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ABSTRACT

Imitation learning considerably simplifies policy synthesis compared to alternative
approaches by exploiting access to expert demonstrations. For such imitation
policies, errors away from the training samples are particularly critical. Even
rare slip-ups in the policy action outputs can compound quickly over time, since
they lead to unfamiliar future states where the policy is still more likely to err,
eventually causing task failures. We revisit simple supervised “behavior cloning”
for conveniently training the policy from nothing more than pre-recorded demon-
strations, but carefully design the model class to counter the compounding error
phenomenon. Our “memory-consistent neural network” (MCNN) outputs are
hard-constrained to stay within clearly specified permissible regions anchored
to prototypical “memory” training samples. We provide a guaranteed upper
bound for the sub-optimality gap induced by MCNN policies. Using MCNNs
on 9 imitation learning tasks, with MLP, Transformer, and Diffusion backbones,
spanning dexterous robotic manipulation and driving, proprioceptive inputs and
visual inputs, and varying sizes and types of demonstration data, we find large
and consistent gains in performance, validating that MCNNs are better-suited
than vanilla deep neural networks for imitation learning applications. Website:
https://sites.google.com/view/mcnn-imitation

1 INTRODUCTION

For sequential decision making problems such as robotic control, imitation learning is an attractive
and scalable option for learning decision making policies when expert demonstrations are available
as a task specification. Such demonstrations are typically easier to provide than the typical task
specification requirements for reinforcement learning and model-based control, namely, dense rewards
and good models of the environment. Furthermore, imitation learning is also typically less experience-
intensive than reinforcement learning and less expertise-intensive than model-based control.

We consider the simplest and perhaps most widely used imitation learning algorithm, behavior cloning
(BC) [26], which reduces policy synthesis to supervised learning over the expert demonstration data.
For example, a neural network policy for an autonomous car could be trained to mimic human driving
actions [2]. While the policy is synthesized with supervised learning, the evaluation setup is very
different: rather than merely achieving low average error on states from the training data, as common
in supervised learning, the trained policy must, when rolled out in the world, successfully accomplish
the demonstrated task.

This sequential deployment makes the behavior of imitation policy functions away from their training
data particularly critical. To see this, observe that during rollout, the policy’s own output actions
determine its future input states. Task performance is most closely tied to the policy’s behavior on this
self-induced set of states, which can deviate from the training dataset of expert demonstrations. In
particular, a minor error in the policy’s action output at any time may induce a future input state that
is subtly different from expert states. If the policy behaves erratically under such small deviations, as
it often does in practice, the situation quickly snowballs into a vicious cycle of compounding errors
leading to task failure.

Past solutions to this compounding error problem have focused on modifying the be-
havior cloning setup, such as by permitting online experience [12, 31], reward labels
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[25], queryable experts [34], or modifying the demonstration data collection procedure
[18]. Instead, we retain the conveniences of the plain BC setup and focus on design-
ing a model class that encourages better behavior beyond the training data, which in turn
could boost task performance by mitigating the compounding error phenomenon discussed
above. We provide a simple plug-in approach to improve BC with any deep neural network.

Figure 1: MCNN significantly improves
performance on realistic demonstration
datasets. We plot the percentage increase
in return with MCNN over D4RL BC [9]
for various number of demonstrations across
many tasks. In this plot, each point is a sep-
arate MCNN policy. We see significant im-
provements in the few demonstrations regime
where most realistic imitation learning tasks
can be found. The choice of model class is
crucial in such regimes and MCNN shines.
Additional details are in Appendix E.

