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Abstract

Objects are powerful abstractions for representing the complexity of the world, and
many computer vision tasks focus on learning to understand objects and their prop-
erties in images from annotated examples. Spurred by advances in unsupervised
visual representation learning, there is growing interest in learning object-centric
image representations without manual object annotations, through reconstruction
and contrastive losses. We observe that these existing approaches fail to effectively
exploit a long-known key signal for grouping object pixels, namely, motion in
time. To address this, we propose to guide object representations during training
to be consistent with optical flow correspondences between consecutive images
in video sequences of moving objects. At test time, our approach generates ob-
ject representations of individual images without requiring any correspondences.
Through experiments across three datasets including a real-world robotic manip-
ulation dataset, we demonstrate that our method consistently outperforms prior
approaches including those that have access to additional information.

1 Introduction

The information content in complex visual scenes often boils down to the properties and configurations
of a small number of objects within them. This makes objects a natural representational basis for
visual perception. Indeed, human adults experience their visual world as consisting largely of
overlapping objects at various distances that are stable across space and time. The origins of such
an object-based experience of raw sensory inputs has occupied and intrigued cognitive scientists for
over a century [23, 40–42, 49, 50].

Artificial intelligence researchers have also asked similar questions about how machines might parse
image inputs into objects, often motivated by the need to represent high-resolution images compactly
yet sufficiently comprehensively for various applications. State-of-the-art approaches for classic
computer vision tasks such as object detection and segmentation focus on learning to perform these
tasks with manual object annotations. However, many recent efforts have focused on unsupervised
object discovery, the task of automatically identifying the objects in a visual domain represented by
an unlabeled dataset of images or videos, and then encoding any new input images from that domain
into an object-structured representation that expresses the presence, configurations, and relations of
those identified objects. This is useful in downstream tasks such as video prediction, which can be
most efficiently expressed in terms of the movements of objects [26–28, 33].

Exciting progress in unsupervised object discovery has come through introducing object structure
into unsupervised visual representation learning approaches. Specifically, unsupervised visual
representations are commonly trained to reconstruct image inputs [11, 34], or separate distinct
images [6, 7]. The best-performing object discovery approaches [3, 10, 13, 14, 16, 21, 22, 27, 29–
31, 33, 37] optimize these same objectives, but constrain their neural network architectures in various
ways to produce object-like representations such as segmentation masks or keypoints.
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Figure 1: Objects move as coherent wholes, therefore motions in natural video sequences preserve
the object structure of the images, modulo minor boundary and occlusion effects. We identify the
following simple desideratum for good discovered object-structured image representations such as
the segmentation masks depicted here: object representations for nearby images in a video stream
must be related to each other through the same optical flow warps as the images themselves.

Consequently, much research has focused on designing network architectures to produce object-
structured representations [10, 21, 22, 27, 30, 31], and corresponding inference mechanisms [13,
14, 16]. Our contribution is orthogonal to these efforts: we focus on the fundamental problem of
identifying useful signals for object discovery, and designing improved objective functions that
correctly exploit those signals. In particular, we call back to the Gestalt idea [50] that motion contains
information critical for correctly grouping object pixels together. Indeed, a large and mature literature
on motion segmentation approaches in computer vision [2, 24, 45, 51, 52] attests to the utility of
tracking the image plane motions of pixels, i.e., “optical flow”, for identifying moving objects in
video — pixels that coherently move together belong together.

We show how these ideas extend to unsupervised neural object discovery. Our technique is simple:
we compute optical flows on unlabeled videos using off-the-shelf approaches. Then, we train our
object encoder to produce representations for nearby frames that are consistent with the optical
flow-provided correspondences between those same frames. Our objective function takes the form of
a modified contrastive loss. We call this technique FLOOD (“Flow-guided object discovery”). This
idea is illustrated in Fig 1.

We evaluate FLOOD on a variety of synthetic object discovery benchmarks used in previous works. In
addition, we introduce a real-world tabletop robotic object pushing dataset. Our results show that
FLOOD yields reliable improvements over baseline methods based on reconstruction and contrastive
losses, and even an approach that has access to additional information about the forces causing object
motions in video.

