy that maximizes the probability of
reaching success states in the future. To tackle this problem
in the offline setting, our strategy is to convert (25) into an
optimization problem over the state-occupancy space.

Intuition. By parameterizing the problem in terms of state
occupancies, a policy that reaches success states in the future
is one that has non-zero occupancies at these states—i.e.,
dπ(s) corresponds to a policy that reaches success states if
dπ(s) > 0 for s ∈ S∗. Furthermore, treating success states
as absorbing states in the MDP, then

∑
s∈S∗ dπ(s) should

ideally be much larger than
∑

s/∈S∗ dπ(s) (we validate this
on gridworld; see Appendix D.2).

Derivation. We first transform the problem into state-
occupancy space—i.e.,

max
π

logEs∼µ0 [p
π(et+ = 1|s0)] = max

d≥0
logEs∼d(s) [p(e|s)]

(26)
which is valid given that the original objective can be
thought of as a regular RL problem with reward function
r(s) = p(e | s) (Eysenbach et al., 2021).

Given this formulation, we can derive a tractable lower
bound to (26) through Jensen’s inequality and Bayes’ rule:

logEs∼d(s) [pU (e | s)]
≥Es∼d(s) [log pU (e | s)]

=Es∼d(s)

[
log

pU (s | e)pU (e)
pU (s)

]
=Es∼d(s)

[
log

pU (s | e)
d(s)

]
+ Es∼d(s)

[
log

d(s)

pU (s)

]
+ const.

=−DKL (d(s)∥pU (s | e)) + DKL (d(s)∥pU (s)) + const.

≥−DKL (d(s)∥pU (s | e)) + const.

We can optimize the original objective by maximizing this
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(a) Mujoco (b) AntMaze (c) Franka Kitchen

Figure 3. Illustrations of the evaluation environments.
lower bound. Doing so is equivalent to solving

min
d≥0

DKL (d(s)∥pU (s | e)) , (27)

which is exactly in the form of the state-occupancy match-
ing objective (11) in the scope of SMODICE. Furthermore,
this objective admits an intuitive explanation from a purely
imitation learning lens. We can think of pU (s | e) as the
state-occupancy distribution of an expert agent who can
“teleport” to any success state in one time-step. Therefore,
we have shown that example-based RL can be understood as
a state-occupancy minimization problem between a MDP-
dynamics abiding imitator and a teleporting expert agent.
Consequently, SMODICE can be used in the offline setting
without any algorithmic modification.

5. Related Work
Offline imitation learning. The closest work is concur-
rent work, DEMODICE (Kim et al., 2022), a state-action
based offline IL method, also using the DICE paradigm to
estimates the occupancy ratio between the expert and the im-
itator; we overview the DICE literature in Appendix B. Due
to its dependence on expert actions, DEMODICE cannot be
applied to the three problem settings we study. At a techni-
cal level, a key limitation of DEMODICE is that it does not
exploit the form of general Fenchel duality and only support
the KL-divergence, forgoing other f -divergences that can
lead to more stable optimization (Ghasemipour et al., 2019;
Ke et al., 2020; Zhu et al., 2020). Another related work
is ORIL (Zolna et al., 2020), which adapts GAIL (Ho &
Ermon, 2016) to the offline setting. Finally, there has been
recent work learning a pessimistic dynamics model using
the offline dataset and then performs imitation learning by
minimizing the state-action occupancy divergence with re-
spect to the expert inside this learned model (Chang et al.,
2021). As with DEMODICE, this approach requires expert
actions and cannot be applied to the settings we study.

Imitation from observations, imitation with mismatched
experts, and example-based RL All three of these prob-
lems have been studied in the online setting. IfO is often
achieved through training an additional inverse dynamics
model to infer the expert actions (Torabi et al., 2018; 2019;
Liu et al., 2019; Radosavovic et al., 2020; Gangwani &
Peng, 2020); in contrast, SMODICE matches the expert
observations by identifying the correct actions supported in

the offline data. To handle experts with dynamics mismatch,
some work explicitly learns a correspondence between the
expert and the imitator MDPs (Kim et al., 2020; Raychaud-
huri et al., 2021); however, these approaches make much
stronger assumptions on access to the expert MDP that are
difficult to satisfy in the offline setting, such as demon-
strations from auxillary tasks. In contrast, SMODICE falls
under the category of state-only imitation learning (Liu et al.,
2019; Radosavovic et al., 2020), which overcomes expert
dynamics differences by only matching the shared task-
relevant state space (e.g., xy coordinates for locomotion
tasks). Finally, example-based RL was first studied in Ey-
senbach et al. (2021); they introduce a recursive-classifier
based off-policy actor critic method to solve it. By casting
this problem as state-occupancy matching between an imi-
tator and a “teleporting” expert agent, SMODICE can solve
the offline variant of this problem without modification.

6. Experiments
We experimentally demonstrate that SMODICE is effec-
tive for offline IL from observations, mismatched experts,
and examples. We give additional experimental details in
Appendices G, H, and I, and videos on the project website3.

6.1. Offline Imitation Learning from Observations

Datasets. We utilize the D4RL (Fu et al., 2021) offline RL
dataset. The dataset compositions for all tasks are listed in
Table 3 in Appendix G. We consider the following standard
Mujoco environments: Hopper, Walker2d, HalfCheetah,
and Ant. For each, we take a single expert trajectory from
the respective “expert-v2” dataset as the expert dataset and
omit the actions. For the offline dataset, following Kim et al.
(2022), we use a mixture of small number of expert trajecto-
ries (≤ 200 trajectories) and a large number of low-quality
trajectories from the “random-v2” dataset (we use the full
random dataset, consisting of around 1 million transitions).
This dataset composition is particularly challenging as the
learning algorithm must be able to successfully distinguish
expert from low-quality data in the offline dataset.

We also include two more challenging environments from
D4RL: AntMaze and Franka Kitchen. In AntMaze (Figure
3(b)), an Ant agent is tasked with navigating an U-shaped
maze from one end to the other end (i.e., the goal region).
The offline dataset (i.e., “antmaze-umaze-v2”) consists of
trajectories (≈ 300k transitions) of an Ant agent navigating
to the goal region from initial states; The trajectories are
not always successful; often, the Ant flips over to its legs
before it reaches the goal. We visualize this dataset on the
project website. As above, we additionally include 1 million
random-action transitions to increase the task difficulty. We

3Code is available at: https://github.com/JasonMa2016/SMODICE

https://github.com/JasonMa2016/SMODICE
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Figure 4. Offline imitation learning from observations results.

take one trajectory from the offline dataset that successfully
reaches the goal to be the expert trajectory. Franka Kitchen
(Figure 3(c)), introduced by Gupta et al. (2019), involves
controlling a 9-DoF Franka robot to manipulate common
household kitchen objects (e.g., microwave, kettle, cabi-
net) sequentially to achieve a pre-specified configuration
of objects. The dataset (i.e., “kitchen-mixed-v0”) consists
of undirected human teleoperated demonstrations, mean-
ing that each trajectory only solves a subset of the tasks.
Together, these six tasks (illustrated in Figure 3) require
scalability to high-dimensional state-action spaces and ro-
bustness to different dataset compositions.