It is well known that vanilla deep neural networks, only by
themselves, can generate large errors when evaluated away
from the training points, and even rare errors could derail
an entire task rollout. These large errors are particularly
evident when the expert demonstrations are few in num-
ber such as in robotics where human demonstrations are
essential for imitation learning. To tame these errors, we
propose semi-parametric “memory-consistent neural net-
works” (MCNN). MCNNs first subsample the dataset into
representative prototype “memories” to form the scaffold
for the eventual function. They then fit a parametric func-
tion to the rest of the training data that is hard-constrained
by the very formulation of the model class, to exactly fit
the training data at all the memories, and further, to stay
within double-cone-like zones of controllable shapes and
sizes centered at each memory. As a result, an MCNN
behaves mostly like a nearest-neighbor function close to
memories, and mostly like a deep neural network (subject
to the double-cone constraints) far from them. All func-
tions in this MCNN model class lie within “permissible
regions” centered on each memory, meaning that function
values away from the training points are bounded. Un-
der mild assumptions on the expert policy, we show that
this property of MCNNs induces an upper bound on the
suboptimality of the learned BC policy. Visualizations of
MCNNs can be found in Figure 2.

Using MCNNs on 9 imitation learning tasks, with MLP, Transformer and Diffusion backbones,
spanning dexterous robotic manipulation and driving, proprioceptive inputs and visual inputs, and
varying sizes and types of demonstration data, we find large and consistent gains in performance,
validating that MCNNs are better-suited than vanilla deep neural networks for imitation learning
applications. Figure 1 visualizes the percentage increase in return with MCNN policies compared to
the vanilla BC results reported in D4RL [9] for various quantities of training demonstrations across
tasks. The trend of the median demonstrates that MCNNs are highly effective in the low data regime
where generalization to test trajectories is stressed.

2 RELATED WORK

We present a detailed related work discussion in Appendix C & summarize closely related work here.

Compounding errors in imitation learning have previously been tackled by permitting online
experience [12, 31], reward labels [25], queryable experts [34], or modifying the demonstration
data collection procedure [18]. Our work is orthogonal to these methods and creates a model class
that avoids compounding errors by construction. Other works that propose new models for IL such
as Implicit BC (IBC) [7], Behavior Transformer (BeT) [35], Action Chunking Transformer [45],
and Diffusion Policies [41, 1] are orthogonal to our approach. MCNN can be used as a plug-in
approach to improve any of these methods. In fact, we show that MCNN with a BeT backbone
outperforms vanilla BeT and MCNN with a diffusion model outperforms diffusion BC on all tasks in
our experiments in Section 5. We also show that MCNN outperforms IBC in Section 5.

Non-parametric and semi-parametric methods in imitation learning such as nearest neighbors
[36], RBFs [32], and SVMs [19] have historically shown competitive performance on various robotic
control benchmarks. But, only recently, a semi-parametric approach consisting of neural networks for
representation learning and k-nearest neighbors for control was proposed in Visual Imitation through
Nearest Neighbors (VINN) [24]. This is the closest paper to our work and in Section 5, we compare
with VINN and demonstrate that we outperform their method comprehensively.
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Theoretical guarantees on the sub-optimality gap in imitation learning with MCNN are provided
in this paper. Such guarantees are not available with vanilla neural networks. Our theorem builds on
earlier work on reductions for imitation learning in [33, 28, 2, 29] and leverages intuitions from [23]
on bounding the width of the model class.

3 PROBLEM FORMULATION

A Markov Decision Process (MDP) is a tuple E = (S,A,P,R, γ, I), where S ⊆ Rn is the set
of states, A is the set of actions, P(s′|s, a) is the probability of transitioning from state s to s′

when taking action a, R(s, a) is the reward accrued in state s upon taking action a, γ ∈ [0, 1) is
the discount factor, and I is the initial state distribution. We assume that the MDP operates over
trajectories with finite length H , in an episodic fashion. Additionally, we assume the set of states S
to be closed and compact. Given a policy π : S 7→ A, the expected cumulative reward accrued over
the duration of an episode is given by the following,

J(π) = Eπ

[ H∑
t=1

R(st, at)
]
. (1)

In imitation learning, we assume that there exists an expert policy π∗ unknown to the learner. This
policy induces a distribution dπ∗ on the state-action space S ×A obtained by rollouts on the MDP.
The learner agent has access to an expert trajectory dataset D =

{
(s0, a0), (s1, a1), . . . , (sN , aN )

}
drawn from distribution dπ∗ . The goal of imitation learning is to estimate a policy π̂, which mimics
the expert’s policy and reduces the sub-optimality gap: J(π∗)− J(π̂).

