
Recasting Generic Pretrained Vision Transformers As Object-Centric
Scene Encoders For Manipulation Policies

Jianing Qian1, Anastasios Panagopoulos1 and Dinesh Jayaraman1

Abstract— Generic re-usable pre-trained image representation
encoders have become a standard component of methods for
many computer vision tasks. As visual representations for robots
however, their utility has been limited, leading to a recent wave
of efforts to pre-train robotics-specific image encoders that are
better suited to robotic tasks than their generic counterparts.
We propose Scene Objects From Transformers, abbreviated as
SOFT(·), a wrapper around pre-trained vision transformer (PVT)
models that bridges this gap without any further training.
Rather than construct representations out of only the final
layer activations, SOFT(·) individuates and locates object-like
entities from PVT attentions, and describes them with PVT
activations, producing an object-centric embedding. Across
standard choices of generic pre-trained vision transformers PVT,
we demonstrate in each case that policies trained on SOFT(PVT)
far outstrip standard PVT representations for manipulation
tasks in simulated and real settings, approaching the state-
of-the-art robotics-aware representations. Code, appendix and
videos: https://sites.google.com/view/robot-soft/

I. INTRODUCTION

In the last decade, computer vision researchers have
demonstrated consistently [1], [2] that visual features pre-
trained with the right objectives on large image datasets offer
large advantages for learning to perform new visual tasks.
Consequently, it is the standard practice today for generic
“foundation” image encoder models [3]–[12] to be reused for
virtually all standard computer vision tasks, including image
classification, object detection, segmentation, pose estimation,
monocular depth estimation, and video understanding, some-
times even despite domain differences with the pre-training
data [13]. Thanks to this robust pre-training advantage, vision
algorithms have been able to leverage the benefits of ever-
improving neural network backbones, training algorithms,
and pre-training objectives to boost performance across many
tasks.

However, advantages from using these generic pre-trained
image encoders have remained notably elusive in robotics
[14], [15]. In response, there has been a recent wave of image
encoders pre-trained specifically for robotic tasks, especially
manipulation, often exploiting the temporal structure of
human videos of manipulation activities [16]–[20]. These
representations already achieve much more promising results
than their generic counterparts for enabling robot learning
and control, even though the pre-training datasets are less
diverse, and objectives and architectures are less mature.

Towards understanding and addressing the deficiencies
of generic image encoders for robotics, we focus on the

1All authors are with GRASP Lab, Computer and Information Science
Department, University of Pennsylvania, 3330 Walnut St, USA jianingq,
anpans, dineshj@seas.upenn.edu

inference procedure that extracts image representations from
such encoders to provide to downstream policies. With no new
training, we propose a procedure to extract a more robotics-
relevant representation of an image from a simple forward
pass through a generic pre-trained encoder. Our insight is that
the computational trace of a forward pass through a modern
transformer neural network includes not just key, value, and
query feature activations but also attention weights at each
layer. Such attention weights have been noted in prior works
to contain meaningful information, such as about referring
expressions and phrases in language [21], [22], and object
regions in images [9]. However, to our knowledge, all prior
attempts to apply pre-trained image encoders to downstream
tasks have ignored this information, instead relying solely on
activations.

At a high level, given an input image, our approach iden-
tifies attention-based patch token groupings corresponding
to object-like entities, and then computes activation-based
representations to describe each such identified object. We call
our method Scene Objects From Transformers, or SOFT(·)
for short. SOFT(·) acts as a wrapper around pre-trained
vision transformer (PVT) models. Rather than producing
the standard activation-based “scene vector” representations
from a PVT, SOFT(PVT) produces an object-centric image
representation that individuates, locates, and describes each
object in the scene. This reflects the object-centric structure
of the world [23]–[26], which is useful for robotic manipula-
tion [27]–[29].