2 Related Prior Work

Video object segmentation from motion and appearance. As foreshadowed in Sec 1, our ap-
proach for flow-guided object discovery is related to motion segmentation methods [2, 24, 39, 44, 45,
51, 52] in computer vision, which use optical flow cues to group pixels in video frames which move
coherently together. Since purely flow-based groupings are not persistent and cannot handle static ob-
jects, video segmentation algorithms often combine these motion cues with appearance [8, 20, 44, 48].
However, all these methods are designed for segmenting video and can not handle static images as
trained FLOOD models do. Specifically, FLOOD trains unsupervised appearance-based static image
object segmentation models by using flow-based cues in training videos as a supervision signal.

Unsupervised representations from motion. In the context of learning unsupervised represen-
tations, image region-level correspondences computed through object motion tracking [47] or by
matching object-like regions [15] has been used before as a form of self-supervision. Compared to
FLOOD’s goal of discovering objects and forming object-structured representations of full images,
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they instead aim to train unstructured descriptors of objects and object-like regions in images. Most
related to our approach from this literature, Pathak et al. [36] use motion segmentation of moving
objects from video as targets for a single-image segmentation model. Note that this task is not
well-posed; moving objects cannot be identified from a single image. Rather than produce a good
segmentation model, this self-supervised segmentation task is merely intended as a “pretext task” [36],
i.e., through training on this task, the CNN must acquire good unstructured image representations
useful for other computer vision tasks.

Neural object discovery. Nearly all neural object discovery approaches targeting general images or
video are trained by reconstructing the input image [3, 13, 16, 21, 22, 27, 30, 33]. Some approaches
use adversarial training: the idea is that object-structured representations can be modified and
recomposed into valid images [5, 53]. Two recent approaches are trained through contrastive losses
to distinguish between distinct images in a dataset [31, 37]. Among these, Racah and Chandar [37]
use temporal continuity in video for object discovery, in a method called slot-contrastive networks
(SCN). Like FLOOD, SCN uses temporally nearby frames as positives and distant frames as negatives,
but it effectively treats nearby images as being identical since it does not account for pixel motions.
Instead, as specified above, FLOOD models nearby frames as related by a warp specified by optical
flow. We compare against SCN in Sec 4.

In robotics contexts, where motion is attributable to known robot actions, several models [25, 26,
46] use action-conditioned future prediction as a training objective for joint object discovery and
environment dynamics modeling. The robot actions in these formulations help specify how the scenes
in training videos evolve over time. FLOOD replaces robot actions with dense pixel correspondences
from optical flow, which are more general — they specify how arbitrary videos evolve even with
unknown actors and forces. Notably, our implementation of FLOOD uses the popular object slot
encoder architecture of contrastive structured world models (C-SWM) [26], enabling a controlled
comparison in Sec 4. With identical object encoders, and sans robot action knowledge, FLOOD still
performs comparably or better than C-SWM even in robotics datasets with known actions.

3 Flow-guided object discovery

Task setup and motivation. First, we introduce the unsupervised object discovery setting. Given a
collection of unlabeled training images D that specify a visual domain, object discovery approaches
aim to automatically identify the objects present among those images. For example, given images of
toys in varied configurations on a cluttered tabletop, we would like to automatically discover those
toys. Discovery is typically expressed by parsing or spatially disentangling new images from that
domain and assigning some or all pixels to various discovered objects and background.

Object discovery is thus closely tied to the object-structured representation in which the results
of such image parsing are expressed. Indeed, training object discovery approaches amounts to
learning unsupervised object-structured representations. Examples of such representations include
keypoints [21, 27], object detection bounding boxes [9], segmentation masks [16, 26], and skeletons
capturing connected keypoints [22]. Much research has focused on how to design innovative
representations and infer them.

What are these representations useful for? Aside from having close correspondences with the true
objects in the scene, object-structured representations are intended to be compact, and to spatially
disentangle the image into composable and coherently moving components. These properties are
useful in downstream tasks such as robotics. For example, to model how visual scenes respond to
robot actions, object-structured representations permit compact models in terms of how discovered
object components interact with the robot and with each other [26–28, 33]

In the following subsections, we propose a new approach and training objective for neural object
discovery. Prior approaches largely rely on image reconstruction, action-conditioned future prediction,
or contrasting images in the training dataset, as we will discuss in Sec 2. Instead our approach,
FLOOD, uniquely mines supervisory signals from motions occurring in a training dataset of videos
for learning to disentangle objects.
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Figure 2: The training setup for FLOOD (Sec 3.3), applied to object-structured slot representations
(Sec 3.1). [DJ: Should fix optical flow direction]