4 APPROACH

Our approach involves developing a new model class, memory consistent neural networks (MCNN),
and training it with supervised learning to clone the expert from the demonstration data. We start by
setting up the MCNN model class in Sec 4.1, analyze its theoretical properties for imitation learning
in Sec 4.2, and finally describe our behavior cloning algorithm that uses MCNNs in Sec 4.3.

4.1 THE MODEL CLASS: MEMORY-CONSISTENT NEURAL NETWORKS

First, we develop the semi-parametric MCNN model class for imitation learning. MCNNs rely on
a code-book set of “memories” B := {(si, ai)}Ki=1 which are subsampled from the expert training
dataset and summarize it. In practice, such a memory code-book can be created using one of various
off-the-shelf approaches. We describe our algorithmic choices later in Sec 4.3. For notational
convenience, we describe the approach for a scalar action space, but it is easily generalizable to the
vector action spaces we evaluate in our experiments.

Given this memory code-book B, we now define a “nearest memory neighbor policy”. For a finite
set S ⊂ S , and an input x ∈ S , we first define its closest element in S as, CS(x) = argmin

s∈S
d(s, x),

where d is some distance metric defined on the space S . We denote by B|S , and B|A as the set of all
states and actions captured by the memory code-book B. With slight abuse of notation, we denote
B(s) as the action assigned by the codebook for a state input s. Using the above, we now define a
nearest neighbor regression function fNN as the following,
Definition 4.1 (Nearest Memory Neighbor Function). For an input x ∈ S , assume that s′ = CB|S (x),
then fNN (x) := B(s′).

In other words, the nearest memory neighbor function assigns actions according to a nearest neighbor
look-up in the memory code-book B. We are now ready to define memory-consistent neural networks
(MCNN), which permit interpolating between nearest neighbor functions and parametric deep neural
network (DNN)-based functions. Let fθ denote a DNN function parameterized by θ, which maps
from MDP states to actions.
Definition 4.2 (Memory-Consistent Neural Network). A memory-consistent neural network fMC is
defined using the codebook and DNN function pair (B, fθ), and hyperparameters λ ∈ R+, L ∈ R as

fMC
θ,B (x) = fNN (x)

(
e−λ d(x,s′)

)
︸ ︷︷ ︸

Nearest Memory Neighbour Function

+ L
(
1− e−λ d(x,s′)

)
σ(fθ(x))︸ ︷︷ ︸

Constrained Neural Network Function Class

(2)
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Figure 2: The elements of the MCNN model class. In the top row, the left panel shows the nearest memory
neighbour component with memories subsampled from the training dataset shown in red circles. The middle
panel depicts the constrained neural network function class, where the blue shaded regions represent the
permissible regions; by design, the function cannot take values outside these shaded regions. Finally, the right
panel shows the combined MCNN model class. The size of the permissible regions can be modulated by
increasing λ (bottom left) or by decreasing the number of memories (bottom right). The second row shows many
such MCNN model families with increasing capacity. For additional plots, see Appendix A.

where, s′ = CB|S (x) is the nearest memory to x, and σ : R 7→ [−1, 1] is a compressive non-linearity
that imposes hard limits on the outputs of fθ. In practice, we use tanh or similar functions.

We refer the reader to Figure 2 to drive the intuition. For inputs that are close to the points in the code-
book B, the function predicts values that are similar to the one observed in the training dataset. More
concretely, the value predicted by the function is a simple mixture: αfNN (x)+(1− α) L σ(fθ(x)) ,
where the mixing factor α ∈ [0, 1] changes in proportion to the distance to the nearest memory. Thus,
for points further away more weight is placed on the neural network and the memories have little
influence. The degree of permissible deviation from nearest neighbor prediction fNN is controlled
by the parameter λ. Thus, we obtain a purely nearest neighbor function for λ = 0, and a vanilla
deep neural network function for λ = ∞. Note that the MCNN function values in regions far away
from memories are in the set [−L,L]. For this reason, we normalize output actions to [−L,L] before
training an MCNN function.

