
SC I ENCE ROBOT I C S | R E S EARCH ART I C L E
COMPUTER V I S ION
1Department of Computer Science, University of Texas at Austin, Austin, TX, USA.
2Facebook AI Research, Austin, TX, USA. 3Department of Electrical Engineering
and Computer Science, University of California, Berkeley, Berkeley, CA, USA.
*These authors contributed equally to this work.
†Corresponding author. Email: srama@cs.utexas.edu

Ramakrishnan et al., Sci. Robot. 4, eaaw6326 (2019) 15 May 2019
Copyright © 2019

The Authors, some

rights reserved;

exclusive licensee

American Association

for the Advancement

of Science. No claim

to original U.S.

Government Works
D

Emergence of exploratory look-around behaviors
through active observation completion
Santhosh K. Ramakrishnan1,2*†, Dinesh Jayaraman3*, Kristen Grauman1,2

Standard computer vision systems assume access to intelligently captured inputs (e.g., photos from a human
photographer), yet autonomously capturing good observations is a major challenge in itself. We address the
problem of learning to look around: How can an agent learn to acquire informative visual observations? We
propose a reinforcement learning solution, where the agent is rewarded for reducing its uncertainty about the
unobserved portions of its environment. Specifically, the agent is trained to select a short sequence of glimpses, after
which it must infer the appearance of its full environment. To address the challenge of sparse rewards, we further
introduce sidekick policy learning, which exploits the asymmetry in observability between training and test time.
The proposedmethods learned observation policies that not only performed the completion task for which they were
trained but also generalized to exhibit useful “look-around” behavior for a range of active perception tasks.
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INTRODUCTION
Visual recognition has witnessed dramatic successes in recent years.
Fueled by benchmarks composed of carefully curated web photos and
videos, the focus has been on inferring semantic labels from human-
captured images—whether classifying scenes, detecting objects, or re-
cognizing activities (1–3). However, visual perception requires making
not only inferences from observations but also decisions about what to
observe. Methods that use human-captured images implicitly assume
properties in their inputs, such as canonical poses of objects, nomotion
blur, or ideal lighting conditions. As a result, they gloss over important
hurdles for robotic agents acting in the real world.

For an agent, individual views of an environment offer only a small
fraction of all relevant information. For instance, an agent with a view of
a television screen in front of it may not know whether it is in a living
room or a bedroom. An agent observing a mug from the side may have
to move to see it from above to know what is inside.

An agent ought to be able to enter a new environment or pick up a
new object and intelligently (non-exhaustively) “look around.” The
ability to actively explore would be valuable in both task-driven scenarios
(e.g., a drone searches for signs of a particular activity) and scenarios
where the task itself unfolds simultaneously with the agent’s exploratory
actions (e.g., a search-and-rescue robot enters a burning building and
dynamically decides its mission). For example, consider a service robot
that is moving around in an open environment without specific goals,
waiting for future tasks like delivering a package from one person to
another or picking up coffee from the kitchen. It needs to efficiently
and constantly gather information so that it is well prepared to perform
future tasks with minimal delays. Similarly, consider a search-and-
rescue scenario, where a robot is deployed in a hostile environment,
such as a burning building or earthquake collapse, where time is of the
essence. The robot has to adapt to such new unseen environments and
rapidly gather information that other robots and humans can use to
effectively respond to situations that dynamically unfold over time
(humans caught under debris, locations of fires, and presence of haz-
ardous materials). Having a robot that knows how to explore intel-
ligently can be critical in such scenarios, reducing risks for people
while providing an effective response.

Any such scenario brings forth the question of how to collect visual
information to benefit perception. A naïve strategy would be to gain full
information by making every possible observation—that is, looking
around in all directions or systematically examining all sides of an ob-
ject. However, observing all aspects is often inconvenient if not in-
tractable. Fortunately, in practice, not all views are equally informative.
The natural visual world contains regularities, suggesting that not
every view needs to be sampled for accurate perception. For instance,
humans rarely need to fully observe an object to understand its three-
dimensional (3D) shape (4–6), and one can often understand the
primary contents of a room without literally scanning it (7). In short,
given a set of past observations, some new views are more informative
than others (Fig. 1).

This fact leads us to investigate the question of how to effectively
look around: How can a learning system make intelligent decisions
about how to acquire new exploratory visual observations?We propose
a solution based on “active observation completion”: An agent must ac-
tively observe a small fraction of its environment so that it can predict
the pixelwise appearances of unseen portions of the environment.

Our problem setting relates to but is distinct from previous work
in active perception, intrinsic motivation, and view synthesis. Al-
though there is interesting recent headway in active object recogni-
tion (8–11) and intelligent search mechanisms for detection (12–14),
such systems are supervised and task specific—limited to accelerat-
ing a predefined recognition task. In reinforcement learning (RL),
intrinsic motivationmethods define generic rewards, such as novelty
or coverage (15–17), that encourage exploration for navigation
agents, but they do not self-supervise policy learning in an observed
visual environment, nor do they examine transfer beyond navigation
tasks. View synthesis approaches use limited views of the environment
along with geometric properties to generate unseen views (18–22).
Whereas these methods assume individual human-captured images,
our problem requires actively selecting the input views themselves.
Our primary goal is not to synthesize unseen views but rather to use
novel view inference as a means to elicit intelligent exploration policies
that transfer well to other tasks.

In the following, we first formally define the learning task, overview
our approach, and present results. Then, after the results, we discuss
limitations of the current approach and key future directions, followed
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by Materials and Methods—an overview of the specific deep networks
and policy learning approaches we developed. This article expands
upon our two previous conference papers (23, 24).

Active observation completion
Our goal is to learn a policy for controlling an agent’s camera motions
such that it can explore novel environments and objects efficiently. To
this end, we formulate an unsupervised learning objective based on
active observation completion. The main idea is to favor sequences
of camera motions that make the unseen parts of the agent’s sur-
roundings easier to predict. The output is a look-around policy equipped
to gather new images in new environments. As we will demonstrate in
results, it prepares the agent to perform intelligent exploration for a
wide range of perception tasks, such as recognition, light source local-
ization, and pose estimation.

