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Abstract. We address key challenges in long-horizon embodied explo-
ration and navigation by proposing a new object transport task and a
novel modular framework for temporally extended navigation. Our first
contribution is the design of a novel Long-HOT environment focused on
deep exploration and long-horizon planning where the agent is required
to efficiently find and pick up target objects to be carried and dropped at
a goal location, with load constraints and optional access to a container
if it finds one. Further, we propose a modular hierarchical transport
policy (HTP) that builds a topological graph of the scene to perform ex-
ploration with the help of weighted frontiers. Our hierarchical approach
uses a combination of motion planning algorithms to reach point goals
within explored locations and object navigation policies for moving to-
wards semantic targets at unknown locations. Experiments on both our
proposed Habitat transport task and on MultiOn benchmarks show that
our method significantly outperforms baselines and prior works. Further,
we validate the effectiveness of our modular approach for long-horizon
transport by demonstrating meaningful generalization to much harder
transport scenes with training only on simpler versions of the task.

Keywords: Long-horizon navigation, Embodied AI, hierarchical policy,
object transport

1 Introduction

A robot tasked with finding an object in a large environment or executing a com-
plex maneuver must reason over a long horizon. Existing end-to-end reinforce-
ment learning (RL) approaches often suffer in long-horizon embodied navigation
tasks due to a combination of challenges: (a) inability to provide exploration
guarantees when the point or object of interest is not visible, (b) difficulty in
backtracking previously seen locations and (c) difficulty in planning over long
horizons. In this work, we address these issues by proposing a novel long-horizon
embodied transport task, as well as modular hierarchical methods for embodied
transport and navigation.

Our proposed long-horizon object transport task, Long-HOT, is designed to
study modular approaches in the Habitat environment [29]. It requires an embod-
ied agent to pick up objects placed at unknown locations in a large environment
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Fig. 1: An instance of object transport problem and our proposed modular
approach that builds a topological map. If the agent decides to explore a bit
further it would then detect other objects and a container which it can pick up
to transport more efficiently, rather than dropping just one object at the goal.

and drop them at a known goal location, while satisfying load constraints, which
may be relaxed by picking up a special container object (Fig. 1). While tasks like
MultiON for sequential navigation also benefit from long-range planning [36], the
proposed transport task requires more complex decision-making, such as order
of pick-up and exploration-exploitation trade-off with respect to searching for
the container. We abstract away the physical reasoning for pickup and drop ac-
tions, since unlike TDW-Transport [13], our focus is on deeper exploration and
long-horizon planning to find and transport objects in large scenes.

We argue that modularity is a crucial choice for tackling the above challenge,
whereby navigation and interaction policies can be decoupled through tempo-
ral and state abstractions that significantly reduce training cost and enhance
semantic interpretability compared to end-to-end approaches. This is distinct
from existing hierarchical methods for subgoal generation [21,40] in long horizon
tasks, where the expressivity of subgoals is largely limited to goal reaching for
embodied navigation and which still face scalability challenges when the task
requires long trajectory demonstrations.

Our modular approach for long-horizon embodied tasks constitutes a topo-
logical graph based exploration framework and atomic policies to execute indi-
vidual sub-tasks (Fig. 1). The higher level planner is a finite state machine that
decides on the next sub-routine to execute from one of {Explore, Pickup, Drop}
actions. The topological map representation consists of nodes connected in the
form of a graph that serves to infuse geometric and odometry information to aid
deeper exploration and facilitate backtracking. Unlike methods that utilize 360-
degree panoramic images as input [7,22,21], we divide every node to aggregate
representations from several directions in its vicinity. The representation within
a specific node and direction consists of latent features FA from a pre-trained
encoder, an exploration score FE that captures the likelihood of the agent find-
ing an object if it explores a frontier in that direction and object closeness score
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FO that indicates distance to the object within the agent’s field of view. We
also propose a novel weighted improvement of frontier exploration [43] using the
predicted exploration scores.

Unlike methods [40,21,22,35] that completely rely on either motion planning
algorithms [23,33] or use pure RL for low-level actions [22,36], our approach
uses the best of both worlds with motion planning for point goals within ex-
plored regions and RL policies to travel the last-mile towards semantic targets
at unknown locations. Indeed, on both Long-HOT and MultiON , we show that
our proposed modular hierarchical approach performs significantly better, espe-
cially on longer horizons, compared to agents operating without map or other
hierarchical approaches that sample navigation subgoals for task completion.
Moreover, it realizes a key benefit of modularity, namely, adaptability to harder
settings when trained on a simpler version of the task.

In summary, our contributions are the following:
– A novel object transport task, Long-HOT, for evaluating embodied methods

in complex long-horizon settings.
– A modular transport framework that builds a topological graph and explores

an unknown environment using weighted frontiers.
– Strong empirical performance on object transport and navigation tasks, with

adaptability to longer horizons .

2 Related Work

Embodied intelligence. The community has developed several simulation en-
vironments [29,20,31,13,8,41,11] and associated tasks to study embodied agents
in tasks like object goal navigation [4,6,39,44,36], point goal navigation [1,29,38,28],
rearrangement [13,32,37,35], instruction following [32,2] and several others in this
regard. While there are handful of previous works designed for navigation [4,6,36]
or rearrangement [13,37], they do not extensively stress tests methods with in-
creasing task complexities. We find the typically used flat policy architectures
[36] in embodied AI tasks fail completely when executing over longer horizons.
Hence, we propose a new benchmark called Long-HOT that has potential to
serve as a testbed for, and accelerate the development of novel architectures for
planning, exploration, and reasoning over long spatial and temporal horizons.