4.2 THEORETICAL ANALYSIS OF MCNNS FOR IMITATION LEARNING

For fixed hyperparameters L, λ and memory codebook B, we denote by F, the class of memory-
consistent functions outlined in Equation 2. Note that a choice of the DNN function parameters θ
fixes a specific function in this class as well.
Assumption 4.3 (Realizability). We assume that the expert policy π∗ belongs to the function class F.

This assumption trivially holds at the memories, where the MCNN exactly reproduces expert actions.
For all other points, we assume that there exist some parameters θ, which can capture the policy π∗

with sufficient accuracy, for a choice of L and λ. For a point x at a distance of d(s′, x), the vanilla
DNN can affect the predictions only by an amount of ±L

(
1− e−λ d(x,s′)

)
. Without this restriction,

we might have been able to capture behaviors that went well beyond these ranges. This is reasonable
since, expert policies do not make sudden unbounded jumps in their actions. What we propose here
is a way to enforce this bound using a zeroth order nearest neighbor estimate.

We analyze the behavior of this function class, and present some useful lemmas along the way. For
a set of memories present in B|S , we wish to capture the maximum value that the distance term:
d(x, s′) can take in Equation 2. To that end, we define the most isolated state as the following:
Definition 4.4 (Most Isolated State). For a given set of memory points B|S , we define the most
isolated state sIB|S := argmax

s∈S

(
min
m∈B|S

d(s,m)
)
, and consequently the distance of the most isolated

point as dIB|S = min
m∈B|S

d(sIB|S ,m)

4
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The distance of the most isolated state captures the degree of emptiness that persists with the current
knowledge of the state space due to memory code-book B.
Lemma 4.5. Assume two sets of memory code-books Bi, Bj , such that Bi ⊆ Bj , then dIBi|S ≥ dIBj |S

Proof: The proof of the above lemma is straightforward, since the infimum of a subset (Bi) is larger
than the infimum of the original set (Bj).

This observation is useful when we study the effects of increasing the size of the code-book B. Note,
when learning a memory-consistent neural network fMC

θ,B , we deploy the standard SGD based training
to adjust the parameters θ. The choice of the number of memories in B is kept as a hyperparameter.
This allows us to bound the maximum width of the function class, first described in [23] . We analyze
this for single output functions next.
Lemma 4.6. (Width of Function Class) The width of the function class F, ∀ θ1, θ2 ∈ Θ, and ∀s ∈ S ,
defined as max

θi,θj
|
(
fMC
θi,B − fMC

θj ,B

)
(s)| is upper bounded by : 2L×

(
1− e−λ dI

B|S
)

Proof : Please see Appendix B.

Theorem 4.7. The sub-optimality gap J(π∗)− J(π̂) ≤ min{H,H2|A|L
(
1− e−λ dI

B|S
)
}

Proof: In order to take advantage of well-known results in the imitation learning literature [33, 28,
2, 29], we restrict ourselves for the purpose of this analysis to the discrete action-space A scenario,
where the policy π : S 7→ ∆(A). Even still, the intuitions developed through this analysis guide our
algorithmic choices in continuous environments. The actions picked in the expert dataset D induce a
dirac distribution over the actions corresponding to each input state.

Recall that in imitation learning, if the population total variation (TV) risk T(π̂, π∗) ≤ ϵ, then,
J(π∗) − J(π̂) ≤ min{H,H2ϵ} (See [28] Lemma 4.3). We note the following for population TV
risk:

T(π̂, π∗) =
1

H

H∑
t=1

Est∼ft
π∗

[
TV (π̂(·|st), π∗(·|st))

]
≤ 1

H

H∑
t=1

Est∼ft
π∗

[
|A|L

(
1− e−λ dI

B|S
)]

≤ |A|L
(
1− e−λ dI

B|S
)

(3)
where f t

π∗ is the empirical distribution induced on state st obtained by rolling out policy π∗. For the
first inequality in the above derivation, we use Lemma 4.6. Using this, in the performance gap lemma
gives us the following:

J(π∗)− J(π̂) ≤ min{H,H2|A|L
(
1− e−λ dI

B|S

)
}

Corollary 4.8. Using Lemma 4.5 we know that if Bi ⊆ Bj , then
(
1− e−λ dI

Bi|S
)
≥

(
1− e

−λ dI
Bj |S

)
.