Problem formulation
The problem setting is formally stated as follows. The agent starts
by looking at a novel environment (or object) X from some unknown
viewpoint (25). It has a budget T of time to explore the environment.
The learning objective is to minimize the error in the agent’s pixelwise
reconstruction of the full—mostly unobserved—environment using
only the sequence of views selected within that budget. To do this, the
Ramakrishnan et al., Sci. Robot. 4, eaaw6326 (2019) 15 May 2019
agent must maintain an internal repre-
sentation of how the environment would
look conditioned on the views it has seen
so far.

We represent the entire environ-
ment as a “viewgrid” containing views
from a discrete set of viewpoints. To
do this, we evenly sample N eleva-
tions from−90° to 90° andM azimuths
from 0° to 360° and form all MN pos-
sible (elevation, azimuth) pairings. The
viewgrid is then denoted by V(X) =
{x(X,q(i))∣ 1≤ i≤MN}, where x(X,q(i))
is the 2D view of X from viewpoint q(i),
which is the ith pairing. More generally,
q(i) could capture both camera angles
and position; however, to best exploit
existing datasets, we limited our ex-
periments to camera rotations alone
with no translation movements.

The agent expends its time budget
T in discrete increments by selecting
T − 1 camera motions in sequence.
Each cameramotion comprises an ac-
tively chosen “glimpse.” At each time
step, the agent gets an image observation
xt from the current viewpoint. It then
makes an exploratory motion (at) based
on its policy p. When the agent executes
action at∈A, the viewpoint changes
according to qt + 1 = qt + at. For each
cameramotion at executed by the agent,
a reward rt is provided by the environ-
ment. Using the view xt, the agent up-
dates its internal representation of the
environment, denoted V̂ ðXÞ. Because
camera motions are restricted to have proximity to the current camera
angle and candidate viewpoints partially overlap, the discrete action
space promotes efficiency without neglecting the physical realities of
the problem [following (8, 9, 23, 26)]. During training, the full viewgrids
of the environments are available to the agent as supervision. During
testing, the systemmust predict the complete viewgrid, having seen only
a few views within it.

We explored our idea in two settings (Fig. 1). In the first, the agent
scans a scene through its limited field-of-view camera; the goal is to
select efficient camera motions so that after a few glimpses, it can
model unobserved portions of the scene well. In the second, the agent
manipulates a 3D object to inspect it; the goal is to select efficient
manipulations so that after only a small number of actions, it has
a full model of the object’s 3D shape. In both cases, the system must
learn to leverage visual regularities (shape primitives, context, etc.)
that suggest the likely contents of unseen views, focusing on portions
that are hard to “hallucinate” (i.e., predict pixelwise).

Posing the active view acquisition problem in terms of observation
completion has two key advantages: generality and low-cost (label-free)
training data. The objective is general in the sense that pixelwise re-
construction places no assumptions about the future task for which
the glimpses will be used. The training data are low cost, because no
manual annotations are required; the agent learns its look-around
Fig. 1. Looking around efficiently is a complex task requiring the ability to reason about regularities in the
visual world using cues like context and geometry. Top: An agent that has observed limited portions of its
environment can reasonably predict some unobserved portions (e.g., water near the ship) but is much more uncertain
about other portions. Where should it look next? Bottom: An agent inspecting a 3D object. Having seen a top view
and a side view, how must it rotate the mug now to get maximum new information? Critically, we aim to learn
policies that are not specific to a given object or scene, nor to a specific perception task. Instead, the look-around
policies ought to benefit the agent exploring new, unseen environments and performing tasks unspecified when
learning the look-around behavior.
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policy by exploring any visual scene or object. This assumes that capturing
images is much more cost-effective than manually annotating images.

Approach overview
The active observation completion task poses three major challenges.
First, to predict unobserved views well, the agent must learn to under-
stand 3D relationships from very few views. Classic geometric solutions
struggle under these conditions. Instead, our reconstruction must draw
on semantic and contextual cues. Second, intelligent action selection is
essential to this task. Given a set of past observations, the system must
act based on which new views are likely to be most informative, i.e., de-
terminewhich views wouldmost improve itsmodel of the full viewgrid.
We stress that the system will be faced with objects and scenes it never
encountered during training, yet still must intelligently choose where it
would be valuable to look next.

As a core solution to these challenges, we present anRL approach for
active observation completion (Fig. 2) (23). Our RL approach uses a re-
current neural network to aggregate information over a sequence of
views; a stochastic neural network uses that aggregated state and current
observation to select a sequence of useful camera motions. The agent is
rewarded on the basis of its predictions of unobserved views. It therefore
learns a policy to intelligently select actions (camera motions) to max-
imize the quality of its predictions. During training, the complete view-
Ramakrishnan et al., Sci. Robot. 4, eaaw6326 (2019) 15 May 2019
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learning, meaning it learns without any human-provided labels. See
Materials and Methods below for the details of our approach.

Our model judges the quality of viewgrid reconstruction in the pixel
space so as to maintain generality: All pixels for the full scene (or 3D
object) would encompass all potentially useful visual information for
any task. Hence, our approach avoids committing to any intermediate
semantic representation, in favor of learning policies that seek generic
information useful to many tasks. That said, our formulation is easily
adaptable to more specialized settings. For example, if the target tasks
only require semantic segmentation labels, then the predictions could
be in the space of object labels instead.

RL approaches often suffer fromcostly exploration stages and partial
state observability. In particular, an active visual agent has to take a long
series of actions purely based on the limited information available from
its first-person view (23, 27–29). The most effective viewpoint trajec-
tories are buried among many mediocre ones, impeding the agent’s ex-
ploration in complex state-action spaces.