Method and baselines. We use SMODICE with χ2-
divergence for all tasks (in other problem settings as well)
except Hopper, Walker, and Halfcheetah, where we find
SMODICE with KL-divergence to perform better; in Ap-
pendix E.2, we explain how to choose the appropriate f -
divergence offline by monitoring SMODICE’s policy loss.
For comparisons, we consider both IfO and regular offline
IL methods, which make use of expert actions. For the
former, we compare against (i) SAIL-TD3-BC, which com-
bines a state-of-art state-matching based online IL algo-
rithm (SAIL) (Liu et al., 2019) with a state-of-art offline
RL algorithm (TD3-BC) (Fujimoto & Gu, 2021),4 (ii) Of-
fline Reinforced Imitation Learning (ORIL) (Zolna et al.,
2020), which adapts GAIL (Ho & Ermon, 2016) to the of-
fline setting by using an offline RL algorithm for policy
optimization; we implement ORIL using the same state-
based discriminator as in SMODICE, and TD3-BC as the
offline RL algorithm. For the latter, we consider the state-
of-art DEMODICE (Kim et al., 2022) as well as Behavior
Cloning (BC). We train all algorithms for 1 million gradient
steps and keep track of the normalized score (i.e., 100 is ex-
pert performance, 0 is random-action performance) during
training; the normalized score is averaged over 10 indepen-

4We chose TD3-BC due to its simplicity and stability.

dent rollouts. All methods are evaluated over 3 seeds, and
one standard-deviation confidence intervals are shaded.

Results. As shown in Figure 4, only SMODICE achieves
stable and good performance in all six tasks. It achieves
(near) expert performance in all the Mujoco environments,
performing on-par with DEMODICE and doing so without
the privileged information of expert actions. SMODICE’s
advantage over DEMODICE is more apparent in AntMaze
and Kitchen. In the former, SMODICE outperforms BC,
while DEMODICE cannot; in the latter, DEMODICE
quickly collapses due to its use of KL-divergence, which
may be numerically unstable in high-dimensional environ-
ments. Furthermore, we adapt DEMODICE to the state-
only setting by training a state-based discriminator; in Ap-
pendix G.2, we report the results and find DEMODICE to
significantly underperform in the most challenging tasks
across three settings.

BC is a strong baseline for tasks where the offline dataset
contains (near) expert data (i.e., AntMaze and Kitchen);
however, as the dataset becomes more diverse, BC’s per-
formance drops significantly. SAIL-TD3-BC and ORIL
both fail to learn in some environments and otherwise con-
verge to a worse policy than SMODICE. The only excep-
tion is AntMaze; however, in Appendix G.2, we show that
both methods collapse with a more diverse version of the
AntMaze offline dataset, indicating that unlike SMODICE,
these methods are highly sensitive to the composition of
the offline dataset, and work best with task-aligned offline
data. The sub-par performances of SAIL and ORIL high-
light the challenges of adapting online IL methods to the
offline setting; we hypothesize that it is not sufficient to
simply equip the original methods (i.e., SAIL and GAIL)
with a strong base offline RL algorithm. Together, these
results demonstrate that SMODICE is stable, scalable, and
robust, and significantly outperforms prior methods. Finally,
in Appendix G.2, we ablate SMODICE by zeroing out its
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discriminator-based reward to validate that SMODICE’s em-
pirical performance comes from its ability to discriminate
expert data in the offline dataset.

6.2. Offline IL from Mismatched Experts

Datasets and baselines. We compare SMODICE to SAIL-
TD3-BC and ORIL, which are both state-based offline IL
methods; in particular, we note that SAIL is originally
designed to be robust to mismatched experts. We con-
sider only tasks in which both SAIL-TD3-BC and ORIL
obtained non-trivial performance, including HalfCheetah,
Ant, and AntMaze. Then, for each environment, we train
a mismatched expert and collect one expert trajectory, re-
placing the original expert trajectory used in Section 6.1.
The mismatched experts for the respective tasks are (i)
“HalfCheetah-Short”, where the torso of the cheetah agent
is halved in length, (ii) “Ant-Disabled”, where the front legs
are shrank by a quarter in length, and (iii) a 2D PointMass
agent operating in the same maze configuration. The mis-
matched experts are illustrated in Figure 11 in Appendix H
and the project website. For the first two, we train an expert
policy using SAC (Haarnoja et al., 2018) and collect one ex-
pert trajectory. The latter task is already in D4RL; thus, we
take one trajectory from “maze2d-umaze-v0” as the expert
trajectory. Because Ant and PointMass have different state
spaces, following Liu et al. (2019), we train the discrimi-
nator on the shared xy-coordinates of the two state spaces.
The offline datasets are identical to the ones in Section 6.1.

Results. The training curves are shown in Figure 5; we
illustrate the original maximum performance attained by
each method (i.e., using the original expert trajectory, Sec-
tion 6.1) using dashed lines as points of reference. As can
be seen, SMODICE is significantly more robust to mis-
matched experts than either SAIL-TD3-BC or ORIL. On
AntMaze, the task where SAIL-TD3-BC and ORIL orig-
inally outperform SMODICE, learning from a PointMass
expert significantly deteriorates their performances, and the
learned policies are noticably worse than that of SMODICE,
which has the smallest performance drop. The other two
tasks exhibit similar trends; SMODICE is able to learn an
expert level policy for the original Ant embodiment using
a disabled Ant expert, and is the only method that shows
any progress on the hardest HalfCheetah-Short task. De-
spite using the same discriminator for reward supervision,
SMODICE is substantially more robust than ORIL, likely
due to the occupancy-constraint Df (d(s, a)∥dO(s, a)) term
in its objective (13), which ensures that the learned policy is
supported by the offline data as it attempts to match the ex-
pert states. On the project website, we visualize SMODICE
and ORIL policies on all tasks. In Appendix H.2, we provide
additional quantitative analysis of Figure 5.

6.3. Offline Imitation Learning from Examples

Tasks. We use the AntMaze and Kitchen environments
and create example-based task variants. For AntMaze, we
replace the full demonstration with a small set of success
states (i.e., Ant in the goal region) extracted from the offline
data. For Kitchen, we consider two subtasks in the envi-
ronment: Kettle and Microwave. and define task success
to be only whether the specified object is correctly placed
(instead of all objects as in the original task); the success
states are extracted from the offline data accordingly. Ex-
amples of the success states are illustrated in Figure 13 in
Appendix I. Note that the kitchen dataset contains many
trajectories where the kettle is moved first. Thus, the kettle
task is easy even for Behavior Cloning (BC), since cloning
the offline data can lead to success. This is not the case for
the microwave task, making it much more difficult to solve
using only success examples. In addition, we introduce
the PointMass-4Direction environment. Here, a 2D Point-
Mass agent is tasked with navigating to the middle point
of a specified edge of the square that encloses the agent
(see Figure 13(a)). The offline dataset is generated using a
waypoint navigator controlling the agent to each of the four
possible goals and contains equally many trajectories for
each goal; we visualize this dataset on the project website.
At training and evaluation time, we set the left edge to be
the desired edge and collect success states from the offline
data accordingly. This task is low-dimensional but consists
of multi-task offline data, making it challenging for algo-
rithms such as BC that do not solve the example-based RL
objective.