This can result in lower performance gap according to Theorem 4.7, when H ≥ H2|A|L
(
1 −

e−λ dI
B|S

)
. Hence, reflecting the utility of adding more memories in such cases.

Takeaways. We summarize the insights from the above theoretical analysis here. First, our MCNN
class of functions is bounded in width (Lemma 4.6) even though it uses a high-capacity function
approximator like DNNs. No such bound is available for vanilla neural networks. This translates to a
bounded sub-optimality gap (Theorem 4.7) also not available in vanilla neural networks. Finally, our
Corollary states that we can likely gain better imitation learning performance by simply adding more
memories (up to a limit).

4.3 ALGORITHM: IMITATION LEARNING WITH MCNN POLICIES

We now describe our algorithm to use MCNNs for imitation learning. The first step in our method is
to learn the memory code-book B from the expert trajectory dataset D. The goal of Algorithm 1 is to
build the nearest memory neighbor function fNN . This is followed by details on the training aspects
of the MCNN parameters from the imitation dataset De in Algorithm 2.

For building the memory code-book, we leverage an off-the-shelf approach, Neural Gas [8], that
selects prototype samples to summarize a dataset. For completeness, we summarize this approach
briefly below.

5
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Algorithm 1 Learning Memories
Input: Offline dataset D = {(si, ai)}Ni=1 , number of memories m
Output: A nearest neighbor based function fNN : S 7→ A

1: NodesN , edges E ← NeuralGasClustering(S, m) // learns the distribution induced by D
2: NodesN ′, D(N ′)← For each node inN , find the closest observation in D, and call thisN ′. Additionally,

return the corresponding action taken by the expert in D, denoted by the map D(N ′)
3: G ← Define neural-gas with nodesN ′, and edges E .
4: Define a memory code-book B using B|S = G and B|A = D(N ′). Pairing nodes in the neural-gas to its

corresponding actions.
5: Define a nearest neighbor function fNN

B , along the lines described in Definition 4.1 using B.
6: return fNN

B

Definition 4.9 (Neural Gas). A neural gas G := (N , E), is composed of the following components,

1. A set N ⊂ S of the nodes of a network. Each node mi ∈ N is called a memory in this paper.
2. A set E ⊂ {(mi,mj) ∈ N 2, i ̸= j} of edges among pairs of nodes, which encode the topological

structure of the data. The edges are unweighted.

Neural gas. The neural gas algorithm [8, 27, 20] is primarily used for unsupervised learning tasks,
particularly for data compression or vector quantization. The goal is to group similar data points
together based on their similarities. The algorithm works by creating a set of prototype vectors, also
known as codebook vectors or neurons. These vectors represent the clusters in the data space. The
algorithm works by adaptively placing prototype vectors in the data space and distributing them like
a gas in order to capture the density. For more details we refer the reader to [8]. We use this in
Algorithm 1 (Line 1) to get the initial clustering. We can now go ahead and outline how “memories”
are picked in our case.

Learning memories. Algorithm 1 first uses the neural-gas algorithm to pick candidate points
(nodes) N in the state space. However, these points could be potentially absent in the dataset D,
making it hard to associate the correct action. To remedy this situation, we replace these points with
the closest states from the training set as memories. Such memory states come with the corresponding
actions taken by the expert. This is then used to define a nearest neighbor function by building the
memory codebook B and defining a function as outlined in Definition 4.1.

Algorithm 2 Behavior Cloning with Memory-Consistent Neural Networks: Training
Input: Dataset D = {(si, ai)}Ni=1, nearest neighbor function fNN

B , neural network function fθ(.), batch
size, total training steps T , parameters λ and L.