Our experiments across simulated and real robotic manip-
ulation settings demonstrate that: (1) SOFT(PVT) representa-
tions, which involve no new training, easily outperform vanilla
PVT activation features for manipulation for various choices
of the backbone PVT, (2) SOFT(PVT) with the best generic
PVT models largely bridge the gap to today’s best robotics-
specific image encoders, and (3) SOFT(·) out-of-the-box
consistently mines object groupings out of generic pre-trained
vision transformer (PVT) models in unseen robotics domains
better than prior object-centric embedding approaches, even
with domain-specific training.

II. RELATED WORK

a) Robotics-Specific Pre-Trained Image Representations:
In response to the growing evidence that widely used generic
pre-trained image representations in computer vision form
poor inputs for robotic policies, research has recently turned
to robotics-specific image representations. Nair et al [16]
first showed performance gains on various simulated and



Fig. 1. Visualizing attentions for two images from ImageNet and Shapestacks. On each image, we consider a foreground patch (yellow) and a background
patch (red). Attentions aii for each patch towards itself are zeroed out to identify the patch in attention images. Layerwise attentions at various DINO
layers (left) reveal little information at higher layers, so we instead compute inputwise attentions (right) using attention flow.

real robotics tasks from training time-contrastive represen-
tations on human videos [30]. Since then, several other
works [17]–[20] have followed suit, demonstrating gains
from various training objectives on robotics-relevant data [30],
[31], including objectives specifically motivated by usage for
control tasks [17], [18]. Recent works [32], [33] come up with
different benchmarks to study the effectiveness of pre-trained
representations. However, the reason for the poor performance
of generic models relative to these is not well-understood.
We show that, at least for vision transformer models, this gap
may be largely bridged through changes to the representation
inference procedure.

b) Object-Centric Embeddings (OCE): An OCE sum-
marizes the scene in terms of the objects, their locations
and properties, and their relationships to each other. A
common OCE format for an image xi is fθ(xi) = (S =
{s1, s2, ..., sNi}, C = {c1, c2, ...cNi}). This is a tuple of
two unordered discrete sets, the object slot vectors S and
their coordinates C. Each slot vector sj ∈ RD describes
one object or entity (such as an object part) in the scene,
and the number Ni of such slots varies from scene to
scene. Each location specifier ci describes the location of
its corresponding slot, such as through a segmentation mask,
bounding box, or keypoint location. While the utility of
acquiring such representations without manual supervision
is widely recognized [23]–[26], including for robotic ma-
nipulation [27]–[29], current approaches face several key
challenges, most notably architecture design and optimization
difficulties, which we elaborate upon in Appendix. At a
high level, coaxing neural networks to generate unordered
discrete sets of objects without explicit supervision requires
architectural choices that create hyperparameter-sensitivity
and other difficulties during optimization [34]–[36]. The end
result is that even the best of these approaches struggle to
generalize beyond narrow domains [36]–[39]. In contrast, our

approach sidesteps all the above difficulties since it is only an
inference procedure: it infers OCEs straight out of standard
vision transformer architectures generating continuous scene-
level activation maps and trained with mature and stable
optimization procedures. As such, SOFT(PVT) can extract
OCEs out-of-the-box on the same large natural image domains
where the PVT scene-level image encoders can operate.

With the recent rise of pre-trained open-world object
detectors [40], [41], several recent works have proposed to
construct OCEs based on their output detections. MOO [42]
uses OWL-ViT [41] to infer centroid locations of foreground
objects at the start of task execution. FOCUS [43] uses
SAM [40] outputs to learn object-centric world models.
GROOT [44] uses SAM segmentation masks to build 3D
representations of task-relevant objects. Concurrent with our
work, POCR [45] builds OCEs by encoding SAM masks with
various pre-trained vision encoders for robotics control.In
contrast, our work is the first to construct useful OCEs
from generic pre-trained vision transformers such as DINO-
v2 [10] even when they are not explicitly trained for object
recognition, by utilizing not only their outputs or final layer
activations, but also their internal attentions.

c) Object Discovery from Image Encoders: Prior work
has attempted to discover foreground objects from pre-
trained convolutional or transformer image encoders by
clustering pixel-wise or token-wise activations at one or
more layers [46]–[49] using k-means or spectral clustering
approaches. Recently, MaskCut [50] apply such an approach
iteratively to discover multiple objects, still using the pixel-
wise activations. We compare against using such activation-
clustering approaches in our experiments but find that they
perform worse than our approach that uses a complementary
source of information generated in a transformer’s forward
pass, namely, internal attentions, rather than key, value, query
activations.