Figure 7. SMODICE weights.

Approaches. We make
no modification to
SMODICE; the only
difference is that the
discriminator is trained
using success states
instead of full expert
state trajectories. Our
main comparison is
RCE-TD3-BC, which
combines RCE (Eysenbach et al., 2021), the state-of-art
online example-based RL method, and TD3-BC. We also
compare against ORIL (Zolna et al., 2020), using the same
architecture as in Section 6.1. Finally, we also include BC.

Results. As shown in Figure 6, SMODICE is the best per-
forming method on all four tasks and is the only one that can
solve the Microwave task; we visualize all methods’ policies
on all tasks on the project website. RCE-TD3-BC is able to
solve the first three tasks, but achieves worse solutions and
exhibits substantial performance fluctuation during train-
ing; we posit that the optimization for RCE, which requires
alternate updates to a recursive classifier and a policy, is
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Figure 5. Offline imitation learning from mismatched experts results.

Figure 6. Offline imitation learning from examples results.

substantially more difficult than that of SMODICE. ORIL
is unstable and fails to make progress in most tasks. Inter-
estingly, as in the mismatched expert setting, on AntMaze,
ORIL’s performance is far below that of SMODICE, despite
attaining better results originally (Figure 4). This compari-
son demonstrates the versatility of SMODICE afforded by
its state-occupancy matching objective; in contrast, ORIL
treats offline IL from examples as an offline RL task with
discriminator-based reward and cannot solve the task.

To better understand SMODICE, on PointMass-4Direction,
we visualize the importance weights ξ(s, a) it assigns to the
offline dataset. As shown in Figure 7, SMODICE assigns
much higher weights to transitions along the correct path
from the initial state region to the success examples. Interest-
ingly, the weights progressively decrease along this path, in-
dicating that SMODICE has learned that it must pay more at-
tention transitions at the beginning of the path, since making
a mistake there is more likely to derail progress towards the
goal. This behavior occurs automatically via SMODICE’s
state-matching objective without any additional bias.

7. Conclusion
We have proposed SMODICE, a simple, stable, and versatile
algorithm for offline imitation learning from observations,
mismatched experts, and examples. Leveraging Fenchel
duality, SMODICE derives the optimal dual value function
to the state-occupancy matching objective, and obtains an
uninterleaved optimization procedure for its value and pol-
icy networks that is favorable in the offline setting. Through
extensive experiments, we have shown that SMODICE sig-
nificantly outperforms prior state-of-art methods in all three
settings. We believe that the generality of SMODICE’s op-

timization procedure invites many future work directions,
including offline model-based RL (Yu et al., 2020; Kidambi
et al., 2020), safe RL (Ma et al., 2021b), and extending it to
visual domains.
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A. Proofs
A.1. Technical Lemmas

Lemma 1. We have
DKL(d

π(s)∥dE(s)) ≤ DKL(d
π(s, a)∥dE(s, a))

Proof. We first state and prove a related lemma, which first appeared in (Yang et al., 2019).

Lemma 2.
DKL

(
dπ(s, a, s′)∥dE(s, a, s′)

)
= DKL

(
dπ(s, a)∥dE(s, a)

)
.

Proof.

DKL

(
dπ(s, a, s′)∥dE(s, a, s′)

)
=

∫
S×A×S

dπ(s, a, s′) log
dπ(s, a) · T (s′ | s, a)
dE(s, a) · T (s′ | s, a)

ds′dads

=

∫
S×A×S

dπ(s, a, s′) log
dπ(s, a)

dE(s, a)
ds′dads

=

∫
S×A

dπ(s, a) log
dπ(s, a)

dE(s, a)
dads

=DKL

(
dπ(s, a)∥dE(s, a)

)

Using this result, we can show the desired upper bound:

DKL

(
dπ(s, a)∥dE(s, a)

)
=DKL

(
dπ(s, a, s′)∥dE(s, a, s′)

)
=

∫
S×A×S

dπ(s, a, s′) log
dπ(s, a) · T (s′ | s, a)
dE(s, a) · T (s′ | s, a)

ds′dads

=

∫
S×A×S

dπ(s)π(a | s)T (s′ | s, a) log dπ(s, a) · T (s′ | s, a)
dE(s, a) · T (s′ | s, a)

ds′dads

=

∫
dπ(s)π(a | s)T (s′ | s, a) log dπ(s)

dE(s)
ds′dads+

∫
dπ(s)π(a | s)T (s′ | s, a) log π(a | s)T (s′ | s, a)

πE(a | s)T (s′ | s, a)
ds′dads

=

∫
dπ(s) log

dπ(s)

dE(s)
ds+

∫
dπ(s)π(a | s) log π(a | s)

πE(a | s)
dads

=DKL

(
dπ(s)∥dE(s)

)
+DKL

(
π(a | s)∥πE(a | s)

)
≥DKL

(
dπ(s)∥dE(s)

)

A.2. Proof of Theorem 1

Proof.

DKL

(
dπ(s)∥dE(s)

)
=

∫
dπ(s) log

dπ(s)

dE(s)
· d

O(s)

dO(s)
ds, we assume that dO(s) > 0 whenever dE(s) > 0.

=

∫
dπ(s) log

dO(s)

dE(s)
ds+

∫
dπ(s) log

dπ(s)

dO(s)
ds

≤Es∼dπ

[
log

dO(s)

dE(s)

]
+DKL

(
dπ(s, a)∥dE(s, a)

)
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where the last step follows from Lemma 1. Then, for any Df ≥ DKL, we have that

DKL

(
dπ(s)∥dE(s)

)
≤ Es∼dπ

[
log

dO(s)

dE(s)

]
+Df

(
dπ(s, a)∥dE(s, a)

)

A.3. Proof of Theorem 2

Proof. We begin with

min
V (s)≥0

max
d(s,a)≥0

(1− γ)Es∼µ0 [V (s)] + E(s,a)∼d [(R(s) + γT V (s, a)− V (s))]−Df (d(s, a)∥dO(s, a)) (28)

We have that

min
V (s)≥0

max
d(s,a)≥0

(1− γ)Es∼µ0
[V (s)] + E(s,a)∼d [(R(s) + γT V (s, a)− V (s))]−Df (d(s, a)∥dO(s, a)) (29)

= min
V (s)≥0

(1− γ)Es∼µ0
[V (s)] + max

d(s,a)≥0
+E(s,a)∼d [(R(s) + γT V (s, a)− V (s))]−Df (d(s, a)∥dO(s, a)) (30)

= min
V (s)≥0

(1− γ)Es∼µ0
[V (s)] + E(s,a)∼dO [f⋆ (R(s) + γT V (s, a)− V (s))] (31)

where the last step follows from recognizing that the inner-maximization is precisely the Fenchel conjugate of
Df (d(s, a)∥dO(s, a)) at R(s) + γT V (s, a)− V (s).