Output: Learned policy fMC
θ,B

1: for step= 1 to T do
2: Sample batch B from D.
3: Forward propagate (si, ai) ∼ B, fMC

θ,B (x) = fNN
B (x)

(
e−λ d(x,s′)

)
+ L

(
1− e−λ d(x,s′)

)
σ(fθ(x))

where, s′ is the nearest neighbor of x in B|S , σβ(x) is a tanh-like activation function given by σβ(x) =
2
[
LeakyReLUβ

(
x+1
2

)
− (1− β)ReLU

(
x−1
2

)]
− 1 and β = max

(
0, 1− ⌊ step

100
⌋
)
.

4: Update θ ← θ −∇E(si,ai)∼B L(fMC
θ,B (si), ai) where L is the negative log-likelihood or mean squared

loss or other loss function.
5: end for

Training MCNNs. Finally, we train MCNN policies through gradient descent on the parameters θ
of the neural network over the expert dataset De. For the compressive non-linearity, we use the σβ

function given in Algorithm 2 which is similar to tanh. We describe this in detail in Appendix E.

5 EXPERIMENTAL EVALUATION

We now perform a thorough experimental evaluation of MCNN-based behavior cloning in a large
variety of imitation learning settings.

6
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Environments and Datasets: We test our approach on 9 tasks, in 5 environments: 4 Adroit dextrous
manipulation and 1 CARLA environment as pictured in Figure 3. Demonstration datasets are drawn
from D4RL [9]. For each Adroit task, we evaluate imitation learning from 2 different experts:
(1) small realistic human demonstration datasets (‘human’) with 25 trajectories per task (5000
transitions), and (2) large demonstration datasets with 5000 trajectories (1 million transitions) from
a well-trained RL policy (‘expert’). In CARLA, we train on 400 demonstration trajectories (100K
transitions) from a hand-coded expert. For observations, we use high-dimensional states in Adroit pen,
hammer, relocate, and door, and 48× 48 images in CARLA. Action spaces are 24-30 dimensional in
the Adroit dexterous manipulation environments and 2-D in CARLA.

Baselines: We run the following baselines for comparison. (1) Behavior Cloning: We obtain results
with a vanilla MLP architecture. The details of the architecture can be found in Appendix E. We
report results from our implementation of BC and also report results given in D4RL [9] under the
names ‘MLP-BC’ and ‘D4RL BC’ respectively. Our BC implementation has only one difference
from [9]’s implementation: we normalize the observations. Normalizing observations has been shown
to improve BC’s performance [10]. (2) 1 Nearest Neighbours (1-NN): We set up a simple baseline
where the action for any observation in the online evaluation is the action of the closest observation
in the training data. In the expert and cloned datasets for each environment, this amounts to having to
perform a search amongst a million datapoints online at every step (which is highly inefficient). (3)
Visual Imitation with (k) Nearest Neighbours (VINN) [24]: VINN is a recent method that performs
a Euclidean kernel weighted average of some k nearest neighbors. In the Adroit case, we directly
perform the k nearest neighbors on the raw observation vectors. In the CARLA case, we perform it in
the same embedding space that we use to create memories (we discuss this embedding space more
below). (4) CQL-Sparse (CQL-S): We learn a policy using the CQL offline RL algorithm [17] and
a sparse reward given for task completion only. (5) Implicit BC (IBC) [7]: We report the results
from [7] which performs BC with energy models on the human tasks. (6) Behavior Transformer
(BeT-BC) [35]: We train and evaluate a behavior transformer using the official implementation on
all tasks. (7) Diffusion BC (Diff-BC) [41]: We also train and evaluate a diffusion-based BC policy
using the implementation in [41]. We provide additional details for all baselines and comprehensive
hyperparameter sweeps in Appendix E.