3.1 Slot representation and encoder

Our approach is not tied to only one choice of object-structured representation, but we ground our
discussion and notation using “slot” segmentation masks and vectors, which we will also use in
experiments. An input image x, of size H ×W pixels, is represented through a collection of K
slot masks m(x) = {m1(x),m2(x), . . . .mK(x)} of size H ×W . All mask values lie between 0
and 1, i.e., 0 < mk(i, j) < 1 for all masks k, and pixel positions (i, j). Masks mk(x) are intended
to represent segmentation masks for objects in x. Each slot mask is then summarized as a D−
dimensional slot vector zk(x). z(x) represents all K slot vectors combined. In our work, each slot is
free to bind to any object or background in the input image.1

How are these slot masks and vectors generated from input images? We use the popular neural
network architecture proposed in Kipf et al. [26]. An “object extractor” convolutional neural network
F with a sigmoid output layer produces K convolutional maps constrained to lie in [0, 1]. These
represent the slot masks m(x). Next, a small multi-layer perceptron G processes each flattened slot
mask to produce its corresponding slot vector: zk(x). This compression serves as a representational
bottleneck that encourages the emergence of object-structured representations, as we will discuss
below. The second and third rows of Fig 2 illustrate this procedure.

3.2 Optical flow, and how motions can help with object discovery

An important characteristic of objects, known for long to be particularly useful for object grouping, is
that objects move as coherent wholes. This idea has been known for at least a century, and is captured
in the pithy Gestalt [50] phrase: “pixels that move together group together.”

Yet, to our knowledge, no existing approaches for neural object discovery use this information,
including many that train on video sequences, such as [21, 26, 37]. We address this gap by proposing
a novel approach to use the coherent motions of objects in training videos as training signals to guide
object discovery.

Our key idea is illustrated in Fig 1. Objects move as coherent wholes, and the objects in two
neighboring images in video are the same, only (possibly) slightly displaced. Therefore, our slots
(generalizable to other object-structured representations) should satisfy the following desiderata:

• Slots should bind to the same set of objects in both frames.

• Slots should be sensitive to the small changes in the positions of those objects. In particular, each
slot mask mk should exactly track the displacement of the object that it is bound to.

1This is not true in Kipf et al. [26], due to the requirement of object-specific actions for each slot.
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To frame these desiderata as a mathematical objective, we introduce the concept of optical flow. An
optical flow field ha→b defines a warp between images a and b, such that b = ha→b(a) . In other
words, ha→b specifies a displacement for each pixel in a, such that the resulting image is equal to b.
Optical flow computation is a well-studied problem in computer vision, and many mature solutions
exist. We use FlowNet2.0 [19], which is trained on four large synthetic datasets of animated object
videos [4, 12, 18, 32].

The optical flow field hx→x′ provides us with correspondences between pixels in temporally nearby
frames x and x′. Now, the desiderata for slots, stated above, boil down to requiring that the pixel
correspondences between neighboring frames x and x′ are preserved in the correspondences between
their slot masks mk(x) and mk(x′). For all slot indices k:

hx→x′(mk(x)) = mk(x′). (1)

In other words, if mk(x) is a good segmentation mask for some object in image x, then it maps to the
next timestep through the same optical flow warp as the input images themselves.

This simple optical flow-based desideratum implicitly exploits the fact that objects in video move
coherently, in ways that preserve their identity. To see this, observe that Eq (1) would not hold true
for good slots mk and arbitrary warps h. For example, h might move all pixels in x by random
displacements. In this case, the resulting image x′ would no longer plausibly retain the object
identities present in x, and mk(x′) cannot therefore be expected to preserve them either. Optical
flow warps corresponding to frames in natural videos are thus special, in that they are object identity-
preserving.

As a sidenote, in the above discussion, we have largely assumed that optical flow masks provide
perfect pixel correspondences between the same real three-dimensional particle in nearby frames x
and x′. Optical flow methods, while they perform very well in our experiments, do of course only
produce noisy correspondences. However, as our experimental results validate, this is not a major
concern.