DINO [9] first showed evidence that attention weights



inferred within vision transformers may be informative for
object discovery: its last layer CLS attentions cleanly segment
the foreground objects in single-object images, a feature that
is also employed in [12]. MaskDistill [51] builds on this,
using feature similarities between the query and key features
of the last DINO layer and the CLS token to identify a single
foreground object, which is thereafter distilled into a Mask R-
CNN encoder that can extract multiple objects. We propose an
improved approach to use attentions for multi-object discovery
in robotic manipulation scenes that requires no new training:
it employs full token-token attention matrices rather than
just CLS attentions, aggregates them across multiple layers
using an “attention rollout” procedure, and exploits a handful
of other images from the same domain, easily available in
robotics settings, for background removal.

III. MANIPULATION POLICIES USING REPRESENTATIONS
INFERRED FROM GENERIC VISION TRANSFORMERS

Consider the following setup. For learning a new ma-
nipulation task, we are provided with a small number
N of visual demonstration trajectories D = {τn}Nn=1.
The n-th trajectory is an image-action sequence τn =
[xn,1, un,1, xn,2, un,2, ...]. We would like to train a visual
policy π(x). For consistency with evaluations of prior
pre-trained representations for robotics [16]–[18], we will
train policies with simple behavior cloning, minimizing the
objective: π∗ = minπ

∑
n,t ℓ

2(π(xn,t), un,t) where ℓ is the
squared ℓ2 error. We seek to develop a new pre-trained
representation for robotics that would facilitate training such
policies from limited demonstrations D to achieve higher
rewards. Conceptually, we may compose a policy π from
image representation (fψ) and action mapping (gϕ) modules:
π(x) = gϕ(fψ(x)). With no pre-training, policy learning
involves training both fψ and gϕ from D. With a pre-trained
image encoder f∗(·), the policy π(x) = gϕ(f

∗(x)) has fewer
learnable parameters, permitting learning from small D. If the
representations conveniently capture task-relevant information,
the resulting policies would achieve high rewards. Good pre-
trained representations must facilitate such sample-efficient,
performant policy learning across a large range of unseen
environments, objects, task, and robots.

We wish to develop a representation based on generic
pre-trained vision transformers (PVT)[9]–[11], [52], [53]. As
motivated above, standard feature activations at the output
layers of such transformers have proven to be excellent pre-
trained representations for vision tasks, but perform poorly
for robotics; we verify this in Section IV. How might we
generate a better robotics-ready representation from a PVT?
To address this question, we will start by exploring PVT
self-attentions, whose utility as representations is ignored in
prior work.

A. The Information Held Within Transformer Self-Attentions

A vision transformer [8] takes as input a serialized sequence
of small pxp image patches, e.g. p = 16. An image with
spatial dimensions HxW is processed into m = H

p ·
W
p non-

overlapping patch “tokens”. Central to the computation in

each layer l of the transformer is the self-attention operator,
which computes the next layer features for each token yi as
a weighted average of the “value” features vlj of other tokens
yl+1
i ←

∑
j a

l
ijv

l
j . These attention weights alij are assigned

by a function with learned parameters, and determine how
much each other patch j, out of all m patches, contributes
to the new features of patch i. Information from all over the
scene is thus mixed into the representations of each patch
token. The “attention matrix” Al is an mxm matrix, where
the i-th row contains all m attention weights for patch i.
A more detailed description of the basic vision transformer
architecture is provided in [8].

In the layers of a well-trained transformer, the attention
weights alij for a patch i, must be large for the patches
j that most provide context for understanding patch i. In
particular, in images, the meanings of small nxn tokens
depend heavily on their context. For example, in the image
in Fig 1 (top), no meaning can be assigned to the black patch
token on the van bumper, without accounting for the context
tokens, prominent among which is the rest of the van. The
visualizations of attention weights from DINO [9] layers as
H
n xWn grids, suggests that the weights might indeed capture
information about object groupings.