To address this challenge, as the secondmain technical contribution
of this work, we introduce “sidekick policy learning.” In the active ob-
servation completion task, there is a natural asymmetry in observability:
Once deployed, an active exploration agent can only move the camera
to look aroundnearby, yet during training, it can access omnidirectional
viewpoints. Existing methods facing this asymmetry simply restrict the
agent to the samepartial observability during training (8,10,23, 26,27,30).
In contrast, our sidekick approach introduces reward shaping and dem-
onstrations that leverage full observability during training to precom-
pute the information content of each candidate glimpse. The sidekicks
then guide the agent to visit information hot spots in the environment
or sample information-rich trajectories while accounting for the fact that
observability is only partial during testing (24). By doing so, sidekicks
accelerate the training of the actual agent and improve the overall per-
formance. We use the name “sidekick” to signify how a sidekick to a
hero (e.g., in a comic ormovie) provides alternate points of view, knowledge,
and skills that the hero does not have. In contrast to an “expert” (31, 32),
a sidekick complements the hero (agent), yet cannot solve themain task
at hand by itself. See Materials and Methods below for more details.

We show that the active observation completion policies learned
by our approach serve as exploratory policies that are transferable to
entirely new tasks and environments. Given a new task, rather than
train a policywith task-specific rewards to direct the camera, we drop in
the pretrained look-around policy. We demonstrate that policies
learned via active observation completion transfer well to several se-
mantic and geometric estimation tasks, and they even perform compet-
itively with supervised task-specific policies (please see the look-around
policy transfer section in Results).
RESULTS
We next present experiments to evaluate the behaviors learned by the
proposed look-around agents.

Datasets
For benchmarking and reproducibility, we evaluated our approach
on two widely used datasets.
SUN360 dataset for scenes
For this dataset, our limited field-of-view (60°) agent attempts to com-
plete an omnidirectional scene. SUN360 (33) has spherical panoramas
of 26 diverse categories. The dataset consists of 6174 training, 1013
Fig. 2. Approach overview. The agent (actor) encodes individual views from the
environment and aggregates them into a belief state vector. This belief is used by
the decoder to get the reconstructed viewgrid. The agent’s incomplete belief
about the environment leads to uncertainty over some viewpoints (red question
marks). To reduce this uncertainty, the agent intelligently samples more views
based on its current belief within a fixed time budget T. The agent is penalized
on the basis of the reconstruction error at the end of T steps (completion loss). In
addition, we provide guidance through sidekicks (sidekick loss), which exploit the
full viewgrid—only at training time—to alleviate uncertainty in training due to
partial observability. The learned exploratory policy is then transferred to other
tasks (top row shows four tasks we consider).
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validation, and 1805 testing examples. The viewgrid has 32 pixels–by–
32 pixel resolution 2D images sampled from M = 4 camera elevations
(−67.5°, −22.5°, 22.5°, 67.5°) and N = 8 azimuths (45°, 90°,…, 360°).
ModelNet dataset for objects
For this dataset, our agent manipulates a 3D object to complete its
viewgrid of the object seen from all viewing directions. The viewgrid
constitutes an implicit image-based 3D shape model. ModelNet (10)
has two subsets of computer-aided design (CAD) models: ModelNet-
40 (40 categories) andModelNet-10 (a 10-category subset ofModelNet-
40). Excluding the ModelNet-10 classes, ModelNet-40 consists of 6085
training, 327 validation, and 1310 testing examples. ModelNet-10 con-
sists of 3991 training, 181 validation, and 727 testing examples. The
viewgrid has 32 × 32 resolution 2D images sampled from M = 6
camera elevations (−75°, −45°,…, 45°, 75°) and N = 10 azimuths
(20°, 56°, 92°,…, 344°) (34). We rendered the objects using substantial
lighting variations to increase difficulty in perception. To test the agent’s
ability to generalize to previously unseen categories, we always tested on
object categories in ModelNet-10, which are unseen during training.

For both datasets, at each time step, the agent moved within a
5 elevations–by–5 azimuths neighborhood from the current position.
Requiring nearby motions reflects that the agent cannot teleport, and
it ensures that the actions have approximately uniform real-world cost.
Balancing task difficulty (harder tasks require more views) and training
speed (fewer views are faster) considerations, we set the training episode
length T = 4 a priori. By training for a target budget T, the agent has to
learn nonmyopic behaviors to best use the expected exploration time.
Note that although further increasing T during training increased
training costs considerably, doing so naturally led to better reconstruc-
tions (please see the SupplementaryMaterials for longer episode results).

Baselines
We tested our active completion approach with and without side-
kick policy learning (35)—lookaround and lookaround+spl,
respectively—compared with a variety of baselines:

1. one-view is our method trained with T = 1. No information
aggregation or action selection was performed by this baseline.
January 14, 2020
2. rnd-actions is identical to
our approach, except that the action se-
lection module was replaced by ran-
domly selected actions from the pool
of all possible actions.

3. large-actions chooses the
largest allowable action repeatedly.
This testedwhether far-apart viewswere
sufficiently informative.

4. peek-saliencymoves to the
most salient view within reach at each
time step, using a popular saliency
metric (36). To avoid getting stuck in
a local saliency maximum, it does not
revisit seen views. Note that this baseline
peeks at neighboring views before
action selection to measure saliency,
giving it an unfair and impossible ad-
vantage over ourmethods and the other
baselines.

These baselines all used the same
network architecture as our methods,
differing only in the exploration policy
Ramakrishnan et al., Sci. Robot. 4, eaaw6326 (2019) 15 May 2019
that we sought to evaluate. In the interest of evaluating on a wide range
of starting positions, we evaluated each methodMN times on each test
viewgrid, starting from all possible viewpoints.