Our task builds on previous transport tasks defined in embodied intelligence
[37,35,13,36] but differs in ways that it requires deeper exploration and long hori-
zon planning. While previous work like [37] focus on identifying state changes
using visual inputs to perform rearrangement or [35] use geometrically specified
goals in single apartment environments these works operate in minimal explo-
ration scenarios where the focus is shifted more towards perception or interaction
with objects. Our task is closest to [13], while [13] focuses on performing trans-
port including physics based simulations, we abstract our interactions and focus
more on complex long-horizon planning. Our work extends [36] but rather than
focusing on navigation in a predefined sequential fashion, our task requires more
complex decision making to determine the order of picking and decide whether
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to perform a greedy transport if it sees the goal or to explore more in hopes of
finding the container for efficient transport.

Modular-Hierarchical Frameworks. Solutions to long-horizon tasks typi-
cally involved hierarchical[27,25,34,3] policies in reinforcement learning. They
provide better exploration behavior through long-term commitment towards a
particular subtask. [40,21] present one such approach where they sample navi-
gation subgoals to be executed by the low-level controller. While these methods
can temporally abstract navigation to an extent we find their performance to
drop significantly in longer horizon settings. In HTP we show that modularity
enables generalization while only training on the simpler versions of the task.

Closer to our work are modular approaches[10,7,21,40] that provide an intu-
itive way to divide complex long horizon tasks as a combination of individual
sub-tasks that can be solved using existing approaches. Das et al. [10] present a
modular approach to solve embodied question answering [9] through a combina-
tion of several navigation policies each for finding an object, to find a room or
to exit one. This can blow-up with number of sub-routines required to navigate
across a building or inability of the agent to find a room of particular type in large
environments. Rather than navigating to individual rooms our method proposes
a weighted frontier technique that provides exploration guarantees. Chaplot et
al. [7] propose a method for image goal navigation by generating a topological
map of the scene using 360-degree panoramic images. Our approach operates
on perspective images and divides a node representation into segments across
different directions.

Our work also closely relates to task and motion planning (TAMP) literature[14,15]
where the closest work in this domain is [42] which proposes a MP augmented
RL approach in manipulation settings where they realize large displacements of
a manipulator through a MP. While [42] tackles a simple manipulation domain
for 2D block pushing where target objects are fully observable, we tackle a more
complex navigation setting and propose to use a combination of MP and object
navigation policies where a motion planner first moves to a region with high like-
lihood of object presence and gives control to the navigation policy that takes
it closer to the goal object.

3 Habitat Transport Task

We propose a novel transport task for embodied agents that simulates object
search, interaction, and transport in large indoor environments. A robot assis-
tant might be expected to perform such tasks in a warehouse or a hospital. In
each episode, the agent must transport K target objects to a specified object
goal location in a large partially observed Habitat [29] 3D indoor environment
with many rooms and obstacles. The environment also contains a special “con-
tainer” object (in yellow) that can be used to transport other objects, another
special goal object (in green) whose position is the goal location. In our setting,
all objects are cylinders of various colors, placed into the environment. Unlike
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previously studied tasks such as [35], the agent needs to explore the environment
to find all objects, and does not have access to their geometric coordinates. At
each step, the agent can turn by angle α = 30◦ to the left or right, move forward
by x = 0.25m, or execute object “Pickup” or “Drop” actions.

The agent has access to standard egocentric perspective RGB and depth
views. Fig. 3 (left) shows an example of the agent’s view of a scene with a promi-
nent red object. Aside from this, the agent has access to odometry (Pϕxy), as
well as the hand state Oh and goal state Og, which indicate if a target/container
object is either held by the agent or already at the goal respectively. Following
[36,37], if the agent is within R = 1.5m of any pick-able object and a Pickup
action is called, the closest object is removed from the scene and the hand state
Oh is updated to include it. For the Drop action, any objects in the agent’s hand
are dropped near the agent’s location. If the goal is within distance R, the goal
state is updated to include the object. The agent can hold limited items in its
hands at once, and is therefore constrained to carry at most two objects at a
time unless it picks up the container, in which case any number of objects may
be carried. Picking up the container requires the agent’s hands to be empty.
Each episode runs for a maximum of T = 2500 timesteps.

This transport task naturally entails additional complexity compared to pre-
viously proposed navigation settings, and has properties that are not emphasized
in previous benchmark tasks for embodied agents [36,35,29,41]. It includes mul-
tiple task phases (searching for, navigating to, and interacting with objects),
reasoning about the environment at various scales (such as coarse room con-
nectivity charts over the explored map for planning long trajectories, and fine-
grained local occupancy maps for object interaction), accounting for carrying
capacity constraints. It also involves dynamically selecting among various sub-
task sequences under uncertainty: for example, having found an object far from
the goal, should an agent immediately return to drop it off at the goal, or should
it look for another object before returning for efficiency?