3.3 The FLOOD training objective

The desideratum in Eq (1) cannot directly be set up as a training objective, since it permits two
degenerate solutions: mk(x) = 0 for all x, k, (“all-zeros” ), and mk(x) = x for all x (“identity”).
We avoid these by defining a contrastive training objective over the slot vectors z(x) = G(m(x)).

Let m(x′) , hx→x′(m(x)) represent the prediction of the slot mask m(x′) obtained by flow-
warping m(x). Note that this is the LHS of Eq (1), combined over all slot indices k. Now, let
z(x′) = G(m(x′)) represent its corresponding predicted slot vectors.

Then, the flow-guided object discovery (FLOOD) objective is:

L = d(z(x′), z(x′)) + max(0, γ − d(z(x′), z(x−))) (2)

where d(·, ·) is a distance function between slot vectors, and x− are negatives for x. Similar to prior
works in unsupervised contrastive representation learning [6, 35], this may be interpreted as a softmax
classification objective for distinguishing the positive pair (in the numerator) from negative pairs
(in the denominator). We set d to be the summed `2 error over slots, and the negative frames x−
are uniformly drawn from frames that are more than T = 1 steps away from the current frame x in
the training videos. Recall that x and x′ are temporally nearby frames, yet the positives above are
not directly their corresponding slot vectors z(x) and z(x′). Instead, the slots of x are first warped
through the optical flow warp to compute z(x′), as motivated in Sec 3.2.

This contrastive objective trivially precludes the all-zeros degenerate solution above. Avoiding
the “identity” solution is more subtle: it is done by applying the contrastive loss to a compressed
representation z = G(m(x)), computed by a small MLP G. The low capacity of G means that it
should be very easy to extract a small code z that is sufficiently discriminative to minimize Eq 2. This
forces the network to only represent highly processed information in the masks mk, thus avoiding the
identity mapping mk(x) = x.
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3.4 Implementation Details

In our experiments, the object extractor F is a four-layered convolutional neural network. The first
three convolutional layers are followed by a relu and a batchnorm layer. The last convolutional layer
is followed by a sigmoid, so that the predicted slot masks m(x) lie in [0, 1]. The object encoder G is
a small multi-layer perceptron consisting of three layers, with a LayerNorm [1] between the second
and the third MLP layer. We use the Adam optimizer and train this network on a single 2080Ti GPU
with batch size of 1024.

There are two main hyperparameters in our method: slot vector dimension and slot number. For
all experiments with our method, we fix the slot number to six. We keep all the other training
hyperparameters as well as slot vector dimension as the same from C-SWM.

4 Experiments

Our experiments aim to answer the following questions: (1) How well does FLOOD with slot
representations perform against representative state-of-the-art approaches from various families of
neural object discovery algorithms? (2) How does FLOOD compare against ablations that use the same
architecture, but with different training objectives? (3) While most past work on neural discovery has
been evaluated in simplistic settings, can FLOOD handle real-world images set in a plausible robotics
application?

4.1 Baselines and Ablations

Throughout our experiments, we compare against three recent baselines, representing different types
of object discovery objectives from the literature.

• Contrastive structured world model (C-SWM) [26] represents methods for joint object discovery
and environment dynamics modeling trained through an action-conditioned future prediction
objective. Compared to our method and other baselines, it requires extra information about
object-specific actions at each instant.

• Slot attention (SA) [30] represents object discovery through image reconstruction, using a new
attention-based architecture to encode images into slots. It produces slot masks, but does not have
a direct analogue of slot vectors used in our approach.

• Finally, slot-contrastive networks (SCN) [37], discussed above in Sec 2, use temporal continuity
for object discovery: like FLOOD, it trains representations that can distinguish far-away frame pairs
from nearby frame pairs using a contrastive loss, but it does not use optical flow correspondences
between nearby frames. SCN directly produces slot vectors without first generating slot masks.

FLOOD inherits the object extractor and object encoder of C-SWM, which is also used in SCN,
making it particularly well-suited for comparison. To enable a more controlled comparison of object
discovery approaches with a fixed architecture, we create two ablations of our method that use an
SCN-like “temporal continuity” objective, and another that uses an SA-like image “reconstruction”
objective. Since C-SWM already shares the same architecture, it doubles up as the third ablation,
representing a “dynamics modeling” objective.