To show the relationship among V ⋆ and ξ⋆, we recognize that (31) and (15) are a pair of Fenchel primal-dual problems.

Lemma 3.

min
V (s)≥0

(1− γ)Es∼µ0
[V (s)] + E(s,a)∼dO [f⋆ (R(s) + γT V (s, a)− V (s))]

is the Fenchel dual to

max
d(s,a)≥0

Es∼d

[
log

(
dE(s)

dO(s)

)]
−Df (d(s, a)∥dO(s, a)) (32)

s.t.
∑
a

d(s, a) = (1− γ)µ0(s) + γT⋆d(s),∀s ∈ S (33)

Proof. We define the indicator function δX (x) as

δX (x) =

{
0 x ∈ X
∞ otherwise

Then, we define g : R|S| → R as g(·) := δ{(1−γ)µ0}(·). Then, it can be shown that the Fenchel conjugate of g is
g⋆(·) = (1− γ)Eµ0

[·]. In addition, we denote h(·) := D + f(·∥dO); then, h⋆(·) = E(s,a)∼dO [f⋆(·)]. Finally, define matrix
operator A := γT⋆ − I . Using these notations, we can write (31) as

min
V

g⋆(V ) + h⋆(A⋆V +R) (34)
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Then, we proceed to derive the Fenchel dual of (34):

min
V

g⋆(V ) + h⋆(A⋆V +R) (35)

=min
V

max
d

g⋆(V ) + ⟨d,A⋆V +R⟩ − h(d) (36)

=min
V

max
d

g⋆(V ) + ⟨d,A⋆V ⟩+ ⟨d,R⟩ − h(d) (37)

=max
d

(
min
V

g⋆(V ) + ⟨d,A⋆V ⟩
)
+ ⟨d,R⟩ − h(d) (38)

=max
d

(
min
V

g⋆(V ) + ⟨Ad, V ⟩
)
+ ⟨d,R⟩ − h(d) (39)

=max
d

(
max
V

−g⋆(V ) + ⟨−Ad, V ⟩
)
+ ⟨d,R⟩ − h(d) (40)

=max
d

g(−Ad) + ⟨d,R⟩ − h(d) (41)

where (36) follows applying Fenchel conjugacy to h⋆, (38) follows from strong duality, (39) follows from the property of an
adjoint operator, and (41) follows from applying Fenchel conjugacy to g⋆. Here, we recognize that (41) is precisely the
optimization problem (32)-(33), where we have moved the constraint (33) to the objective as the indicator function g(−Ad):

g(−Ad) = δ{(1−γ)µ0} (d− γT⋆d)

⇔
∑
a

d(s, a) = (1− γ)µ0(s) + γT⋆d(s),∀s ∈ S

Giving Lemma 3, we use the fact that d∗ and V ∗ admit the following relationship:

d∗ = h′
⋆(−A⋆V

∗ +R) (42)

This follows from the characterization of the optimal solutions for a pair of Fenchel primal-dual problems with convex g, h
and linear operator A (Nachum & Dai, 2020). In this case, assuming that we can exchange the order of expectation and
derivative (e.g, conditions of Dominated Convergence Theorem hold), we have

d∗ = E(s,a)∼dO [f⋆ ((R(s) + γT V (s, a)− V (s))] , (43)

or equivalently,
d∗(s, a) = f⋆ (R(s) + γT V (s, a)− V (s)) · dO(s, a),∀s, a ∈ S ×A, (44)

as desired.

B. Extended Related Work
Stationary distribution correction estimation. Estimating the optimal policy’s stationary distribution using off-policy data
was introduced by (Nachum et al., 2019a) as the DICE trick. This technique has been shown to be effective for off-policy
evaluation (Nachum et al., 2019a; Zhang* et al., 2020; Dai et al., 2020), policy optimization (Nachum et al., 2019b; Lee et al.,
2021), online imitation learning (Kostrikov et al., 2020; Zhu et al., 2020), and concurrently, offline imitation learning (Kim
et al., 2022). Within the subset of DICE-based policy optimization methods, none has tackled state-occupancy matching or
directly apply Fenchel Duality to its full generality to arrive at the form of value function objective we derive.

C. SMODICE with common f -divergences
Example 1 (SMODICE with χ2-divergence). Suppose f(x) = 1

2 (x− 1)2, corresponding to χ2-divergence. Then, we can
show that f⋆(x) = 1

2 (x+ 1)2 and f ′
⋆(x) = x+ 1. Hence, the SMODICE objective amounts to

min
V (s)≥0

(1− γ)Es∼µ0 [V (s)] +
1

2
E(s,a)∼dO

[
(R(s) + γT V (s, a)− V (s) + 1)

2
]

(45)

and

ξ∗(s, a) =
d∗(s, a)

dO(s, a)
= max (0, R(s, a) + γT V ∗(s, a)− V ∗(s) + 1) (46)
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Example 2 (SMODICE with KL-divergence). We have f(x) = x log x. Using the fact that the conjugate of the negative
entropy function, restricted to the probability simplex, is the log-sum-exp function (Boyd et al., 2004), it follows that
D⋆,f (y) = logEx∼q[expy(x)]. Hence, the KL-divergence SMODICE objective is

min
V (s)≥0

(1− γ)Es∼µ0 [V (s)] + logE(s,a)∼dO [exp (R(s) + γT V (s, a)− V (s))] (47)

and

ξ∗(s, a) =
d∗(s, a)

dO(s, a)
= softmax (R+ γT V ∗(s, a)− V ∗(s)) (48)

D. SMODICE for Tabular MDPs
In this section, we derive the closed-form expression of SMODICE for tabular MDPs. For simplicity, we assume that the
expert state occupancies are given, dE(s) ∈ ∆(|S|). A behavior policy πb is used to collect the offline dataset DO. Then,
we can construct a surrogate MDP M̂ using maximum likelihood estimation (i.e., T̂ (s, a, s′) = n(s,a,s′)

n(s,a) ). Using M̂, we
can extract the empirical estimate of the behavior policy occupancies dO ∈ ∆(|S||A|) using linear programming. Then, we
can define the reward vector R ∈ R|S|

+ as R(s) = log dE(s)
dO(s)

. Using the χ2-divergence version of SMODICE, we can write

down the objective for V (s) ∈ R|S|
+ :

min
V (s)≥0

(1− γ)Es∼µ0 [V (s)] +
1

2
E(s,a)∼dO

[
(R(s) + γT V (s, a)− V (s) + 1)

2
]

(49)

We rewrite this expression in vector-matrix form to derive the closed-form solution. To this end, we define T ∈ R|S||A|×|S|

and B ∈ R|S||A|×|S| such that (T V )(s, a) =
∑

s′ T (s
′|s, a)V (s′) and (BV )(s, a) = V (s). Additionally, we denote

µ0 ∈ ∆(|S|) and D = diag(dO) ∈ R|S||A|×|S||A|. Then, we can rewrite (49):

min
V (s)≥0

(1− γ)Es∼µ0
[V (s)] +

1

2
E(s,a)∼dO

[
(R(s) + γT V (s, a)− V (s) + 1)