4 Hierarchical Transport Policy (HTP)

We now describe a modular policy (Fig. 2) that builds a topological map of the
environment and operates at different levels of temporal abstraction. Our frame-
work consists of three modules: a high-level controller, an exploration module
and a pick-drop module. The high-level controller decides on the next high-level
action to execute from one of AH ={Explore, Pickup[Object], Drop} actions.
The appropriate sub-task module then takes over to perform the given high-level
action. At any point, if the high-level controller decides to execute a different
sub-task, the current execution is interrupted and control is passed to the mod-
ule executing the next one. The modules in our framework are made of several
functions which we describe briefly in Sec. 4.1 and then provide details on how
those components are connected to our overall framework.
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Fig. 2: Overall architecture of our proposed modular hierarchical approach. Our
framework consists of three main modules a) a high level controller, b) explo-
ration module and c) a pick-drop module. Each of these are made of components
like exploration and closeness score predictor, object-nav policy and low-level
controller. We provide details for each individual component in Sec. 4.1 and
explain the overall framework in Sec. 4.2.

4.1 HTP Model Components

An overview of our model components along with their connections in the HTP
framework is shown in Fig. 3. Our sub-task modules consist of the following
components: a) a topological graph builder, b) exploration score predictor c)
object-closeness predictor, d) object navigation policy and e) a low-level con-
troller. We now describe each of them in detail.

Topological Graph Builder This function is responsible for creating a topo-
logical map of the environment as a graph G = (V,E), where V ∈ RNt×fd and
E represent spatial nodes and connecting edges respectively. Here, Nt represents
number of nodes at timestep t and fd represents the length of node features. Node
features for a node Vi ∈ V consist of concatenated “node-direction” features Vi,θ

corresponding to D = 12 directions θ ∈ {1, ..., D} spanning 360 degrees, centered
on the node. These node-direction features Vi,θ in turn are computed by encoding
perspective RGB images through an encoder FA, pretrained in an autoencoder
(details in supplementary).

At every timestep t, the graph builder updates the map as follows. It takes
the pose information (Pϕxy) and encoded egocentric image features from FA as
input. The agent’s location Pxy is mapped to the nearest existing graph node Vi,
and its heading angle Pϕ is mapped onto the nearest node-direction θ. Then that
corresponding node-direction representation Vi,θ is updated to the image feature
vector. We add a new node Vi+1 if the agent is not within a distance threshold
lth = 2m of existing nodes, and store the corresponding node coordinate Pxy.
When the agent transitions between two nodes in the graph, the graph is updated
to add an edge between them. Similar to [22], we also keep track of the last



Long-HOT 7

Fig. 3: Shows an overview of the model components used in our overall frame-
work along with their connectivity. It takes egocentric RGBD information along
with odometry and explored occupancy map as input and provides low-level
actions executed by the agent. At every timestep the framework builds a topo-
logical map (Sec. 4.1), predicts object closeness scores (Sec. 4.1), sample frontiers
based on exploration scores (Sec. 4.1) and execute navigation actions through a
object-nav policy (Sec. 4.1) or low-level controller (Sec. 4.1).

visited time-step for every node to provide additional context for downstream
processing.

Exploration and Object Closenes Scores At every node-direction, indexed
by (i, θ), aside from the feature vector above, we store two score predictions: (a)
an exploration score for frontiers[43] that predicts the likelihood of finding an
object by exploring that frontier and (b) an object closeness score that indicates
distance to various objects in the current field of view.

Exploration Score Predictor (FE): We explore two variants of this function:
(1) a Q learning based graph convolutional network (GCN)[19] that reasons
for frontiers over the entire topological graph and (2) a convolutional network
(CNN) predicts frontier scores on a per-frame basis.

GCN Exploration Score: This function operates on (1) the current topological
map G = (V,E) with associated features as computed above, and (2) a binary
mask MNt×θd indicating the availability of a frontier at every node-direction,
computed using the method described in Sec. 4.2. Provided these inputs, we train
a graph convolutional network (GCN) [19] to produce reinforcement learning Q-
values for each node-direction, representing future rewards for finding objects af-
ter visiting each frontier associated with that node-direction. The object-finding
reward function ret at every timestep t is:

ret = Isuccess · resuccess + reslack +
∑

o

Iofound · refound, (1)
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where Iofound is the indicator if object o was found at timestep t, refound is the
reward for finding a new object, reslack is the time penalty for every step that
encourages finding the objects faster, Isuccess is an indicator if all objects were
found and resuccess is the associated success bonus. We consider the object to
be found if the object is in the agent’s field of view with distance less than
maximum pre-defined distance. Our GCN architecture involves three layers of
graph convolution layers and a fully connected layer.

CNN Exploration Score: This variant of the exploration score is computed di-
rectly from the agent’s current RGBD view. Given this view, a CNN predicts
three exploration scores: each score represents the chances of finding an object if
the agent explores the farthest frontier available within a corresponding range of
angles centered on the current agent heading: −45◦ to −15◦, −15◦ to +15◦, and
+15◦ to +45◦ respectively for the three scores. This CNN is trained with labels
set to max(maxo(da,o−df,o)/5, 0) where da,o, df,o represent geodesic distance to
object o from the agent and frontier respectively. If a frontier is not available
then the score is set to 0. These three scores are then stored respectively to three
consecutive node-directions θ − 1, θ, θ + 1, centered on the current direction θ,
and at the current node i.

Object Closeness Predictor (FO): This CNN maps the current RGBD obser-
vation I to a “closeness score” for every object. It is trained with supervised
learning to predict target closeness labels for each object, which are set to
max(1 − d/5, 0) where d is the true distance to the object in m. So, objects
farther than 5m away (or invisible) have labels 0, and very close objects have
labels ≈ 1. Each node-direction has an associated closeness score for each object.