Active observation completion results
We show the results of scene and object completion on SUN360 and
ModelNet (unseen classes) in Fig. 3B. The metrics “average” and
“adversarial”measure the expected value of the average and maximum
pixelwise mean squared errors (MSEs) over all starting points for a
single sample, respectively. Whereas the former measures the average
expected performance, the latter measures the worst-case performance
when starting from the hardest place in each sample (averaged over
examples). We additionally report the relative improvement of each
model over one-view to isolate the gains obtained due to action se-
lection over a pretrained T = 1 model. Because all methods shared the
same pretraining stage of one-view, this metric provides an apples-
to-apples measure of how well the different strategies for moving per-
formed. Allmethodswere evaluated overT= 4 time steps in accordance
with the training budget unless stated otherwise.

As expected, all methods that acquired multiple glimpses out-
performed one-view by taking advantage of the extra information
that was available from additional views. Both the lookaround and
lookaround+spl approaches substantially outperformed the others
on all settings. The peek-saliency agent hovered near the most
salient views in the neighborhood of the starting view because nearby
views tended to have similar saliency scores. The large-actions
agent’s accuracy often tended to saturate near the top or bottom of
the viewgrid after reaching the environment boundaries. Compared
with these behaviors, intelligent sampling of actions using our
learned policy led to substantial improvements. Using sidekicks in
lookaround+spl improved performance and convergence
speed. This is consistent with our results reported in (24) and demon-
strates the advantage of using sidekicks. The faster convergence of
lookaround+spl is shown in the Supplementary Materials.

Whereas Fig. 3B shows the agents’ ultimate ability to infer the
entire scene (object), Fig. 3A shows the reconstruction errors as a
Fig. 3. Scene and object completion accuracy under different agent behaviors. (A) Pixelwise MSE errors versus
time on both datasets as more glimpses are acquired. (B) Average/adversarial MSE error ×1000 (↓ lower is better) and
corresponding improvements (%) over the one-view model (↑ higher is better) on both datasets after all T glimpses
are acquired.
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for all methods, but it dropped most sharply for lookaround and
lookaround+spl. Faster reduction in the reconstruction error
indicates more efficient information aggregation.

Visualizations of the agent’s evolving internal belief state echo
this quantitative trend. Figure 4 shows observation completion episodes
from the lookaround agent along with the ground truth viewgrid,
viewing angles selected by the agent, and reconstruction errors over
time. We show the SUN360 viewgrids in equirectangular projection
for better visualization. Initially, the agent exhibited considerable un-
certainty in its belief, as seen in the poorly decoded reconstructions
and large MSE values. However, over time, it actively sampled views
that quickly improved the reconstruction quality.

Figures 5 and 6 visualize the ultimate reconstructions after all T
glimpses were acquired (37). For contrast, we also display the results
for rnd-actions in Fig. 5. The policies learned by our agent led
to more realistic and accurate reconstructions. Although the agent
only saw about 15% of all the pixels, its choice of informative glimpses
allowed it to anticipate the remainder of the novel scene or object.
Ramakrishnan et al., Sci. Robot. 4, eaaw6326 (2019) 15 May 2019
Movie S1 in the Supplementary Materials shows walkthroughs of
the reconstructed environments from the agent’s egocentric point
of view.

Look-around policy transfer
Having shown that our unsupervised approach successfully trained
policies to acquire visual observations useful for completion, we next
tested how well the policies transfer to new tasks. Recall, our hypoth-
esis is that the glimpses acquired to maximize completion accuracy
will transfer well to solve perception tasks efficiently, because they
were chosen to reveal maximal information about the full environ-
ment or object.

To demonstrate transfer, we first trained a rnd-actions model
for each of the target tasks (“model A”) and a lookaroundmodel for
the active observation completion task (“model B”). The policy from
model B was then used to select actions for the target task using model
A’s task head (see details in the unsupervised policy transfer section in
Materials andMethods). In this way, the agent learned to solve the task
given arbitrary observations, then inherited our intelligent look-around
 by guest on January 14, 2020
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Fig. 4. Episodes of active observation completion for SUN360 (left) and ModelNet (right). For each example, the first row on the left shows the ground-truth
viewgrid; the subsequent rows on the left show the reconstructions at times t = 0,1, T − 1 = 3 along with the pixelwise MSE error (×1000) and the agent’s current
glimpse (marked in red). On the right, the sampled viewing angles of the agent at each time step are shown on the viewing sphere (marking the agent’s viewpoint and
field of view using a red arrow and outline on the sphere). The reconstruction quality improves over time as it quickly refines the scene structure and object shape.
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policy to (potentially) solve the taskmore quickly—with fewer glimpses.
The transfer is considered a success if the look-around agent can solve
the task with similar efficiency as a supervised task-specific policy, de-
spite being unsupervised and task agnostic. We tested policy transfer-
ability for the following four tasks.
Task 1: Active categorization
The first task is category recognition: The agent must produce the
category name of the object or scene it is exploring. We plugged
look-around policies into the active categorization system from (8)
and followed a similar setup. For ModelNet, we trained model A on
ModelNet-10 training objects and the active observation completion
model (model B) onModelNet-40 training objects, which were disjoint
classes from those in the targetModelNet-10 dataset. For SUN360, both
models were trained on SUN360 training data.We replicated the results
from (8) and used the corresponding architecture and training strate-
gies. In particular, the classification head was trained with a cross-
Ramakrishnan et al., Sci. Robot. 4, eaaw6326 (2019) 15 May 2019
entropy loss over the set of classes,
and the supervised reward function
for policy learning was the negative
of the classification loss at the end of
the episode. We refer the readers to (8)
for the full details. Performance was
measured using classification accuracy
on the test set.
Task 2: Active surface
area estimation
The second task is surface area esti-
mation. The agent starts by looking
at some viewof the object andmust in-
telligently select subsequent viewing
angles to estimate the 3D object’s sur-
face area. The task is relevant for a ro-
bot that needs to interact with an
unfamiliar object. The 3Dmodels from
ModelNet-10 were converted into
50 voxel–by–50 voxel–by–50 voxel oc-
cupancy grids. The true surface area
was the number of unoccupied voxels
that were adjacent to occupied voxels.
Estimation was posed as a regression
task where the agent predicted a nor-
malized metric value between 0 and 1.
Performance was measured using the
relative MSE between predicted and
ground truth areas on the test set; i.e.,
if the ground truth and predicted areas
aremg andmp, respectively, then the er-
ror for one example is ((mg −mp)/mg)