4.2 Datasets

We evaluate FLOOD on three video datasets:

• CUBES is a 3D blocks dataset, adopted from Kipf et al. [26]. This is a grid-world environment
with discrete actions applied to selected blocks, such as “move object 1 one step forward” and
“move object 2 one step left”). We use the authors’ code to collect a video dataset with a random
action policy, using identical settings as in Kipf et al. [26]. We train on 1000 training videos of
length 100 frames each, and evaluate on 10,000 videos of length 10. All frames are 50x50 RGB
images. The robot executes a new action in each frame. For C-SWM, object-specific actions are
provided as a four-dimensional one-hot vector(if an action is applied to that object) or a vector of
zeros for each object slot.
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Figure 3: Sample images from the three datasets (a) CUBES, (b) SIM, and (c) REAL.

• SIM is collected in a custom new simulated robotic manipulation environment. We use Mu-
JoCo [43] to render a tabletop with three simple object shapes (a green cube, a red cube, and a
blue cylinder) and a Fetch robot. We collect 1000 training videos and 1000 testing videos, all of
length 15 frames, involving 15 separate robot motions. In each episode, the robot randomly picks
one object and a direction to push it to. All frames are 128 x 128 RGB images. For C-SWM,
object-specific actions are provided as a two-dimensional vector(if an action is applied to that
object) or a vector of zeros for each object slot.

• REAL is analogous to SIM, but collected on a real robot arm, and with more complex objects and
dynamics. We use a WidowX 200 robot arm and three deformable toys. The videos involve the
robot performing random end-effector motions in each frame, colliding frequently with the objects
and displacing them. We collect 350 training videos, and evaluate on 50 videos, all of length 30.
All frames are 128 x 128 RGB images. For C-SWM, object-specific actions are provided as a
five-dimensional vector(if an action is applied to that object) or a vector of zeros for each object
slot.

We will publicly release all datasets and code. Sample frames from all datasets are shown in Fig 3.

4.3 Quantitative Evaluation Metrics

We use two evaluation metrics for our slot representations:

• ARI: To evaluate the slot masks as object segmentation masks, we adopt a widely used metric for
multi-object segmentation: Adjusted Random Index(ARI) [17, 38]. ARI measures the similarity of
two groupings of pixels, and is invariant to the permutation of groupings. We compare the set of
slot masks produced by slot encoder with ground truth object segmentation masks.

• KLME: While ARI evaluates slot masks, it does not directly evaluate the slot vectors. To do this,
we define a new metric as follows. We train NK linear regression models fnk, one to regress each
of the K slot vectors to each of N ground-truth 2D object coordinates in the scene, corresponding
to specific keypoints on N objects. For each object n, we select mink MSEn(fnk) as a score that
captures how well that keypoint is represented, where MSEn is the linear regression mean squared
error on held-out data. This corresponds to finding the closest-matching slot for each keypoint, and
measuring how well they match. Averaging this score over all N keypoints produces our keypoint
location matching error (KLME) metric for slot vectors.

Ground truth object segmentation masks and keypoint locations are readily available in the simulated
environments. For REAL, we labeled segmentation masks for 90 test images, and 2d location of
objects for 660 test images, to permit the measurement of ARI and KLME respectively.

Note that SA does not produce slot vectors, so we omit its KLME in our quantitative results. Likewise,
SCN does not produce slot masks, so we omit its ARI.

4.4 Results

Table 1 summarizes results for our method and the baselines on all three datasets. Our method easily
outperforms SA and SCN, and performs comparably with C-SWM, which has access to additional
information about object actions at each step. In particular, C-SWM shines on CUBES, the simplest
environment, where object-specific actions are discrete and cleanest.
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Table 1: Quantitative comparison against published baselines. Best performance in bold
FLOOD(Ours) C-SWM [26] SCN [37] SA [30]

SI
M ARI(%)↑ 93.56 70.93 - 50.07

KLME↓ 100.86 99.61 286.18 -
R

E
A

L ARI(%)↑ 16.86 15.97 - 10.20

KLME↓ 786.48 830.34 806.73 -

C
U

B
E

S ARI(%)↑ 85.51 95.09 - 85.29

KLME↓ 59.92 54.79 332.42 -
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Figure 4: Examples of masks produced by FLOOD and baselines on CUBES and SIM images. While
C-SWM produces very crisp masks for all objects on CUBES, it interestingly fails to represent the
robot (“object 4”) in SIM, despite the object-specific actions being easiest to specify for the robot.