How do these attention weights change from layer to layer,
and does any one layer contain more information than others
about the objects? Fig 1 shows examples of attention weights
over multiple layers. The attentions in the first layer are based
on low-level color and position similarities between patches
and do not yet capture object groupings, except in very
simple scenes where objects have a single color or texture,
easily distinguished from their backgrounds. For example,
the bumper patch’s attentions extend far beyond the van on
the bottom left, yet they do not quite capture the top-right
regions of the van. On the other hand, interpreting layerwise
attentions becomes more complex in higher layers because
these attentions operate over patch representations that are no
longer based on purely local information; instead each patch
representation at these layers already contains information
from all over the scene.

Several methods have been proposed to resolve this mixing
problem to produce more interpretable visualizations of
attentions in later transformer layers [22], [54], [55]. We
build on perhaps the simplest approach, “attention rollout”,
first presented by Abnar et al. [22] in the context of language
transformers. We seek to know: how much do the features yli
at the current layer l of the transformer depend on the input
patch tokens j, which we will refer to as inputwise attentions
ãlij . To answer this question, attention rollout prescribes
matrix-multiplying the attention matrices Al of all preceding
layers, corresponding to a linear model of information mixing
across layers. To account for skip connections between layers,
as in our models, we modify this [56] to:

Ãl =
∏
l′≤l

(Al
′
+ I). (1)

To handle multi-head attentions, we simply average the
attention matrices across the heads. Fig 1 visualizes inputwise
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Fig. 2. SOFT(·) provides a wrapper around any pre-trained vision transformer model PVT. Relying on nothing other than the activations and attentions
throughout PVT, SOFT(·) offers an alternative representation inference procedure to the standard last-layer activations. The resulting SOFT(PVT) representation
is an object-centric image representation, suitable for off-the-shelf usage in robotic control tasks. V l, Kl and Ql represent the value, key and query of
attention layers at layer l.

attentions across various layers in DINO. Foreground patch
attentions (yellow) in later layers are now more interpretable,
and higher layers contain more clearly semantic object or
entity grouping information. The formation of these input-
wise attention matrices is schematically depicted in Figure 2.

B. A Procedure To Infer Objects and Their Locations

With these insights, we now propose a simple clustering-
based procedure to permit SOFT(PVT) to individuate and
locate objects. Given the inputwise attentions ãlij of a vision
transformer PVT, SOFT(PVT) performs four steps:
• Symmetrized inputwise attentions as similarity mea-

sures: SOFT(PVT) first computes inputwise attentions ÃL

at the final layer l = L as prescribed by Eq (1). To
explicitly account for object locations, we also compute a
pairwise patch similarity matrix S. The symmetric matrix
As = ÃL+Transpose(ÃL)+S is treated as the measure of
similarities between patch features. Both of the similarity
matrices (Ãl + Transpose(ÃL) and S) are normalized
between 0 and 1. In practice, we propagate only the top
10% of attention weights in each layer to highlight the key
regions.

• Background removal: While there is no domain-specific
training set for producing SOFT(PVT) representations, the
demonstration dataset D, available in advance, does have
other images within the domain. We sample m = 30
reference frames per task from among the demonstrations
D to identify and discard recurring, unchanging background
regions. We follow the procedure described by Amir et
al. [12]: each patch token in the reference frames is assigned
to foreground or background based on its CLS attention
score. Then, each patch token in the current frame is
assigned a backgroundness score based on matching its
key features to these reference tokens. Scores higher than
a threshold are discarded. More details in the appendix.

• Spectral clustering: For the remaining tokens, we treat
A∗ as the affinity matrix between tokens in spectral clus-
tering [57]. The number of clusters may be automatically
determined by the eigengap heuristic, permitting handling
a varying number of objects in the scene.

• Mask Refinement: As described above, SOFT(·) assigns

each nxn-pixel patch token to a cluster (8x8 in standard
transformers), rather than each pixel. To generate smooth
pixel-wise masks, we refine the patch-wise mask by
applying a multi-label conditional random field [58]. Details
in appendix.