2.
This normalized the error so that it re-
mained comparable across objects of
different sizes.
Task 3: Active light
source localization
In the third task, the agent is re-
quired to localize the sources of light
surrounding the 3D object. To design a
controlled experimental setting when
rendering the ModelNet objects, we
placed a single light source randomly
at any one of two possible azimuths and four possible elevations relative
to the object (see fig. S2). The task was posed as a four-way classification
problem where the agent was required to identify the correct elevation
(irrespective of the azimuth such that there can be no unfair orientation
bias). Performance was measured using localization accuracy on the
test set.
Task 4: Active pose estimation
The fourth task is camera pose estimation. Having explored the
environment, the agent is required to identify the elevation and rel-
ative azimuth of a given reference view.We used a simple solution to
this problem. By using the agent’s reconstruction after T time steps,
we measured the ℓ2 distance between the given view and each of the
reconstructed views. The elevation and azimuth of the reconstructed
view leading to the smallest ℓ2 distance was predicted as the pose.
The agent used its own decoder as opposed to the decoder from
rnd-actions as done in previous tasks. We did not evaluate pose
Fig. 5. Three examples of reconstructions after T = 6 glimpses. The first column shows the ground-truth viewgrids
(equirectangular projections for SUN), the second column shows the corresponding generative adversarial network
(GAN)–refined reconstructions of the lookaround and rnd-actions agents, and the third column shows handpicked
unseen views (marked on the ground-truth) and the corresponding angles. We chose T = 6 to generate more complete
images. Please see the Supplementary Materials for more GAN refinement details. Best viewed on PDF with zoom. Using an
intelligent policy, lookaround captures more information from the scene, leading to more realistic reconstructions
(examples 1 and 3). Although rnd-actions leads to realistic reconstructions on example 2, its textures and content differ
from the ground truth, especially on the ground. Note that the bounding boxes over views are warped to curves on the
equirectangular projection for SUN360.
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estimation on ModelNet due to the ambiguity arising from symmetric
objects. The models were evaluated using the absolute angular error
(AE) in (i) elevation and (ii) azimuth predictions, denoted by “AE
azim.” and “AE elev.” in Table 1. During evaluation, the starting
positions of the agent were selected uniformly over the grid of views.
The reference view was sampled randomly from the viewgrid for each
episode.

For baselines, we used one-view, rnd-actions, large-
actions, peek-saliency (defined in the previous section), and
supervised. supervised is a policy that was trained specifically
on the training objective for each task, i.e., with task-specific rewards.

Wecompared the transfer oflookaround andlookaround+spl
with these baselines in Table 1. The transfer performance of our policies
was better than that of rnd-actions on all tasks. This shows that
intelligent sequential camera control has scope for improving these
perception tasks’ efficiency. Overall, our look-around policy trans-
ferred well across tasks, competing with or even outperforming the su-
pervised task-specific policies. Furthermore, our look-around policies
Ramakrishnan et al., Sci. Robot. 4, eaaw6326 (2019) 15 May 2019
consistently performed the tasks better
than the baseline policies for glimpse
selection based on saliency or large
actions.

For active recognition on ModelNet,
most of the methods performed simi-
larly. On that dataset, recognition with
a single view was already fairly high,
leaving limited headroom for improving
with additional views, intelligently
selected or otherwise. On pose estima-
tion, our learned policies outperformed
the baselines as expected, because the re-
constructions generated by our agents
were more accurate. On light source
localization, our policies showed com-
petitive results and came close to the per-
formance of supervised. They also
substantially outperformed the remain-
ing baselines, demonstrating success-
ful transfer. For surface area estimation,
we observed that all methods, including
the supervised policies, managed only
marginal gains over one-view. We
believe that this is an indication of the
difficulty of this task, as well as the ne-
cessity for more 3D-specific architec-
tures such as those that produce voxel
grids, point clouds, or surface meshes
as output (38–40).

These results demonstrate the effec-
tiveness of learning active look-around
policies via observation completion
on unlabeled datasets—without task-
specific rewards. As we see in Table 1,
such policies could successfully transfer
to a wide range of perception tasks and
often performed on par with supervised
task-specific policies.
CONCLUSION
We propose the task of active observation completion to facilitate
learning look-around behaviors in a task-independent way. Our
proposed approach outperformed several baselines and effectively
anticipated the high-level properties of the environment, having
observed only a small fraction of the scene or 3D object. We further
showed that adding the proposed RL sidekicks led to faster training
and convergence to better policies (Fig. 3 and fig. S3). Once look-around
behaviors were learned, we showed that they could be effectively
transferred to a wide range of semantic and geometric tasks where they
at times outperformed supervised policies trained in a traditional task-
specific manner (Table 1).

Although we are motivated to devise sidekick policy learning for
active visual exploration, it is more generally applicable whenever an RL
agent can access greater observability during training than during de-
ployment. For example, agents may operate on first-person observa-
tions during test time, yet have access to multiple sensors during
training in simulation environments (41–43). Similarly, an active
Fig. 6. Theground-truth360panoramaor viewgrid, agentglimpse inputs, and finalGAN-refined reconstructions for
multiple environments from SUN360 and ModelNet. See also movie S1 provided in the Supplementary Materials.
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object recognition system (8, 10, 11, 26, 30) can only see its previously
selected views of the object; yet, if trained with CAD models, it could
observe all possible views while learning. Future work can explore side-
kicks in such scenarios.