2
]

⇒min
V (s)

(1− γ)µ⊤
0 V +

1

2
E(s,a)∼dO


BR(s, a) + γT V (s, a)− BV (s, a)︸ ︷︷ ︸

rV (s,a)

+1


2

⇒min
V (s)

(1− γ)µ⊤
0 V +

1

2
(rV + I)⊤D(rV + I)

(50)

where rV ∈ R|S||A| and I is the all-one vector in R|S||A|. Denoting J(V ) := (1− γ)µ⊤
0 V + 1

2 (rV + I)⊤D(rV + I), it is
clear that J(V ) is a convex program in V . Therefore, we can find its optimal solution by solving the first-order stationary
point. We have:

∂J(V )

∂V
=

∂

∂V

(
(1− γ)µ⊤

0 V +
1

2
(rV + I)⊤D(rV + I)

)
=

∂

∂V

(
(1− γ)µ⊤

0 V +
1

2
r⊤V DrV + r⊤V DI + I⊤DI

)
=(1− γ)µ0 + (γT − B)⊤DrV + (γT − B)⊤DI

=(1− γ)µ0 + (γT − B)⊤D(BR+ (γT − B)V ) + (γT − B)⊤DI

Then, by setting this expression to zero and solving for V gives the optimal V ∗:

(γT − B)⊤D(γT − B)V = (γ − 1)µ0 + (B − γT )⊤D(I +BR)

⇒V ∗ =
(
(γT − B)⊤D(γT − B)

)−1 (
(γ − 1)µ0 + (B − γT )⊤D(I +BR)

) (51)

and we can recover ξ∗(s, a) = d∗(s,a)
dO(s,a)

:

ξ∗(s, a) = BR(s, a) + γT V ∗(s, a)− BV ∗(s, a) + 1 (52)

Pythonic pseudo-code using NumPy (Harris et al., 2020) is given in Algorithm 2.
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D.1. Performance Guarantee

The closed-form solution of V ∗ assumes knowledge of the true transition T . When the empirical transition function T̂ is
estimated from samples (i.e., T̂ (s′ | s, a) := n(s,a,s′)

n ), we can obtain the following finite-sample performance guarantee:

Theorem 4. Let Rmax = maxs log
dE(s)
dO(s)

, Dmin = mins,a d
O(s, a), and T̂ (s′ | s, a) := n(s,a,s′)

n . Assume that∥∥(A⊤DA)−1
∥∥
∞ ≤ 1

(1−γ)2Dmin

5. Then, for any δ ∈ R>0, with probability ≥ 1− δ, we have∥∥∥V ∗ − V̂
∥∥∥
∞

≤
(
2(2 +Rmax)(2 + γ)γ

(1− γ)4D2
min

)√
2S

n
log

4SA

δ
(53)

Proof. We begin by reiterating the expressions for V ∗ and V̂ :

V ∗ =
(
(γT − B)⊤D(γT − B)

)−1 (
(γ − 1)µ0 + (B − γT )⊤D(I +BR)

)
V̂ =

(
(γT̂ − B)⊤D(γT̂ − B)

)−1 (
(γ − 1)µ0 + (B − γT̂ )⊤D(I +BR)

) (54)

For notational simplicity, we let A := γT −B and Â := γT̂ −B. Then, we have

V ∗ − V̂ =
(
A⊤DA

)−1 (
(γ − 1)µ0 −A⊤D(I +BR)

)
−
(
Â⊤DÂ

)−1 (
(γ − 1)µ0 − Â⊤D(I +BR)

)
(55)

= (A⊤DA)−1(γ − 1)µ0 (56)

−(A⊤DA)−1A⊤D(I +BR)− (Â⊤DÂ)−1(γ − 1)µ0 + (Â⊤DÂ)−1Â⊤D(I +BR) (57)

Now, we can bound the ∥·∥∞:∥∥∥V ∗ − V̂
∥∥∥
∞

=∥(A⊤DA)−1(γ − 1)µ0 − (A⊤DA)−1A⊤D(I +BR)− (Â⊤DÂ)−1(γ − 1)µ0 (58)

+(Â⊤DÂ)−1Â⊤D(I +BR)∥∞ (59)

≤
∥∥∥(A⊤DA)−1(γ − 1)µ0 − (Â⊤DÂ)−1(γ − 1)µ0

∥∥∥
∞

(60)

+
∥∥∥(Â⊤DÂ)−1Â⊤D(I +BR)− (A⊤DA)−1A⊤D(I +BR)

∥∥∥
∞

(61)

≤(1− γ)
∥∥∥(A⊤DA)−1 − (Â⊤DÂ)−1

∥∥∥
∞

(62)

+
∥∥∥(Â⊤DÂ)−1Â⊤D(I +BR)− (A⊤DA)−1A⊤D(I +BR)

∥∥∥
∞

(63)

=(1− γ)
∥∥∥(A⊤DA)−1 − (Â⊤DÂ)−1

∥∥∥
∞

(64)

+
∥∥∥(Â⊤DÂ)−1Â⊤D(I +BR)− (A⊤DA)−1Â⊤D(I +BR)

∥∥∥
∞

(65)

+
∥∥∥(A⊤DA)−1Â⊤D(I +BR)− (A⊤DA)−1A⊤D(I +BR)

∥∥∥
∞

(66)

≤(1− γ)
∥∥∥(A⊤DA)−1 − (Â⊤DÂ)−1

∥∥∥
∞

(67)

+
∥∥∥(Â⊤DÂ)−1 − (A⊤DA)−1

∥∥∥
∞

∥∥∥Â⊤D(I +BR)
∥∥∥
∞

(68)

+
∥∥(A⊤DA)−1

∥∥
∞

∥∥∥(Â−A)⊤D(I +BR)
∥∥∥
∞

(69)

Since induced norm is sub-multiplicative, we have∥∥∥Â⊤D(I +BR)
∥∥∥
∞

≤
∥∥∥Â⊤D

∥∥∥
∞

∥(I +BR)∥∞ ≤ (1 +Rmax) (70)∥∥∥(Â−A)⊤D(I +BR)
∥∥∥
∞

≤
∥∥∥(Â−A)⊤D

∥∥∥
∞

∥(I +BR)∥∞ ≤
∥∥∥(Â−A)⊤D

∥∥∥
∞

(1 +Rmax) (71)

5This assumption is similar to the assumption of a lower bound on the minimum eigenvalue of the covariance matrix required to bound
estimation error in linear regression (with A⊤DA being analogous to the covariance matrix).
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The first inequality follows because∥∥∥Â⊤D
∥∥∥
∞

= max
s′

∑
s,a

∣∣∣(γT̂ (s′ | s, a)− 1(s′ = s))D(s, a)
∣∣∣ ≤ max

s′,s,a

∣∣∣γT̂ (s′ | s, a)− 1(s′ = s)
∣∣∣ = 1 (72)

which uses the fact that
∑

s,a D(s, a) = 1.