Much of this procedure is visualized in Figure 2.

C. Activation-Based Object Descriptions
Having identified and located object-like regions as above,

we now add slot vectors describing the contents of each region.
For each object cluster “slot” i, its object slot vector si is the
average-pooled PVT feature over the in-cluster patch tokens.
At this stage, the combined object-centric scene descriptor
SOFT(PVT) (x) is an unordered set of slot vectors {si}ki=1,
each corresponding to an object-like entity in the scene, and
capturing its location and contents. The cardinality k, i.e.,
the number of object slots, varies by image.

D. Policy Learning from Demonstrations
How might SOFT(PVT) be used as input to a policy,

given that the slots are unordered and of variable number?
While solutions based on set descriptors and graph neural
networks are possible [59], we opt for a simple solution based
on explicit slot binding to achieve an ordered, fixed-size
representation. For each frame, we match SOFT(PVT) slots
{st,i} in the current frame to the averaged slot features from a
randomly selected reference demonstration {

∑
j sref,j}. We

use Hungarian matching [60] based on Euclidean distances
between slot vectors, so that each reference slot is matched
to at most one slot in the current frame. Unmatched slots st,i
corresponding to spurious detections or distractor objects are
discarded, and the remaining slots are now ordered as per
the reference frame.

Finally, we concatenate these newly ordered slot vectors
{s1, . . . , sk∗}t into a flat, fixed-size representation (k∗ ×D)
and feed into a multi-layer perceptron gϕ.

π(xt) := gϕ(concat(s1(xt), . . . , sk∗(xt))) (2)

This is now compatible with the behavior cloning policy
training procedure described above. A more formal pseudo-
code description of SOFT(·) is provided in the supplementary
material, and we will release all code upon publication.



A) Shapestacks B) B&O C) RLB-PickUpCup

D) RLB-PutRubbishInBin E) MW-Hammer F) Real-Tabletop

Fig. 3. Data from our datasets and simulation environments. We show the
segmentation masks from SOFT(PVT) as well as the original images. Blue
indicates background.

IV. EXPERIMENTS

SOFT(·) provides an object-centric wrapper around pre-
trained vision transformers (PVT), aiming to improve the
performance of generic pre-trained vision transformers as
reusable representation encoders for robotic tasks. We first
evaluate the extent to which SOFT(PVT) can successfully
discover object-like regions in various robotic settings, out
of the box. Next, we evaluate SOFT(PVT) object-centric em-
beddings to see: to what extent do they improve downstream
policy performance compared to standard PVT representations
extracted from the same models? How does this compare to
robotics-specific pre-trained representations?

A. Discovering Object-Like Regions

While SOFT(·) is not a segmentation method, it discovers
object-like segmentation masks en route to generating a
representation for robotics. We use these segments to evaluate
SOFT(·) under various conditions.
Datasets. We first evaluate this component of SOFT(·) on
3 offline datasets with increasing degrees of difficulty: (1)
Shapestacks [61] is a synthetic dataset that has geometric
shapes stacked on top of each other in various stable and
unstable formations. (2) RLB-PickUpCup is a tabletop
manipulation task in RLBench [62], that we will use for
control evaluations. RLB-PickUpCup requires the robot to
pick up the red cup when presented with another distractor
cup. We use the frames from 100 demos. (3) B&O [63]
contains real images of a robot pushing deformable toy objects
in its workspace, with annotated object masks. All object
locations are randomized at the start of each episode.
PVT backbones. We evaluate SOFT(·) with various choices
of PVT backbones: 1) DINO-ViT [9], a popular pretrained
ViT network that produces useful representations for down-
stream vision and robotics tasks. 2) DINOv2-ViT [10] is the
followup work that shows improved performances compared
to DINO-VIT. 3) DeiT [64], [65] is a supervised ViT network
trained on ImageNet-21k. 4) ConvNext [66] is a modern
convolutional network that matches vision transformers on

TABLE I
SEGMENTATION METRICS. HIGHER IS BETTER.