Object Navigation Policy Next, we discuss our object navigation policy.
Given the RGBD observation I and a one-hot encoding ko of a target object, the
policy must select navigation actions from {FORWARD, TURN-LEFT, TURN-RIGHT}
that take it closer towards the target. This policy is trained with the following
reward rnt [36] at each timestep t:

rnt = I[reached−obj] · rnobj + rnslack + rnd2o + rncollision, (2)

where rnobj is the success reward if it reaches closer than a threshold distance
dth with the target object, rslack is a constant time penalty for every step,
rnd2o = (dt−1−dt) is the decrease in geodesic distance with the target object and
rncollision is the penalty for collision with the environment.

We train this policy using the proximal policy optimization (PPO) [30] rein-
forcement learning algorithm, for approximately 40M iterations using 24 simu-
lator instances. We use mini-batch size of 4 and perform 2 epochs in each PPO
update. We use other hyper-parameters similar to [36].

Low-Level Navigation Controller Our final module is a low-level controller
that takes a goal location (from within the explored regions) to be reached as
input. It then plans a path towards the specified goal location using the classical
A*[17] planning algorithm using a pre-built occupancy map.



Long-HOT 9

4.2 HTP Control Flow

We are now ready to describe how HTP manages the flow of control between
these components to perform long-horizon transport tasks. Note that while we
describe the HTP algorithm for object transport, we show in Sec. 5.2 that HTP
also works for other embodied navigation tasks.

High-Level Controller The high-level controller (πH) is a finite state machine.
Based on object closeness scores FO (Sec. 4.1), hand state Oh, and goal state
Og, it selects one subtask from among AH ={Explore, Pickup[Object], Drop}.
At timestep t, if the next high level action predicted by the controller is different
from the current sub-task that is being executed, the controller interrupts the
execution, and agent performs the updated high-level action. For example, during
exploration if the agent finds an object with closeness score higher than a some
threshold it then switches control from exploration to picking the object if the
hand is not full or if it holds a container.

Weighted Frontier Exploration If πH selects the <Explore> sub-task, the
exploration module is executed. For exploration, we introduce a weighted fron-
tier technique based on the predicted exploration score function FE (Sec 4.1).
For every timestep t, we calculate the set of frontiers S over the explored and un-
explored regions using occupancy information [43]. When a new frontier is iden-
tified, we assign a parent node-direction Yr = (i, θn)r for the rth frontier, where
(i, θ) is the current localized node-direction and θn is calculated based on the
angle made by the frontier with the agent. Here the agent’s field of view is 90◦, so
θn for the newly found frontiers can assume one of {θ−1, θ, θ+1} directions. For
all existing frontiers from timestep t−1, we copy the same parent node-direction
from the previous timestep. Finally, we calculate a representative frontier S(i,θ)

for node-direction (i, θ), as: S(i,θ) = {sk : argmink ∥sk−Xc∥ ∀ Yk = (i, θ)} where
sk ∈ S and Xc is the center of frontiers associated with Yk = (i, θ).

At each timestep during its execution, the exploration module selects a node-
direction (i, θ) from the topological graph G that has the highest exploration
score FE . Its corresponding frontier S(i,θ) is then set as the goal location for
the agent’s low-level controller, which begins to move towards this goal. The
highest-score goal frontier is recomputed at every timestep, and may switch as
new views are observed during exploration.

Pick-Drop Module This module performs the pick or drop actions in the ob-
ject transport task when the controller πH selects an action aH ∈ {Pickup[Object],
DropAtGoal}. When called, this module first selects a node (i, θ) from graph G
with the highest object closeness score FO for the target object. If the agent is
not already in the selected ith node, then its location Pxy(i) is set as the goal for
the low-level controller. Once the agent is localized to the ith node, it orients in
the direction of θ. At this point, control is passed to the Object Navigation pol-
icy, targeting the object selected by πH . The module then selects the pickup or
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Fig. 4: An example execution of our proposed Hierarchical policy (HTP) for
object transport. Yellow lines indicate edges and their end point indicate node
locations. The goal object is green, container is yellow and target objects take
other colors. A blue value near the node indicates the closeness score for the
object to be picked up specified by the high level action. Yellow circles indicate
frontiers and red value indicate their associated exploration scores. A star marker
with orange color indicates the current subgoal location for A*. Please note high
closeness score for the node close to the object type to interact with specified by
the high level action.

drop action whenever the object closeness score FO for the target object, based
on the current view, exceeds a threshold. The sub-task is successful when the
hand state or goal state is changed accordingly and the controller πH predicts
the next high level action to execute. We execute this module till it performs the
pick/drop or for a maximum of Tp steps after which the control is given back to
the high-level controller πH .

5 Experiments

We evaluate all approaches on two tasks set in photo-realistic Matterport3D
scenes (MP3d)[5] in Habitat [29]: Long-HOT transport, and Multi-ON [36] object
navigation.