Table 6 shows results of the objective function ablations of our approach mentioned above in Sec 4.1,
with network architecture fixed. These results are reported on on SIM, which has clean annotations
of object segmentations and keypoints for evaluation. Once again, we easily outperform the baselines,
illustrating that the flow-guided objective is important to our method’s overall performance.

Fig 4 and 5 show examples of masks produced by FLOOD and baselines for two images per dataset.
For each object in the scene, we show the mask that most frequently binds to it. Some methods do not
successfully bind to all objects in the scene; for them, we do leave empty spaces representing missing
slots. More extensive results, including all slot masks produced by each method, are shown in Supp.

5 Conclusions

In this paper, we design a new approach for unsupervised object discovery that is informed by
optical flow correspondences between neighboring images in video. We show that this easily

Table 2: Quantitative comparison of flow-guided (ours) vs. other training objectives on SIM

SI
M

FLOOD(Ours) dynamics modeling temporal continuity reconstruction

ARI(%)↑ 93.56 70.93 7.89 33.35

KLME↓ 100.86 99.61 455.04 396.82
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Figure 5: Examples of masks produced by FLOOD and baselines on REAL images. This is the hardest
setting, and all methods produce less crisp masks. However, C-SWM and our approach can both
successfully learn to represent the three objects in the image, and both are unable to learn the robot.

outperforms baselines that learn object-structured representations from general videos, and even
performs comparably with an approach that learns from additional object-specific information.

However, our approach is dependent on optical flow providing reliable correspondences. While optical
flow approaches are mature, there remain difficulties in producing reliable correspondences in the
presence of clutter, occlusions, and lighting changes. We do not handle such noisy correspondences
in our approach, and leave it for future work. Our own experimental settings did not prove to suffer
from these issues, but they may arise in still more challenging settings.
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Table 3: Quantitative comparison against published baselines. Best performance in bold. We report
mean ± standard error for 3 seeds.

FLOOD(Ours) C-SWM [26] SCN [37] SA [30]

SI
M

ARI(%)↑ 96.41 ± 1.60 80.08 ± 1.60 - 29.05 ± 21.03

KLME↓ 97.98 ± 3.01 99.8 ± 0.19 309.15 ± 22.97 -

KLME-OB↓ 616.05 ± 26.45 1403.77 ± 4.31 5258.00 ± 138.48 -

R
E

A
L ARI(%)↑ 20.45 ± 2.99 10.04 ± 5.94 - 14.53 ± 4.33

KLME↓ 814.93 ± 34.03 857.24 ± 26.9 825.50 ± 13.8 -

KLME-OB↓ 1082.19 ± 30.42 1307.04 ± 38.33 4345.46 ± 31.99 -

C
U

B
E

S ARI(%)↑ 86.47 ± 0.49 94.30 ± 0.39 - 66.98 ± 18.32

KLME↓ 60.23 ± 0.16 54.80 ± 0.007 368.62 ± 36.2 -

KLME-OB↓ 181.24 ± 0.09 177.43 ± 0.44 3787.69 ± 449.54 -

6 Supplementary Material

6.1 Sample episodes from training datasets

We evaluate our method and corresponding baselines on three datasets: SIM, REAL and CUBES.
Fig 6 shows examples of sample episodes from each dataset. In both SIM and REAL, there are
diverse contacts dynamics between the robotics manipulator and the objects and heavy occlusions.
Thus these two datasets are especially challenging for any methods to learn robust object-centric
representations from.

6.2 Error bars for quantitative results

Table 4 reproduces the quantitative results from Table 1, with error bars from 3 random seeds. Recall
that SA does not produce slot vectors, so the KLME is inapplicable for this baseline. Further, SCN
does not produce slot masks, so the ARI is inapplicable.

6.3 Measuring object binding

For these above results, the KLME was computed by training predictors from each slot to each object.
Then for each image, and each object, we would compute the minimum over slots of the prediction
error for that object. This permits the possibility of different slots binding to the same object in each
image. For example, for predicting object 1, slot 1 might be used as the predictor in image 1, and slot
2 might be used in image 2.