Plugging this back in gives∥∥∥V ∗ − V̂
∥∥∥
∞

≤ ((1− γ) + (1 +Rmax))
∥∥∥(Â⊤DÂ)−1 − (A⊤DA)−1

∥∥∥
∞

+ (1 +Rmax)
∥∥(A⊤DA)−1

∥∥
∞

∥∥∥(Â−A)⊤D
∥∥∥
∞

(73)

Now, we note that ∥∥∥(Â−A)⊤D
∥∥∥
∞

(74)

=γ
∥∥∥(T̂ − T )⊤D

∥∥∥
∞

(75)

=γmax
s′

∑
s,a

∣∣∣(T̂ (s′ | s, a)− T (s′ | s, a))D(s, a)
∣∣∣ (76)

≤γ max
s′,s,a

∣∣∣(T̂ (s′ | s, a)− T (s′ | s, a))
∣∣∣ (77)

≤γmax
s,a

∥∥∥T̂ (· | s, a)− T (· | s, a)
∥∥∥
1

(78)

and ∥∥∥(Â⊤DÂ)−1 − (A⊤DA)−1
∥∥∥
∞

(79)

=
∥∥∥(A⊤DA)−1(A⊤DA− Â⊤DÂ)(Â⊤DÂ)−1

∥∥∥
∞

(80)

≤
∥∥(A⊤DA)−1

∥∥
∞

∥∥∥A⊤DA− Â⊤DÂ
∥∥∥
∞

∥∥∥(Â⊤DÂ)−1
∥∥∥
∞

(81)

≤
∥∥(A⊤DA)−1

∥∥2
∞

∥∥∥A⊤DA− Â⊤DÂ
∥∥∥
∞

(82)

=
∥∥(A⊤DA)−1

∥∥2
∞

∥∥∥A⊤DA−A⊤DÂ+A⊤DÂ− Â⊤DÂ
∥∥∥
∞

(83)

=
∥∥(A⊤DA)−1

∥∥2
∞

(∥∥∥A⊤D(A− Â)
∥∥∥
∞

+
∥∥∥(A− Â)⊤DÂ

∥∥∥
∞

)
(84)

≤
∥∥(A⊤DA)−1

∥∥2
∞

(∥∥A⊤D
∥∥
∞

∥∥∥A− Â
∥∥∥
∞

+
∥∥∥(A− Â)⊤D

∥∥∥
∞

∥∥∥Â∥∥∥
∞

)
(85)

≤
∥∥(A⊤DA)−1

∥∥2
∞

(
γmax

s,a

∥∥∥T (· | s, a)− T̂ (· | s, a)
∥∥∥
1
+ (1 + γ)γmax

s,a

∥∥∥T (· | s, a)− T̂ (· | s, a)
∥∥∥
1

)
(86)

=
∥∥(A⊤DA)−1

∥∥2
∞

(
(2 + γ)γmax

s,a

∥∥∥T (· | s, a)− T̂ (· | s, a)
∥∥∥
1

)
(87)

where we have used the fact that
∥∥∥A− Â

∥∥∥
∞

= γmaxs,a

∥∥∥T (· | s, a)− T̂ (· | s, a)
∥∥∥
1

and that

∥A∥∞ = max
s,a

∑
s′

|γT (s′ | s, a)− 1(s′ = s)| ≤ max
s,a

∑
s′ ̸=s

|γT (s′ | s, a)|+ 1 ≤ 1 + γ (88)

Plugging these back into (73) gives∥∥∥V ∗ − V̂
∥∥∥
∞

≤ ((1− γ) + (1 +Rmax)) (2 + γ)γ
∥∥(A⊤DA)−1

∥∥2
∞ max

s,a

∥∥∥T (· | s, a)− T̂ (· | s, a)
∥∥∥
1

+ (1 +Rmax)γ
∥∥(A⊤DA)−1

∥∥
∞ max

s,a

∥∥∥T (· | s, a)− T̂ (· | s, a)
∥∥∥
1

(89)
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For any δ ∈ [0, 1), with probability 1− δ/2, we have

max
s,a

∥∥∥T (· | s, a)− T̂ (· | s, a)
∥∥∥
1
≤
√

2S

n
ln

4SA

δ
(90)

Then, leveraging our assumption that∥∥(A⊤DA)−1
∥∥
∞ =

1

inf∥x∥=1 ∥(A⊤DA)x∥∞
≤ 1

(1− γ)2Dmin
(91)

we have, with probability 1− δ,∥∥∥V ∗ − V̂
∥∥∥
∞

≤
(
(2 +Rmax)(2 + γ)γ

(1− γ)4D2
min

+
(1 +Rmax)γ

(1− γ)2Dmin

)√
2S

n
ln

4SA

δ
(92)

≤
(
2(2 +Rmax)(2 + γ)γ

(1− γ)4D2
min

)√
2S

n
ln

4SA

δ
(93)

D.2. Gridworld Experiments

In this subsection, we provide more experimental details and analysis of the tabular SMODICE experiments shown in Figure
1.

To generate the offline dataset, a random policy (i.e., a policy that chooses each action with equal probabilities) is executed
in the MDP for 10000 epsiodes. We use this dataset to compute the approximate MDP. Then, this MDP is used as an input
to SMODICE (see Algorithm 2). The data collection procedure for the offline imitation learning from examples setting is
identical.

Offline IL from mismatched experts. In this task, we consider an expert agent that can move one grid cell diagonally in
any direction, whereas the imitator is only able to move one grid cell horizontally or vertically. The expert policy is shown
in black in Figure 2(a). Using purely an offline dataset collected by a random agent, we compute the closed-form tabular
SMODICE solution (24) using Algorithm 2 and obtain the zig-zagging policy shown in blue. Indeed, this solution is one of
the two correct solutions that minimize the state-occupancy divergence (the other one mirrors this path along the expert
demo), while being feasible under the imitator dynamics.

Offline IL from examples. We arbitrarily select a state to be the success state denoted by the green star in Figure 2(b). In
this case, the expert’s state occupancies is simply a one-hot vector with weight 1 at the success state. Then, we again use the
tabular version of SMODICE to compute the policy whose state occupancies is as close to this one-hot vector as possible;
the solution is illustrated in blue. As can be seen, this policy successfully reaches the goal. Furthermore, it is easy to see that
in this task, a policy that minimizes state-occupancy divergence to the expert (i.e., the one-hot vector) is one that reaches the
goal with the fewest steps. The policy learned by SMODICE is indeed among the set of optimal policies.

Furthermore, we compute the state occupancies of all states in the gridworld. For the success state, d(s) ≈ 0.915, whereas
the second largest state occupancy is 0.01. This validates the intuition that

∑
s∈S∗ dπ(s) ≫

∑
s/∈S∗ dπ(s).

E. SMODICE with Deep Neural Networks
For high-dimensional MDP with continuous state and action spaces, we instantiate SMODICE using deep neural networks.
In particular, we parameterize Vθ and πϕ using DNNs with weights θ and ϕ, respectively.