Long-HOT: We split MP3D[5] scenes into disjoint train, validation, and test
scenes [1] each with 61/14/15 scenes respectively. We generate 10,000 training
task configurations among the training scenes, and 3000 each of validation and
test configurations. Each task configuration consists of a specific configuration of
objects, container, goal location, and agent starting location and pose. First, we
sample a goal (x, y) location in the map, then sample the four object locations.
These object locations (1) lie in a specified range of distances from the goal
(“goal-range”), (2) at a specified minimum distance (“obj-dist-min”) away from
other objects, and at (3) within a specified maximum distance (“obj-dist-max”)
from at least one other object. Next, container and agent starting locations
are also sampled to lie within the same goal-range as objects. All distances are
geodesic. These settings permit modulating complexity: for example, large goal
distances lead to harder tasks that are more exploration-intensive and need a
longer task horizon.
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Table 1 shows settings for different task levels used in our experiments. We
train all methods on default-level tasks on 61 scenes. After training, we first
evaluate them on 15 disjoint test scenes in the default setting and call this as
“Standard Long-HOT Task”. We then perform a more focused “Large Long-
HOT Task” evaluation on large scenes that have at least one dimension > 40m
and sample default, hard and harder level tasks from Table 1.

Table 1: Specification parameters for our task levels

Level goal-range(m) obj-dist-min/max(m)

default (2, 15) 2/10
hard (5, 20) 5/20
harder (5, 30) 5/30

MultiOn Dataset: MultiOn[36] is a sequential multi-object navigation task
where the agent is required to visit objects in a predefined sequence. We adapt
our proposed transport policy to test it on the challenging MultiOn (3-On) task
using the object goal vector as input to the high-level controller (more details in
supplementary).

Table 2: Standard Long-HOT Task: Comparison of metrics for the proposed
HTP along with the baselines in standard transport settings.

Model %Success↑ %Progress↑ SPL↑ PPL↑ Episode energy↓ %Picked↑
OracleMap (Occ) 56 68 34 37 0.34 69
OracleMap (Occ+Obj) 92 95 74 75 0.05 96
OracleMap-Waypoints 85 90 51 52 0.10 93

NoMap 43 63 26 32 0.41 67
ProjNeuralMap[36] 43 60 24 29 0.42 60

HTP - NearestFrontier 52 66 24 29 0.38 75
HTP - CNN 56 72 25 31 0.32 79
HTP - GCN 59 70 28 33 0.33 77

Baselines: We compare our proposed transport policy with several baseline
methods and ablations.

– NoMap: This baseline policy, trained using PPO[30], maps RGBD image I,
hand state Oh and goal state Og directly to low-level robot actions.

– OracleMap: This method improves NoMap by assuming additional access
to a ground truth 2D occupancy map of the 10m × 10m area centered on
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the agent in the overhead view. Similar to [36], we evaluate two versions of
OracleMap: with occupancy alone (“Occ”), and with extra annotated true
locations of the task-relevant objects and container (“Occ+Obj”).

– OracleMap-Waypoints: This baseline represents the a popular hierarchical
approach in embodied navigation [21,40]: setting navigation waypoints for a
motion planner, such as A* [17]. It trains an RL policy to select discretized
(x, y) waypoints on the map. We provide access to OracleMap (Occ+Obj) for
this baseline. See supplementary for details.

– MultiOn Baselines: For Long-HOT object transport, we adapt the Pro-
jNeuralMap baseline from [36] that projects perspective features in top view
to our task. To this, we add additional hand-state and goal state embeddings
instead of object goal embeddings as in MultiOn. For MultiOn, we compare
against the authors’ baselines [36], as well as the best-performing methods
from the public leaderboard.

– Exploration Ablations: We study three variants of our method with differ-
ent exploration strategies: NearestFrontier, CNN, GCN. HTP-NearestFrontier
uses vanilla frontier exploration[43] and picks the closest frontier from the
agent location as the next exploration subgoal. HTP-CNN and HTP-GCN
use our proposed CNN and GCN-based exploration scores for weighted fron-
tier exploration, explained in Sec 4.1.

5.1 Metrics

We use standard evaluation metrics following previous works [37,36,16,18,8,1,29]
and adapt a few other metrics relevant to our task setting.

%Success: It measures the percentage of successful episodes across the test set.
An episode is successful if the agent moves all K objects to the goal location.

%Progress: It measures the percentage of target objects successfully trans-
ported to the goal location.

SPL & PPL: SPL is Success weighted-by Path Length, and PPL is Progress
weighted by Path Length. Since there multiple ways in which one can complete
this task we substitute optimal path length in SPL and PPL calculations with a
reference path length Gref (details in supplemetary). Any execution with path
length Gpl ≤ Gref weights the success and progress values by 1.0. Hence SPL =
1success ×min(Gpl/Gref , 1.0) and PPL = Progress×min(Gpl/Gref , 1.0).

Episode Energy: We adapt a similar metric from [37] to our task setting.
It measures the amount of remaining energy to complete the episode and gives
partial credit if the agent successfully moves the object closer to goal. It is defined
as E =

∑K
k=1 dg2tk/

∑K
k=1 Dg2tk where numerator and denominator represent

sum of geodesic distance of target objects to goal location at the ending and
starting of the episode respectively.

% Picked: This metric measures the percentage of target objects that are
successfully picked.
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Table 3: Left:Large Long-HOT Task. Shows generalizability of methods
to more difficult settings within the same task. The methods were tested on 26
habitat scenes with at least one dimension > 40m. All methods were trained on
dataset generated with default task configuration (max. radius 15m) and tested
on hard (max. radius 20m) and harder (max. radius 30m) transport settings.
Right: MultiOn benchmark (standard set) results for 3-object navigation.