Despite the promising results, our approach does have several
shortcomings, and our work points to several interesting directions
for future work. Although the agent is moving from one view to an-
other, it does not use the information available during this motion.
This is reasonable, because allowable actions are confined to a neigh-
borhood of the current observation and hence relatively close in 3D
world space. Still, an interesting setting would be to use the sequence
of views obtained while the action is being executed.

Second, our current action spacewas discretized to promote training
efficiency, andwe assumed that each action had unit cost and optimized
the agent to perform well for a fixed cost budget. The unit cost was ap-
proximately correct given the locality of the action space. Nonetheless, it
could be interesting to adapt to free-range actions with action-specific
costs by allowing the agent to sample any action (continuous or dis-
crete) and penalizing it based on the cost of that action. Such costs could
be embodiment specific. For example, humanoid robots may find it
easier to move forward when compared with turning and walking,
whereas wheeled robots can perform both motions equally well. Such
a formulation would also naturally account for the sequence of views
seen during action execution. Furthermore, as an alternative to training
the agent to make nonmyopic camera motions to best reduce
reconstruction error in a fixed budget of glimpses, one could instead
formulate the objective in terms of a fixed threshold on reconstruc-
tion error and allow the agent tomove until that threshold is reached.
The former (our formulation) is valuable for scenarios with hard re-
source constraints; the latter is valuable for scenarios with hard accu-
racy constraints.

A third limitation of the current approach is that in practice we
found that the diversity of actions selected by our learned policies was
sometimes limited. The agent often tended to prefer a reduced action
space of two or three actions depending on the starting point and the
environment, despite using a loss term explicitly encouraging high
entropy of selected actions. We believe that this could be related to
optimization difficulties commonly associated with policy gradient–
Ramakrishnan et al., Sci. Robot. 4, eaaw6326 (2019) 15 May 2019
based RL, and improvements on this front would also improve the
performance of our approach.

Our approach was also affected by a well-known limitation asso-
ciated with rectangular representations of spherical environments
(44) where information at the poles are oversampled compared with
the central elevations, resulting in redundant information across dif-
ferent azimuths at the poles. This is further exacerbated in realistic
scenes where the poles often represent the sky, floor, and ceiling, which
tend to have limited diversity. Because of this issue, we observed that
heuristic policies that sample constant actions while avoiding the poles
competed strongly with learned approaches and even outperformed
supervised policies in some cases. We found that incorporating
priors that encourage the agent tomove away from the poles resulted
in consistent performance gains for our method as well. One future
direction to avoid the issue would be to design environments that
have varying azimuths across elevations.

Another drawback is that our current testbeds handle only
camera rotations, not translations. In future work, we will extend
our approach to 3D environments that also permit camera trans-
lations (45, 46). In such scenarios, intelligent look-around behav-
ior becomes even more essential, because no matter what visual
sensors it has, an agent must move its camera to observe another
room. We also plan to consider other tasks for transfer such as
target-driven navigation (47) and model-based RL (48, 49), where
a preliminary exploratory stage is crucial for performing well on
downstream tasks.

Last, it will be interesting to explore howmultiple sensingmodalities
could work together to learn look-around behavior. For example, an
agent that hears a sudden noise from one direction might learn to look
there to gain new information about dynamic objects in the scene, or an
agent that sees an unfamiliar texturemight reach out to touch the object
surface to better anticipate its shape.
MATERIALS AND METHODS
In this final section, we summarize the implementation of our ap-
proach. Complete implementation details are provided in the Supple-
mentary Materials.
Table 1. Transfer results. lookaround and lookaround+spl are transferred to the rnd-actions task-heads from each task. The same unsupervised
look-around policy successfully accelerates a variety of tasks—even competing well with the fully supervised task-specific policy (supervised). Note that
RMSE here denotes the root mean squared error in the surface area prediction.
Task method A
SUN360
 ModelNet
ctive recogn. accuracy ↑ A
Pose estimation
Active recogn. accuracy ↑ L
ight source loc. accuracy ↑ S
urface area RMSE × 100↓
E azim. ↓ A
E elev. ↓
one-view
 51.94
 75.74
 30.32
 83.60
 58.74
 21.22
rnd-actions
 62.90
 66.18
 19.53
 88.46
 72.97
 19.04
large-actions
 63.73
 67.57
 19.94
 89.05
 75.14
 18.38
peek-saliency
 64.20
 65.46
 19.76
 88.74
 71.19
 18.85
supervised
 68.21
 51.36
 9.81
 88.58
 86.30
 18.43
lookaround
 68.89
 50.00
 9.94
 89.00
 83.29
 18.82
lookaround+spl
 69.32
 47.13
 9.36
 89.38
 83.08
 18.14
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Recurrent observation completion network
We now discuss the recurrent neural network used for active observa-
tion completion. The architecture naturally splits into fivemodules with
distinct functions: SENSE, FUSE, AGGREGATE, DECODE, and ACT.
Architecture details for all modules are given in Fig. 7.

Encoding to an internal model of the target
First, we define the core modules with which the agent encodes its
internal model of the current environment. At each step t, the agent
is presented with a 2D view xt captured from a new viewpoint qt.
We stress that absolute viewpoint coordinates qt are not fully known,
and objects/scenes are not presented in any canonical orientation. All
viewgrids inferred by our approach treat the first view’s azimuth as the
origin. We assume only that the absolute elevation can be sensed using
gravity and that the agent is aware of the relative motion from the pre-
vious view. Let pt denote this proprioceptive metadata (elevation, rela-
tive motion).

The SENSE module processes these inputs in separate neural
network stacks to produce two vector outputs, which we jointly denote
as ot = SENSE (xt, pt) (see Fig. 7, top left). FUSE combines information
from both input streams and embeds it into ft = fuse (ot) (Fig. 7, top
center). Then, this combined sensory information ft from the current
observation is fed into AGGREGATE, which is a long short-term
memory module (50). AGGREGATE maintains an encoded internal
model st of the object/scene under observation to “remember” all rel-
evant information from past observations. At each time step, it up-
dates this code, combining it with the current observation to produce
st = AGGREGATE (f1, ⋯, ft) (Fig. 7, top right).