Backbone Datasets→ Shapestacks RLB-PickUpCup B&O
Num-images → 20k 1.4k 300

Methods ↓ ARI MSC ARI MSC ARI MSC

DINO-ViT SOFT [Ours] 0.80 0.86 0.93 0.50 0.55 0.58
ODIN-feature 0.39 0.44 0.20 0.40 0.54 0.58
MaskCut[50] 0.08 0.24 0.447 0.326 0.04 0.12

DINOv2-ViT SOFT [Ours] 0.72 0.65 0.99 0.51 0.65 0.63
ODIN-feature 0.04 0.12 0.00 0.22 0.60 0.62

DeiT SOFT* [Ours] 0.17 0.40 0.82 0.32 0.69 0.52
ODIN-feature 0.18 0.41 0.08 0.32 0.47 0.46

ConvNext SOFT* [Ours] 0.18 0.24 0.23 0.09 0.42 0.30
ODIN-feature 0.12 0.24 0.23 0.09 0.15 0.19

MVP [67] SOFT [Ours] 0.69 0.55 0.80 0.43 0.60 0.53
ODIN-feature 0.67 0.44 0.48 0.26 0.68 0.55

Genesis-v2[68] 0.73 0.71 - - 0.25 0.20
AST-SEG[38] 0.73 0.74 - - 0.03 0.04

various vision benchmarks. Note that this is the only non-
transformer based architecture, so we only apply the spectral
clustering step and mask refinement step on the features of
the last convolutional layer. 5) MVP [67] is a transformer-
based pretrained visual encoder for robot manipulation tasks.
Note that the background removal procedure only applies to
ViT networks trained with unsupervised objectives, so we
remove this step when performing experiments with DeiT
and ConvNext and marked it as SOFT*.
Activation-clustering. With each backbone, we compare
SOFT(·)’s attention-based object discovery to ODIN [46]-
style k-means clustering on final layer key features, and also
iterative spectral clustering on key features as proposed in
MaskCut [50].
Unsupervised OCEs. Finally, we compare against prior
unsupervised object-centric embeddings, which typically train
only on in-domain images: Genesis-V2 [68], and the current
state-of-the-art, AST-SEG [38], unlike SOFT(·) which is only
pre-trained on out-of-domain images.

We report the standard segmentation metrics: Adjusted
Rand Index (ARI) [69], [70] and Mean Segmentation Cov-
ering (MSC) [71], [72], both in [0, 100], higher is better.
See appendix for an explanation of these metrics. For each
dataset, we compute the average metrics for each method
over a test set of 320 images.

Table I shows these results, and Fig 3 shows examples
of the segmentations masks on the evaluated datasets (more
on website). First, with a fixed PVT backbone, SOFT(PVT)
object masks produced using our attention rollout proce-
dure consistently match or outperform activation-clustering
with ODIN or MaskCut, validating this choice. Second, in-
domain trained OCEs like Genesis-v2 or AST-SEG struggle
to learn on smaller datasets, RLB-PickUpCup and B&O.
Finally, comparing among different backbones, DINO-ViT
and DINOv2-ViT segments best match the object annotations.

B. Robot Manipulation Experiments

We have thus far only evaluated SOFT(·) object masks, as
a way to sanity-check our approach, and select the strongest
PVT backbone through cheap offline evaluations. We now
evaluate SOFT(DINOv2) as an object-centric embedding for



TABLE II
SUCCESS RATES FOR MANIPULATION TASKS.