Model Default Hard Harder

∥ %Success↑ | %Progress↑ | SPL↑ | PPL↑ ∥
OracleMap (Occ) 26 45 18 27 3.6 17 2.3 10 2 12 1.3 7.7

OracleMap (Occ+Obj) 85 91 65 67 46 69 29 38 26 48 16 26
OracleMap-Waypoints 80 88 38 39 48 72 18 24 31 59 12 19

NoMap 39 59 25 31 5.2 24 2.6 10 2.8 16 1.3 8.0
HTP-NearestFrontier 41 54 17 20 22 40 8.1 14 15 32 5.5 12

HTP-CNN 55 68 26 30 33 53 13 20 21 42 8.6 16
HTP-GCN 46 58 19 22 27 47 9.4 16 22 39 8.0 14

Model %Success↑ %Progress↑ SPL↑ PPL↑
OracleMap (Occ) 16 36 12 27

OracleMap (Occ+Obj) 48 62 38 49
NoMap 10 24 4 14

FRMQN[26] 13 29 24 24
SMT[12] 9 22 7 18

ProjNeuralMap[36] 27 46 18 31
ObjRecogMap[36] 22 40 17 30

Lyon[24] 57 70 36 45
HTP-CNN (Ours) 56 69 30 36
HTP-GCN (Ours) 57 70 27 33

5.2 Results

Standard Long-HOT Task: Table 2 shows the results of evaluations on Standard
Long-HOT task for 1000 test episodes generated using the default task level.
All variants of HTP clearly outperform NoMap and ProjNeuralMap on all six
metrics. Fig. 4 visualizes an episode of HTP-CNN. We show video results of our
work in supplementary.

Are hierarchies good? HTP-NearestFrontier already outperforms the non-hierarchical
flat baselines by a large margin, showing the importance of our modular hier-
archical approach involving separate policies for different task phases, coupled
with a topological map. Interestingly, not all hierarchies are good: in particular,
OracleMap-Waypoints, which sets waypoint subgoals for a motion planner, per-
forms clearly worse than flat OracleMap (“Occ+Obj”). Note that OracleMap
methods have access to ground truth map information and are not directly com-
parable with HTP, but can be meaningfully compared among themselves.

Does weighted frontier exploration work? Among HTP variants, both HTP-GCN
and HTP-CNN, which use predicted scores for weighted frontier exploration,
clearly outperform HTP-NearestFrontier. Between them, GCN and CNN are
roughly equivalent in this setting.

How important is good agent-centered occupancy and object location informa-
tion? On this test set, access to the ground truth occupancy and object maps
centered around the agent significantly improves performance, with OracleMap
(Occ+Obj) performing the best out of all methods.

Large Long-HOT Task: We now evaluate these same trained policies on more
challenging settings in large scenes, with more difficult transport task levels.
This evaluates generalization and highlights the benefits of effective hierarchy
and modularity. Note that scenes used for testing in Large Long-HOT have
some overlap with training scenes but not with the same episodes. This is due
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to limited large scenes available in the disjoint test set. But our observation
of better generalization stands since all methods have the same advantage, but
others suffer severe drops compared to ours.

Table 3 (left) shows the results. Flat end-to-end approaches like NoMap and
OracleMap deteriorate catastrophically on hard and harder level tasks. NoMap’s
%Success drops from 39% on default to a mere 5.2% and 2.8% on hard and harder
levels. HTP methods degrade more gracefully, achieving up to 33% and 22% on
hard and harder. In fact, as task difficulty increases, HTP significantly closes the
performance gap to OracleMap-Waypoints despite the oracle method’s access to
ground truth map information. We believe this is because our modular approach
with weighted frontier exploration leads to better generalization compared to
waypoint setting as in OracleMap-Waypoints. Further, OracleMap-Waypoints
performs better than OracleMap (Occ+Obj) confirming the benefits of subgoals
in long-horizon settings. To further study the dependence of HTP’s model com-
ponents on the task performance and its generalization to increasing number of
object goals we conduct several ablations, results for which are available in the
supplementary.

Overall, this large effect of small increments in the spatial task scale at hard
and harder levels (Tab 1) shows how Long-HOT stress-tests planning, explo-
ration and reasoning over long spatial and temporal horizons. This is different
from prior efforts [36] that extend a task by adding new objects, but pre-specify
a sequence of single-object sub-tasks. Our HTP approach, which leverages hier-
archical policies and topological maps, is a first step towards addressing these
unique challenges induced by Long-HOT. Note that, difficulty of Long-HOT is
expected to be a lot higher with the end criterion of MultiON, analysis for which
will be in the supplementary.

Results on MultiOn: Finally, we also evaluate our proposed HTP framework on
the MultiOn[36] challenge. Table 3 (right) shows that our method significantly
outperforms other baselines from [36]. Moreover, its performance is nearly on
par or better with the CVPR 2021 Embodied AI workshop challenge winner
[24]. Note that the techniques proposed in [24] are complementary to ours.

6 Conclusion

In this paper, we addressed the problem of long-horizon exploration and planning
by introducing a novel Long-HOT benchmark. Further, we proposed a modular
hierarchical transport policy (HTP) that builds a topological graph of the scene
to perform exploration with the help of weighted frontiers and simplify naviga-
tion in long-horizons through a combination of motion planning and RL policy
robust to imperfect hand-offs. Our sub-task policies are connected in novel ways
with different levels of hierarchical control requiring different state representa-
tions to perform object transport. We show how our approach leads to large
improvements in performance on the transport task, it’s ability to generalize to
harder long-horizon task settings while only training on simpler versions, and
also achieve state-of-the-art numbers on MultiON.
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Appendix

Abstract. In this supplementary, we describe the dataset statistics of
LongHOT and provide some more analysis of HTP in terms of its gen-
eralizability to increasing number of target objects. Further, we provide
some additional implementation details for HTP and its baselines. With
the accompanying video we include an overview of our contributions
along with qualitative comparison and visualizations.