SENSE, FUSE, and AGGREGATE together encode observations
into an internal state st that is used to produce the output viewgrid
and select the action, respectively, as we detail next.

Decoding to the inferred viewgrid
DECODE translates the aggregated code into the predicted viewgrid
V̂ tðx1;⋯; xtÞ ¼ DECODEðstÞ. To do this, it first reshapes st into a
sequence of small 2D feature maps (Fig. 7, bottom right) before upsam-
pling to the target dimensions using a series of learned up-convolutions.
Ramakrishnan et al., Sci. Robot. 4, eaaw6326 (2019) 15 May 2019
The final up-convolution producesMNmaps, one for each of theMN
views in the viewgrid. For color images, we produce 3MNmaps, one
for each color channel of each view. This is then reshaped into the
target viewgrid (Fig. 7, bottom center). Seen views are pasted directly
from memory.

Acting to select the next viewpoint to observe
Last, ACT processes the aggregate code st to issue a motor command
at =ACT (st) (Fig. 7, middle right). For objects, themotor commands
rotate the object (i.e., agent manipulates the object or peers around it);
for scenes, the motor commands move the camera (i.e., agent turns in
the 3D environment). Upon execution, the observation’s pose up-
dates for the next time step to qt + 1 = qt + at. For t = 1, q1 is randomly
sampled, corresponding to the agent initially encountering the new
environment or object from an arbitrary pose.

Internally, ACT first produces a distribution over all possible
actions and then samples at from this distribution. We restrict
ACT to select small discrete actions at each time step to approximately
simulate continuousmotion. Once the new viewpoint qt + 1 is set, a new
view is captured and the whole process is repeated. This happens un-
til T time steps have passed, involving T − 1 actions. These modules
are learned end to end in a policy learning framework as described in
the section below on the policy learning formulation.

Sidekick policy learning
We now describe the sidekicks used to learn faster and converge to
better policies under partial observability. To effectively learn to per-
form the task, the agent has to use the limited information available
from its egocentric view to (i) aggregate information, (ii) select
intelligent actions to improve its training, and (iii) decode the entire
viewgrid. This poses considerable hurdles for policy learning under par-
tial observability, that is, making decisions while lacking full state
knowledge. In particular, our agent does not know the entire 360°
environment before it has to decide where to look next.

To address these issues, we propose sidekicks that exploit full ob-
servability available exclusively during training to aid policy learning
of the ultimate agent. The key idea is to solve a simpler problem with
uary 14, 2020
relevance to the actual look-around task
using full observability and then transfer
the knowledge to the main agent. We de-
fine two types of sidekicks, reward-based
and demonstration-based.
Reward-based sidekick
The reward-based sidekick aims to
identify a set fxðX; qiÞgKi¼1 of K highly
informative views in the environment
X by exploiting full observability dur-
ing training. It considers a simplified
completion problem where the goal is
to evaluate the information content of in-
dividual views themselves, i.e., to identify
information hot spots in the environment
that strongly suggest other parts of the
environment. For example, it might learn
that facing the blank ceiling of a kitchen is
less informative than lookingat the contents
of the refrigerator or stove.

To evaluate the informativeness of a
candidate view, the sidekick sees howwell
Fig. 7. Architecture of our active observation completion system. Although the input-output pair shown here is
for the case of 360° scenes, we used the same architecture for the case of 3D objects. In the output viewgrid, solid
black portions denote observed views, question marks denote unobserved views, and transparent black portions
denote the system’s uncertain contextual guesses.
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the entire environment can be reconstructed given only that view. We
train a completion model that can reconstruct V̂ ðXÞ from any single
view (i.e., we set T = 1). The score assigned to a candidate view is
inversely proportional to the reconstruction error of the entire environ-
ment given only that view. The sidekick conveys the results to the agent
during policy learning in the form of an augmented reward rst at each
time step. Please see the section on sidekick policy learning in the
Supplementary Materials for more details.
Demonstration-based sidekick
Our second sidekick generates trajectories of informative views
through a sidekick policy ps. In a trajectory, the informativeness of
the current view is conditioned on the past views selected, as opposed
to sampling individually informative views. To condition the informa-
tiveness on past views, we use a cumulative coverage score (see eqs. S9
and S10) that measures the amount of information gathered about dif-
ferent parts of the environment until time t. The goodness of a view is
measured by the increase in cumulative coverage obtained upon select-
ing that view, i.e., how well it complements the previously selected
views. Please see the section on sidekick policy learning in the Supple-
mentary Materials for full details.

The demonstration sidekick uses this coverage score to sample
informative trajectories. Given a starting view inX, the demonstration
sidekick selects a trajectory of T views that jointly maximize the cov-
erage ofX. At each time step, the demonstration sidekick evaluates the
gain in cumulative coverage obtained by sampling each view in its
neighborhood and then greedily samples the best view (see eq. S11).

We use sidekick-generated trajectories as supervision to the agent
for a short preparatory period. The goal is to initialize the agent with
useful insights learned by the sidekick to accelerate training of better
policies. We achieve this through a hybrid training procedure that com-
bines imitation and reinforcement, as described in the demonstration-
based sidekick section in the Supplementary Materials.