Remark. We note that the sample-based estimation of Equation (21) (Line 9) is biased because T V is itself an expectation
that is inside a (non-linear) convex function f (Baird, 1995); however, as in several prior works (Nachum et al., 2019b;
Nachum & Dai, 2020; Lee et al., 2021), we do not find this biased estimate to impact empirical performance and keep it for
simplicity.

E.1. Hyperparameters and Architecture

We use the same hyperparameters for all SMODICE experiments in this paper modulo the choice of f -divergences (explained
in the next section). In terms of architecture, we use a simple 2-layer ReLU network with hidden size 256 to parameterize
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the value network. For the policy network, we use the same architecture to parameterize a Gaussian output distribution; the
mean and the log standard deviation are ouputs of two separate heads. In addition, we use an tanh function on the Gaussian
samples to enforce bounded actions, as in (Haarnoja et al., 2018). The discriminator uses the same architecture. Table 1
summarizes the hyperparameters as well as the architecture.

Table 1. SMODICE Hyperparameters.

Hyperparameter Value

SMODICE Hyperparameters Optimizer Adam (Kingma & Ba, 2014)
Critic learning rate 3e-4
Discriminator learning rate 3e-4
Actor learning rate 3e-5
Mini-batch size 256
Discount factor 0.99
Actor Mean Clipping (-7.24, 7.24)
Actor Log Std. Clipping (-5,2)

Architecture Discriminator hidden dim 256
Discriminator hidden layers 2
Discriminator activation function Tanh
Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU

E.2. Choosing f -Divergence in Practice

In our experiments, SMODICE is implemented using χ2-divergence for all tasks except Hopper, Walker2d, and HalfCheetah.
Here, we show that a suitable choice of f -divergence can be chosen offline by observing the initial direction of the
SMODICE policy loss on the offline dataset. More specifically, on the environments in which SMODICE exhibited largest
performance discrepancies between using KL-divergence or χ2-divergence, we have found that SMODICE returns are
negatively correlated with the policy loss. As shown in Figure 8, the poor performing variant of SMODICE always has a
policy loss that initially jumps and vice-versa. This makes intuitive sense given the composition of the offline datasets, which
is a mix of small amount of expert data with a large amount of poor quality data (see Appendix G for more details). When
SMODICE fails to pick out the expert data, which is often narrowly distributed, then it must have assigned relatively higher
importance weights to the lower quality data, which is more diverse. This creates a more difficult supervised learning task,
leading to higher training loss for the policy. Therefore, in practice, we recommend monitoring SMODICE’s initial policy
loss direction to determine whether the current f -divergence will lead to good performance and make changes accordingly.

F. Baselines
TD3-BC. Many of our baselines are implemented using TD3-BC as their offline policy optimizer. We use the default
hyperparameters for TD3-BC provided by Fujimoto & Gu (2021), shown in Table 2.

Implementation Details. We use the official PyTorch implementation of TD3-BC, publicly available at https:
//github.com/sfujim/TD3_BC. For DEMODICE, because the code is not public available, we implement it using Py-
Torch, adapting from https://github.com/secury/optidice; we use the hyperparameters reported in the paper.
Note that DEMODICE shares many architectures with SMODICE. For example, DEMODICE uses a state-action discrimi-
nator, and we implement it by simply changing the input space of the state-based discriminator used in our SMODICE im-
plementation. For SAIL, we use the official PyTorch implementation (https://github.com/FangchenLiu/SAIL)
and combine it with TD3-BC. We implement RCE using PyTorch, adapting from the official TensorFlow implementation
https://github.com/google-research/google-research/tree/master/rce.

https://github.com/sfujim/TD3_BC
https://github.com/sfujim/TD3_BC
https://github.com/secury/optidice
https://github.com/FangchenLiu/SAIL
https://github.com/google-research/google-research/tree/master/rce
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Figure 8. SMODICE returns are negatively correlated with the direction of its policy losses.

G. Offline IL from Observations Experimental Details
G.1. Datasets

For Hopper, Walker2d, HalfCheetah, Ant, and AntMaze, we construct the offline datasets by combining a small amount of
expert data and a large amount of low quality random data. For the first four tasks, we leverage the respective “expert-v2”
and “random-v2” datasets in the D4RL benchmark. For AntMaze, we use trajectories from “antmaze-umaze-v2” as the
expert data; for the random data, we simulate the antmaze environment for 1M steps using random actions and take the
resulting transitions. For the kitchen environment, we use the full “kitchen-mixed-v0” dataset as the offline dataset without
further augmentation. See Table 3 for dataset breakdown.

G.2. Additional Results

In this section, we present some additional results as well as ablation experiments.

Diverse AntMaze. In Section 6.1, we have found that two of the baselines (SAIL-TD3-BC and ORIL) outperform
SMODICE on the AntMaze benchmark. To investigate their sources of empirical gain, we have designed a diverse version
of the AntMaze dataset to test how different approaches are robust to the dataset composition on the same task. To this end,
we take the AntMaze offline dataset (explained above) and reverse half of the trajectories in their directions. In other words,
these reversed trajectories would navigate from the original goal to the initial state. This procedure is easy to do because
the U-shaped maze is symmetric. Then, using this dataset, we have trained all approaches in Section 6.1 again. As shown
in Figure 10(a), on this dataset, both SAIL-TD3-BC and ORIL quickly collapse, indicating that these methods are very
brittle to the dataset composition. In contrast, SMODICE remains the best performing algorithm, despite overall drop in all
methods’ performances.

SMODICE with Zero Reward. We compare SMODICE with SMODICE-Zero, which simply assigns every transition zero
reward (i.e., R(s) = 0) regardless of its similarity to an expert state. Then, we compare the ratio of the importance weights
(i.e., ξ(s, a)) assigned to the offline expert data and the offline random data by the two SMODICE methods, respectively.
As shown in Figure 9, SMODICE assigns much higher relative weights to the expert data and consequently significantly
outperforms SMODICE-Zero. These results demonstrate that SMODICE’s empirical performance comes from its superior
ability to discriminate the offline expert data, which is a by-product of its optimization procedure.
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Table 2. TD3+BC Hyperparameters. This table is reproduced from Fujimoto & Gu (2021) directly.

Hyperparameter Value

TD3 Hyperparameters Optimizer Adam (Kingma & Ba, 2014)
Critic learning rate 3e-4
Actor learning rate 3e-4
Mini-batch size 256
Discount factor 0.99
Target update rate 5e-3
Policy noise 0.2
Policy noise clipping (-0.5, 0.5)
Policy update frequency 2

Architecture Critic hidden dim 256
Critic hidden layers 2
Critic activation function ReLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function ReLU

TD3+BC Hyperparameters α 2.5

Table 3. Offline Dataset Compositions.
Task State Dim Expert Dataset Expert Data Size Random Data Size

Hopper 11 hopper-expert-v2 193430 999999
Walker2d 17 walker2d-expert-v2 99900 999999

HalfCheetah 17 halfcheetah-expert-v2 199800 999000
Ant 27 ant-expert-v2 192409 999427

AntMaze 29 antmaze-umaze-v2 349687 999000
Kitchen 60 kitchen-mixed-v0 136937 0

DEMODICE with State-Based Discriminator.