A Further Analysis for Long-HOT and HTP

A.1 Ablation Study

Here, we study the dependence of various components in HTP to the overall
task performance and also their generalizability to increasing number of target
objects for the transport task. For creating a test episode, we sample additional
targets with object colors that were used during the training. Note that we only
test our methods with increasing number of object goals by training them on a
default task level with 4 objects. The ablations were conducted using the GCN
variant in HTP on 250 test episodes with 15 scenes.

HTP w/o graph: We perform an ablation of HTP without a graph memory
for closeness scores. When the high-level action is one of {Pickup, Drop} action,
the Pick-Drop module provides direct control to object-nav policy bypassing the
low-level controller. Here, instead of reaching the node with highest closeness
score we directly use object-nav policy to move closer towards target objects.

Fig. 1: Performance comparison based on success rates and SPL of the proposed
HTP with ablations for increasing number of target objects.
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HTP - random closeness scores: To study how the values of closeness scores
affect the task performance, we replace closeness values to be random numbers.
Intuitively, this should affect agent the most as random closeness values will take
agent to a very different node location compared to the one closest to the target
object. Further, it also makes agent execute pick-drop operations at unintended
locations thereby affecting the task performance.

HTP - random exploration scores: In this ablation, we replace the frontier
exploration scores to random values which affects the frontier selection and the
exploration strategy.

HTP - random object navigation (50%): Here we replace the actions from
the object navigation policy with random actions 50% of the time.

Fig. 1 reports the success rate and SPL of various HTP variants for increasing
number of target objects. As shown, the performance of HTP is considerably
higher than the all other ablations indicating the purpose of each of these model
components. HTP w/o graph provides significant drop in performance compared
to HTP due to the long-horizon exploration and navigation required by object-
nav for finding target objects. With increasing number of target objects the
performance of HTP w/o graph deteriorates even further relatively indicating
the importance of topological graph. HTP with random closeness score affect
agents the most due to its influence on pick drop operations as incorrect values
take agent to a completely different node compared to the closest one and the
performance even reduces close to 0% with increase in number of target objects.

HTP with random exploration score provides low success rates as incorrect
frontier values makes agent switch between frontiers that are farther away mak-
ing exploration less efficient as the agent travels within the explored regions for
significant portion of its time while switching. HTP is not affected much even
when perturbed with random actions for object navigation 50% of the time,
indicating the robustness of HTP. This could be due to HTP simplifying the
navigation process through a combination of motion planning and RL where, we
use motion planning for navigation within explored regions and RL policies for
navigating towards semantic targets at unknown locations.

While the performance of all the HTP variants decrease with increase in num-
ber of target objects, HTP still provides good enough performance for 8 object
transport while only training on transport task involving 4 objects. This also
shows HTP’s ability to generalize towards increasing number of target objects.

A.2 Episode termination for wrong pickup

Table 1 compares the performance of HTP and baseline methods with early
termination criteria for a wrong pickup action. An episode is terminated if there
are no objects within agent’s vicinity when a pickup action is called. The numbers
indicate Long-HOT’s difficulty to be a lot higher with an end criterion similar to
MultiOn[6]. We relax those hard constraints as training becomes more difficult
with sparse rewards for long-horizon tasks and rather focus on task completion
for our agents. While the performance of RL methods drop significantly in Table
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Table 1: Standard Long-HOT Task with early termination for wrong pickup
action similar to MultiOn[6].

Model %Success↑ %Progress↑ SPL↑ PPL↑ Episode energy↓ %Picked↑
OracleMap (Occ) 0 0.08 0 0.08 0.99 1.3
OracleMap (Occ+Obj) 6.4 16.5 5.92 15.8 0.83 28
ProjNeuralMap[6] 0.1 1.6 0.1 1.6 0.98 6.2
HTP - GCN 54 67 26 32 0.37 75

1, the proposed HTP is nearly unaffected. It can be attributed to the modular
hierarchical design of HTP where pick-drop actions are executed only when the
object closeness score is higher than a threshold.

A.3 Long-HOT episode statistics

Fig. 2 shows a histogram of geodesic distances with fraction of total episodes
in the corresponding histogram bin for various datasets used in Long-HOT ex-
periments. Note the range of reference path length increases with different task
configurations in Large Long-HOT indicating a increasing task complexity.

A.4 Discussion and limitations

The accompanying video shows some failure cases of HTP which includes situa-
tions where an agent is unable to move around an obstacle or has small frontier
regions which are ignored by the exploration module and situations where the
closeness scores for some object visible only from some particular node direction
is overwritten by values obtained when the perspective image does not contain
the object viewed from a different location localized to the same node direction.

The work assumes noiseless odometry and depth for task completion, but
earlier works like [2] have shown that semantic mapping and navigation work
well in the real world even with noisy pose and depth. Future works can relax
these assumptions to build methods that work more robustly with different forms
of noisy inputs.

B Further Details on Implementation, Training and
Metrics

In this section, we provide additional implementation details of baseline archi-
tectures and the proposed HTP.