Policy learning formulation
Having defined the recurrent network model and the sidekick policy
preparation, we now describe the policy learning framework used
to train our agent as well as the mechanisms used to incorporate
sidekick rewards (rst ) and demonstrations (obtained from ps). All
modules are jointly optimized end to end to improve the final recon-
structed viewgrid V̂T, which contains predicted views x̂TðX; qjÞ for all
viewpoints qj, 1 ≤ j ≤ MN. The agent learns a policy p(a∣st) that
returns a distribution over actions for the aggregated internal repre-
sentation st at time t. LetA ¼ faig denote the set of camera motions
available to the agent. Our agent seeks the policy that minimizes re-
construction error for the environment given a budget of T camera
motions (views). LetWs,Wf,Wr,Wd,Wa represent the weights of the
SENSE, FUSE, AGGREGATE, DECODE, and ACT modules. If we
denote the set of weights of the network [Ws,Wf,Wr,Wd,Wa] byW
and W excluding Wa by W/a and W excluding Wd by W/d, then the
overall weight update is

DW ¼ 1
n
∑
n

j¼1
lrDW

rec
=a þ laDW

act
=d ð1Þ

where n is the number of training samples, j indexes over the training
samples, lr and la are constants, and DWrec

=a and DWact
=d update all

parameters except Wa and Wd, respectively.
Ramakrishnan et al., Sci. Robot. 4, eaaw6326 (2019) 15 May 2019
The pixelwise MSE reconstruction loss (Lrec
t ) and corresponding

weight update at time t are as follows

Lt
recðXÞ ¼ ∑

MN

i¼1
dðx̂ tðX; qðiÞ þ D0Þ; xðX; qðiÞÞÞ;

DWrec
=a ¼ �∑

T

t¼1
∇W=a

Lt
recðXÞ

ð2Þ

where x̂ tðX; qðiÞÞ denotes the reconstructed view at viewpoint q(i)

and time t, d denotes the pixelwise reconstruction MSE, and D0 de-
notes the offset to account for the unknown starting azimuth (23).

The agent’s reward at time t consists of the intrinsic reward from the
sidekick rst ¼ InfoðxðX; qtÞ;XÞ and the negated final reconstruction
loss, �LT

recðXÞ

rt ¼
rst 1≤ t ≤ T � 2

�Lrec
T ðXÞ þ rts t ¼T�1:

0
@

1
A ð3Þ

The sidekick reward rst serves to densify the rewards by exploiting
full observability, thereby reducing uncertainty during policy learning.
Please see the Supplementary Materials for the exact form of rst . The
update from the policy consists of an actor-critic update, with a
baseline b to reduce variance, and supervision from the demonstration
sidekick:

DWact
=d ¼ ∑

T�1

t¼1
∇W=d

log pðat∣stÞ ∑
T�1

t′¼t
rt′�bðstÞ

 !
þ DWdemo

=d : ð4Þ

We adapt the baseline b as the value function from an actor-critic
(51) method to update the ACT module. The demonstration side-
kick’s supervision is defined below in Eq. 5. The ACT term addition-
ally includes a loss to update the learned value network and entropy
regularization to promote diversity in action selection (please see ad-
ditional loss functions in the Supplementary Materials).

Whereas the reward sidekick augments rewards, the demonstra-
tion sidekick instead influences policy learning by directly supervis-
ing the early rounds of action selection. This is achieved through a
cross-entropy loss between the sidekick’s policy ps and the agent’s
policy p:

DWdemo
=d ¼ ∑

T�1

t¼1
∑
a∈A

∇=dðpsða∣stÞlog pða∣stÞÞ:� 0:10cm ð5Þ

Please see the sidekick policy learning section in the Supplemen-
tary Materials for the exact form of ps.

We pretrain the SENSE, FUSE, and DECODE modules with
T = 1. The full network is then trained end to end (with SENSE
and FUSE frozen). For training with sidekicks, the agent is aug-
mented either with additional rewards from the reward sidekick
(Eq. 3) or an additional supervised loss from the demonstration
sidekick (Eq. 5).
10 of 12

http://robotics.sciencemag.org/


SC I ENCE ROBOT I C S | R E S EARCH ART I C L E

 by 
http://robotics.sciencem

ag.org/
D

ow
nloaded from

 

Unsupervised policy transfer to unseen tasks
We now describe the mechanism used to transfer policies learned in an
unsupervised fashion via active observation completion to new percep-
tion tasks requiring sequential observations. This section details the pro-
cess overviewed above in the look-around policy transfer section. The
main idea is to inject our generic look-around policy into new unseen
tasks in unseen environments. In particular, we consider transferring
our policy—trained with neither manual supervision nor task-specific
reward—into various semantic and geometric recognition tasks for
which the agent was not specifically trained. Recall, we considered four
different tasks: recognition, surface area estimation, light source local-
ization, and camera pose estimation.

At training time, we train an end-to-end task-specific model (model
A) with a random policy (rnd-actions) and an active observation
completion model (model B). Note that our completion model is
trained without supervision to look around environments that have
zero overlap with model A’s test set. Furthermore, even the categories
seen during training may differ from those during testing. For exam-
ple, the agent might see various furniture categories during training
(bookcase, bed, etc.) but never a chair, yet it must generalize well to
look around a chair.

At test time, both the task-specific model A and the active observa-
tionmodel B receive and process the same inputs at each time step. The
task-specific model does not have a learned policy of its own, because it
is trained with a policy that samples random actions. At each time step,
model B selects actions to complete its internal model of the new
environment based on its look-around policy. This action is then com-
municated tomodel A in place of the random actions with which it was
trained. Therefore,modelA gathers its information based on the actions
provided by model B. Model A then makes a prediction for the target
task. If the policy learned in model B is truly generic, then it will intel-
ligently explore to solve the new (unseen) tasks despite never receiving
task-specific reward for any one of them during training.
guest on January 14, 2020
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Text to augment the implementation details in Materials and Methods
Fig. S1. Sidekick framework.
Fig. S2. Light source localization example.
Fig. S3. Convergence of sidekick policy learning.
Fig. S4. Training on different target budgets T.
Fig. S5. Episodes of active observation completion.
Fig. S6. GAN refinement.
Movie S1. Sample walkthroughs in reconstructed environments.
Movie S2. Active observation completion on SUN360.
Movie S3. Active observation completion on ModelNet.
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