Instead, we now present a metric that better reflects whether slots consistently bind to the same
objects. To do this, for each object n, we select the slot k that best represents that object over a
validation dataset. We call this metric the KLME-OB (for “object binding”). Observe that FLOOD
enjoys a large advantage on this metric on both SIM and REAL: we observe that this is because
C-SWM does not bind to objects as consistently as FLOOD. This is especially true in SIM where
FLOOD binds to the robot, but C-SWM does not. The KLME metric does not fully penalize C-SWM
for this, since it uses an object slot close to the robot (a different one in each image) to predict the
robot position instead.

6.4 Additional examples of slot masks

In Fig 7, Fig 8 and Fig 9, we show examples of masks produced by FLOOD and baselines for two
images per dataset. We visualize all masks for each method. C-SWM requires the number of slots to
be equal to the number of objects. For our method, we used 6 slots for REAL, and 7 slots for SIM
and CUBES. We tuned this hyperparameter by searching over 4, 5, 6, and 7 slots for each dataset.
For SA, we retained the slots hyperparameter setting (=7) from the authors’ public code. We label
each mask with a colored box if this mask best predicts the 2D coordinates of a certain object over
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the validation set — this is also the slot-to-object matching used in computing the KLME-OB score
above.
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Figure 6: Examples of videos from SIM, REAL and CUBES datasets
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Figure 7: Examples of masks produced by FLOOD and baselines on SIM. The slot that best predicts
the blue cylinder is outlined in blue, red cube in red, green cube in green, and robot arm in purple.
For our method, each object is consistently represented by one of the slots. When there are more
slots than the number of objects, our method outputs “empty” masks for the extra slots (no specific
image regions are highlighted). For C-SWM where the robot is not represented in any slot, slot 2
minimizes the robot prediction error, even though it actually represents one of the objects, as shown.
In this case, the same slot is the predictor for both the object and the robot. For SA, learned object
representations are not disentangled, thus each slot represents multiple objects. In addition, the slot
that binds to a certain object changes from image to image.

Table 4: Quantitative comparison against published baselines. Best performance in bold. We report
mean ± standard error for 3 seeds.

FLOOD(Ours) C-SWM [26] SCN [37] SA [30]

SI
M

ARI(%)↑ 96.41 ± 1.60 80.08 ± 1.60 - 29.05 ± 21.03

KLME-OB↓ 616.05 ± 26.45 1403.77 ± 4.31 5258.00 ± 138.48 -

R
E

A
L ARI(%)↑ 20.45 ± 2.99 10.04 ± 5.94 - 14.53 ± 4.33

KLME-OB↓ 1082.19 ± 30.42 1307.04 ± 38.33 4345.46 ± 31.99 -

C
U

B
E

S ARI(%)↑ 86.47 ± 0.49 94.30 ± 0.39 - 66.98 ± 18.32

KLME-OB↓ 181.24 ± 0.09 177.43 ± 0.44 3787.69 ± 449.54 -

Table 5: Quantitative comparison of flow-guided (ours) vs. other training objectives on REAL

R
E

A
L FLOOD(Ours) dynamics modeling temporal continuity reconstruction

ARI(%)↑ 16.86 15.97 0.011 5.56

KLME-OB↓ 1082.19 ± 30.42 1307.04 ± 38.33 5558.44 5307.13
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Figure 8: Examples of masks produced by FLOOD and baselines on REAL. The slot that best
predicts the pink octopus is outlined in pink, blue whale in blue and brown bear in brown. For both our
method and C-SWM, the robot is not represented by any of the slots. For SA, object representations
learned are not disentangled, as each mask often represents several objects. In both our method and
C-SWM, slots bind to the same object throughout the entire validation dataset. However, for SA,
there is not a fix mapping from slots to objects.

Table 6: Quantitative comparison of flow-guided (ours) vs. other training objectives on CUBES

SI
M

FLOOD(Ours) dynamics modeling temporal continuity reconstruction

ARI(%)↑ 85.51 95.09 14.35 15.21

KLME-OB↓ 181.24 ± 0.09 177.43 ± 0.44 460.25 428.46
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Figure 9: Examples of masks produced by FLOOD and baselines on CUBES. The slot that best
predicts each colored cube is outlined in the same color corresponding to the cube. For both our
method and C-SWM, all objects are consistently represented by some slot. Since our method predicts
more slot masks than the number of objects available in the scene, slot masks 6 and 7 are empty
masks. For SA, there is no consistent mapping from slots to objects.
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