B.1 No Map baseline

We adapt an architecture similar to [6] for the No Map policy.
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Fig. 2: Shows the statistics of the episodes used in Long-HOT. The x-axis rep-
resents geodesic distance of a reference trajectory in meters and y-axis shows
fraction of total episodes in the corresponding histogram bin. (a) represents
statistics of the episodes used to train all methods. (c, d, e and f) show test data
statistics used in standard and large Long-HOT settings. Geodesic distance of
the reference trajectories in Large Long-HOT, indicates increasing task complex-
ity of test scenarios where agent’s require deeper exploration and long-horizon
planning to complete the task.

Inputs and Outputs: No Map takes an RGBD image of size 256×256 along with
the hand state Oh (size 5× 1), goal state Og (size 4× 1) and previous action as
inputs to the policy. It then predicts one of {FORWARD, TURN LEFT, TURN RIGHT,

PICKUP, DROP} actions at every timestep.

Architecture: The RGBD image is passed through a sequence of three convolu-
tional layers + ReLU[1] and a linear layer + ReLU that transforms the input
into a feature vector of length 512. The convolutional layers consist of kernels
with size {8, 4, 3}, strides {4, 2, 1} and output channels {32, 64, 32} respectively.
The hand state Oh and goal state Og are passed through dense layers to get
respective feature vectors (dim 32). The previous action is embedded through
an embedding layer of length 32. Finally, image features, hand-goal features, and
previous action embedding are concatenated and passed through a recurrent unit
to output features that are used to predict actions and the approximate value
function.

Rewards: The following rewards rt is provided at every timestep t to train the
No Map agent:

rt =Isuccess · rsuccess + Ipick · rpick + rd2o + rd2g

+
∑

o

Iogoal · rgoal + rcollision + rfpd + rslack
(1)
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where, Isuccess, Ipick, Iogoal are functions that indicate successful completion of
the episode, any target object picked for the first time and target objects that
are transported to the goal respectively. rsuccess, rpick, rgoal are the rewards as-
sociated with Isuccess, Ipick, Iogoal. rd2o = (dot−1 − dot ) is the decrease in geodesic
distance from the agent’s position to the closest object. rd2g = maxo(d

o
t−1 − dot )

is the maximum decrease in geodesic distance of target objects with the goal.
rcollision is the collision penalty for agents and rslack is the slack reward for every
timestep the agent delays in completing the episode.
Training: The policy is trained using proximal policy optimization (PPO) [5]
technique, for approximately 40M iterations using 24 simulator instances. The
hyper-parameters used are similar to [6].

B.2 OracleMap Baselines

We first describe the OracleMap (Occ) and OracleMap (Occ+Obj) baselines and
then provide details on OracleMap-Waypoints policy.

OracleMap (Occ / Occ+Obj) The policy architecture for OracleMap (Occ /
Occ + Obj) is similar to No Map agent with an additional map input that covers
an area of 10m× 10m. First top view map embeddings (dim. 16) are generated
and then passed through a map encoder. The encoder consists of convolutions
with kernels {4, 3, 2}, stride {3, 1, 1} and output channels {32, 64, 32}. The map
encoder produces a feature vector of length 256 and is concatenated as one of
the inputs to the recurrent unit. The output action space and rewards used to
train OracleMap (Occ / Occ + Obj) is similar to the No Map baseline.

OracleMap-Waypoints The inputs to the baseline are OracleMap (Occ+Obj),
hand state Oh and goal state Og. It then predicts waypoints to be reached as
(x, y) locations on the map. The prediction is discretized into M = 100 bins
within a 5m× 5m range centered on the agent. The agent then selects a bin as
one of its action and uses A*[3] to reach its location. The predicted subgoal is
also associated with one of {Pickup, Drop} high-level actions. The action space
in Waypoints policy contains M × 2 in total. Once the agent reaches the pre-
dicted subgoal, the corresponding high level action {Pickup, Drop} is executed.
The subgoals are updated for every tk steps irrespective of agent reaching previ-
ously assigned subgoal. Agent’s prediction range is kept higher than maximum
traversable distance in tk steps for agents to provide subgoals that avoid taking
pickup or drop actions within tk timesteps. The policy architecture and rewards
used are similar to OracleMap (Occ+Obj) baselines.

B.3 Hierarchical Transport Policy

High-level Controller: The controller takes hand state Oh, goal state Og and
closeness scores FO of objects with respect to the nodes as inputs. The high-
level action is assigned based on the following conditions, if the agent already
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holds maximum number of objects in its hand and goal object was discovered
(closeness score of goal> F th

O in one of the nodes) a {Drop} action is executed else
the agent executes {Explore} to find the goal object. If the agent has capacity
to carry more objects, and some closeness scores for objects are greater than F th

O

in the nodes, a {Pickup[Object]} action is executed for objects that are not
either held by the agent or transported already. The agent executes {Explore}
if none of the objects satisfy the closeness score criteria. {Pickup[Container]}
action is only executed when the container is discovered and the agent does not
hold any object in its hand.

Pre-trained Encoder FA : Latent features from a pre-trained auto-encoder is
used as node features in HTP. It consists of a ResNet-18[4] style encoder-decoder
architecture with latent features of 32 dimensions. The auto-encoder is trained
with a weighted MSE loss that weighs pixels of target objects with a weight
λ = 2.0.

B.4 Reference Trajectory Calculation

A reference demonstration in the transport task first picks up the container and
then picks up consecutive closest objects from its previous location to finally
drop them at goal. The sum of geodesic distances in executing this reference
trajectory in an episode from agent’s starting location is used as the reference
path length Gref .
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