RLB-PickUpCup RLB-PutRubbishInBin MW-Hammer
100 demos 100 demos 10 demos

SOFT(DINOv2) [Ours] 45 15 73.4

DINOv2-Flat-CLS 10 0 67.6
DINOv2-Flat-Pool 0 0 69

LIV [18] 49.3 21.9 81.7
R3M [16] 52.3 20.7 81.3
ImageNet 14.0 6.7 53.7

SAM [73] 15.9 4.4 51.5

robot learning. We perform thorough experiments comparing
various approaches quantitatively on two RLBench [62] and
one Meta-World [74] tabletop manipulation environments:
RLB-PickUpCup and RLB-PutRubbishInBin (see Figure 3).
In RLB-PickUpCup, the goal is to pick up the red cup
in the presence of a distractor cup. The locations of the
two cups are randomized for each episode as well as the
color of the distractor. This requires the learned scene
representations to include precise information about the
cup’s location and identity. During the task, cups could be
heavily occluded by each other or the robot arm, thus the
representation should also be robust under such conditions.
In RLB-PutRubbishInBin, the robot needs to locate and
pick up irregular-shaped rubbish among two other apples and
put it in a trash can, all with randomized starting location.
This is one of the more challenging tasks in RLBench, stress
testing the representations. In MW-Hammer, the goal is to
pick up a hammer and then smash a nail into a wall. The
location of the hammer is randomized.
Baselines. Recall that SOFT(·) is a wrapper around a generic
PVT, in this case DINOv2. We compare this to using standard
last layer activation-based features of the PVT: (1) DINOv2-
Flat-CLS uses the CLS token of the last attention layer,
which is widely adopted as a representations for downstream
tasks [9], [10], and 2) DINOv2-Flat-Pool mean-pools the
key features over the entire image. Next, we compare to
a CNN-based generic image feature, ImageNet-pretrained
ResNet [3], and to two state-of-the-art robotics-specific pre-
trained features: LIV [18] and R3M [16] that also use
the ResNet backbone. Finally, to evaluate whether good
segmentation alone is sufficient, we compare against using
the recent SOTA segmentation model, SAM [73]. For this,
we train a CNN encoder to process SAM object masks and
feed into the policy.

Table II shows the success rates. The SOFT(DINOv2)
OCE easily outperforms both the flat DINOv2 baselines,
though they use the same backbone, trained with the same
data. These more standard feature extraction approaches
perform very poorly, as does ImageNet, which represents
another standard representation for computer vision tasks.
It is precisely the poor performance of standard vision
representations that prompted the recent development of
more robotics-specific pre-trained representations such as
LIV and R3M, which indeed perform much better. Here,
SOFT(·) shines: using differently inferred representations
from the same pre-trained vision transformer model DINOv2,
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Fig. 4. Success rate of different methods as a function of the number of
demonstrations.

Fig. 5. Example of a successful policy rollout using SOFT(DINOv2)

it performs approximately on par with these robotics-aware
representations. Qualitatively, we observe that even when it
fails, the learned SOFT(DINOv2) policy fails more gracefully
than other methods, most often moving correctly to the right
locations around the object of interest. See videos on website.

Finally, Figure 4 studies the performance of
SOFT(DINOv2) and DINOv2-Flat-CLS with varying
numbers of training demonstrations: object-centric structure
in SOFT enables learning from very few demonstrations.

C. Real Robot Experiments

We also evaluated SOFT(DINOv2) policies in a cluttered
kitchen countertop setting (see Figure 3 F)), comparing them
to DINOv2-Flat-CLS and LIV representations for the task of
picking and placing toy fruits into a pot. We collect 50 expert
demonstrations by teleoperation, and extract SOFT(DINOv2)
features for policy learning. We randomized the placement
of fruits during demo and evaluation. Our observations
here are similar: DINOv2-CLS performs very poorly, but
SOFT(DINOv2) performs noticeably better. With 10 trials
of randomized placement of various fruits on the table,
SOFT(DINOv2) has a success rate of 40% which is as often
as LIV policies. Figure 5 shows a successful rollout of the
policy learned with SOFT(DINOv2). We show videos of our
sim and real robot trials on the website.

V. CONCLUSIONS

By introducing a simple change to the representation
inference procedure from a pre-trained vision transformer PVT
backbone, SOFT(PVT) produces object-centric embeddings
that yield dramatic performance gains for control tasks, to the
extent that it approximately matches the performance of the
best robotics-specific pre-trained representations. Our results
validate the utility of transformer attentions to inform repre-
sentations and the power of object-centric embeddings, and
demonstrate a route to making generic visual representations,
wildly successful in computer vision, compatible with the
specific needs of robot learners.
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