We replace DEMODICE’s state-action based discriminator with a state-based one to make it compatible with the problem
settings we consider in this paper. We compare this version of DEMODICE (DEMODICE+SD) to SMODICE in Table 4,
showing performance at convergence. SMODICE significantly outperforms DEMODICE+SD, which suffers from training
instability due to optimizing the KL conjugate. Thus, naively adapting DEMODICE to state matching is insufficient;
our generalized f -divergence based algorithm is crucial for enabling learning from challenging expert observations (e.g.,
mismatched dynamics or examples).

Table 4. SMODICE vs. DEMODICE with State-Discriminator
Algorithm AntMaze-PointMass AntMaze-Example PointMass-4D Kettle Microwave

DEMODICE+SD 19.8 32.7 0.0 0.0 0.1
SMODICE 34.3 47.3 80.0 100.0 60.3

H. Offline IL from mismatched Expert Experimental Details
H.1. Continuous Control Experiments

Mismatched Experts. The mismatched experts are illustrated in Figure 11.

Comparison between PointMass and Ant experts for AntMaze. The trajectories of PointMass and Ant experts are
illustrated in Figure 12. As can be seen, the PointMass trajectory is more regular and smooth due to its simpler dynamics
and the use of a waypoint controller. In contrast, the ant trajectory is much less well-behaved because solving the maze
task using the Ant agent is intrinsically a difficult task; consequently, it is difficult to provide an Ant demonstration. This
example serves as a strong motivating problem for offline imitation learning with mismatched experts.
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Figure 9. SMODICE vs. SMODICE-Zero. Using the discriminator-based reward, SMODICE assigns much higher weights to expert-
quality data.

Figure 10. Offline imitation learning results on AntMaze-Reverse. SMODICE is still among the best performing methods, while both
SAIL-TD3-BC and ORIL collapse, demonstrating their sensitivity to the offline dataset composition.

H.2. Quantitative Analysis of Figure 5

We quantitatively measure the percentage drop-in-performance for each method in Figure 5, computed as
|max original−max mismatched|

max original . Note that this metric favors the baselines as taking the maximum value advantages methods that
are more unstable. Nevertheless, as shown in Table 5, SMODICE is still by far the most robust method overall and in each
individual task. As expected, ORIL does the worst as it is not designed to handle mismatched dynamics; this shows that
using a state-based discriminator in itself is not sufficient.

I. Offline IL from Examples Experimental Details
I.1. Datasets

We collect 300 success-state examples for each of the tasks. The examples are randomly sampled from the subset of the
offline dataset that achieves the task. Task success is verfied through a pre-defined sparse reward function (e.g., distance
threshold function).
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(a) HalfCheetah-Short (b) Ant-Disabled (c) PointMass-Maze

Figure 11. Illustrations of the mismatched experts.

(a) PointMass Expert (b) Ant Expert

Figure 12. Trajectory visualizations of AntMaze experts.

I.2. Environments.

PointMass-4Direction. This environment is adapted from the “maze2d-umaze-v0” environment in D4RL by changing the
map configuration. The environment termination condition is triggered when the agent successfully comes within a small
radius of the specified goal.

AntMaze-Example. This environment is identical to the environments used in previous two settings.

Kettle and Microwave. These environments are adapted from the ”kitchen-mixed-v0” environment in D4RL. The
environments are identical as the original except the termination conditions. Both of these tasks terminate when the Franka
robot places the specified object within a small radius of the desired configuration.

I.3. Examples of Success States

All success states are extracted from the offline dataset used for policy training. We illustrate one representative example
from each task in Figure 13.

Table 5. Relative performance drop with mismatched experts.
Algorithm HalfCheetah Ant AntMaze Average
SMODICE 70.7% 3.3% 29.7% 34.5%

SAIL-TD3-BC 88.9% 6.8% 50.6% 48.8%
ORIL 91.8% 42.2% 72.7% 68.9%
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(a) PointMass-4Direction (b) AntMaze (c) Kettle (d) Microwave

Figure 13. Illustrations of success examples.

Algorithm 2 SMODICE with χ2-divergence for Tabular MDPs

# d_E: the expert state occupancies, |S|
# mdp: the empirical MDP learned using offline data
# pi_b: the behavior policy, |S||A|

def SMODICE(mdp, d_E, pi_b):
d_O_sa = compute_policy_occupancies(mdp, pi_b) # |S||A|
d_O = d_O_sa.reshape(mdp.S, mdp.A).sum(axis=1) # |S|

# compute reward function
R = np.log(d_E/d_O) # |S|

# define and reshape matrices
T = mdp.T.reshape(mdp.S * mdp.A, mdp.S) # |S||A| x |S|
B = np.repeat(np.eye(mdp.S), mdp.A, axis=0) # |S||A| x |S|
I = np.ones(mdp.S * mdp.A) # |S||A|
D = np.diag(d_O_sa) # |S||A| x |S||A|

# compute optimal V
H = (mdp.gamma * P - B).T @ D @ (mdp.gamma * T - B) # |S| x |S|
y = -((1 - mdp.gamma) * p0 + (mdp.gamma * P - B).T @ D @ (I + B @ R)) # |S|
V_star = np.linalg.pinv(H) @ y # |S|

# compute optimal occupancy ratios
xi_star = B @ R + (mdp.gamma * P - B) @ V_star + 1 # |S||A|
m = np.array(xi_star >= 0, dtype=np.float)
xi_star = xi_star * m

# weighted BC
pi_star = (xi_star * d_O).reshape(mdp.S, mdp.A) # |S||A|
pi_star /= np.sum(pi_star, axis=1, keepdims=True)

f_divergence = d.dot(0.5 * (w_star ** 2))

return pi_star, f_divergence, V_star



Offline Imitation from Observations, Mismatched Experts, and Examples

Algorithm 3 SMODICE for Continuous MDPs
1: Require: Expert demonstration(s) DE , offline dataset DO , choice of f -divergence f
2: Randomly initialize discriminator cψ , value function Vθ , and policy πϕ.
3: // Train Expert (resp. Example) Discriminator
4: Train cψ using DE and DO using Equation (14)
5: // Train Lagrangian Value Function
6: for number of iterations do
7: Sample minibatch of offline data {sit, ait, sit+1}Ni=1 ∼ DO, {si0}Mi=1 ∼ DO(µ0)
8: Obtain reward: Ri = cθ(s

i
t), i = 1, ..., N

9: Compute value objective L(θ) := (1− γ) 1
M

∑M
i=1 Vθ(s

i
0) +

1
N
f⋆

(
Ri + γV (sit+1)− V (sit)

)
10: Update Vθ using SGD: Vθ ← Vθ − ηV∇L(θ)
11: end for
12: // Policy Learning
13: for number of iterations do
14: Sample minibatch of offline data {sit, ait, sit+1}Ni=1 ∼ DO
15: // Compute Optimal Importance Weights
16: Compute ξ∗(si, ai) = f ′

⋆

(
R(si) + γV (sit+1)− V (sit)

)
, i = 1, ..., N

17: // Weighted Behavior Cloning
18: Update πψ using Equation (23)
19: end for