Learning memories and MCNN: We learn neural gas memories with the incremental neural gas
algorithm for 10 epochs starting from 2.5% of the total dataset to 10% of the total dataset for each
task. We update all the transitions in each dataset by appending the closest memory observation
and its corresponding target action (see more in Algorithm 1). We train the MCNN on this dataset
following Algorithm 2 for 1 million steps and evaluate on 20 trajectories after training and repeat
each experiment for a minimum of 3 seeds. We report results with an MLP, a behavior transformer
(BeT), and a diffusion policy as the underlying neural network under the names ’MCNN+MLP’,
’MCNN+BeT’, and ’MCNN+Diff’ respectively. We expand on the experimental setup and all
hyperparameters in Appendix E.

Embedding CARLA images: In the CARLA tasks, we use an off-the-shelf ResNet34 encoder [2]
that has been shown to be robust to background and environment changes in CARLA to convert the
48× 48 images to embeddings of size 512. We use this embedding space as the observation space
for learning memories and policies.

Performance Metrics: All our environments come with pre-specified dense task rewards which we
use to define performance metrics. We report the cumulative rewards (return) for each task. For the

Figure 3: The D4RL [9] environments where we evaluate our trained policies: Adroit Pen, Hammer, Relocate,
and Door [30], and CARLA’s Town03 and Town04 [3]. The four Adroit environments have proprioceptive
observations and the CARLA environment has image observations.

7
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Figure 4: Adroit human tasks [25 demos]: Comparison of returns (across 20 evaluation trajectories and 3
random seeds) between baselines and our methods (MCNN+BeT, MCNN+Diff, and MCNN+MLP). Our MCNN
methods use the same fixed set of hyperparameters across all tasks.

Figure 5: Adroit expert tasks [5000 demos]: Comparison of returns (across 20 evaluation trajectories and 3
random seeds) between baselines and our methods (MCNN+BeT, MCNN+Diff, and MCNN+MLP). Our MCNN
methods use the same fixed set of hyperparameters across all tasks.

aggregate plots on a set of four tasks, we compute the percentage increase in return of a method over
D4RL BC in all four tasks and report the median.

Results: First, for the “human” tasks with the most realistic imitation learning setup, we plot
aggregate and taskwise results in Figure 4. In aggregate-human, we see that MCNN+MLP with
fixed hyperparameters performs the best followed by MCNN+Diff and IBC at second place. We
also see that the MCNN variants of MLP, BeT and Diffusion consistently outperform the vanilla
versions. In pen-human-v1, MCNN+MLP outperforms the nearest baseline by 33%. It is also the only
method to shoot past the expert ceiling of 100 (depicted by a dashed red line). In hammer-human-v1,
MCNN+MLP is the only method to obtain a positive return outpacing the nearest baseline by an order
of magnitude (from -11 to 262). In relocate-human-v1, MCNN+BeT is the only method to achieve
a positive return. We attribute, like previous work [22], the stronger performance of MCNN+BeT
over other MCNN variants in the relocate task to the ‘memory’ advantage available to transformers
that is specifically suited for this task (where the historical states inform whether the ball has been
grasped). Lastly, in door-human-v1, MCNN+Diff outperforms all but the IBC baseline by an order of
magnitude. In this task, where repeated attempts at grasping and opening the door handle are usually
required for success, we see methods that enable such repetition (energy models in IBC and diffusion
in MCNN+Diff) succeed.

On the expert tasks in Figure 5, even with a large amount of data, we see MCNN+MLP come in
first outperforming the nearest baseline in the aggregate plot by over 100%. MCNN+Diff comes in
second in aggregate with a 40% improvement over the nearest baseline. Here too, MCNN variants
outperform the vanilla versions across all tasks. Also, MCNN+MLP and MCNN+Diff are the only
methods to exceed the expert ceiling in all four tasks. Across expert tasks both MCNN+MLP and
MCNN+Diff perform competitively and obtain up to a 25% improvement over the nearest baseline.

In the high dimensional CARLA lane task as well, we see in Figure 8 that MCNN+MLP outperforms
the nearest baseline by 27%. MCNN+BeT comes in a close second. Additional figures and all means
and standard deviations of our results can be found in Appendix F.
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Figure 6: Number of Memories in MCNN+MLP:
Comparison of returns (across 20 evaluation trajecto-
ries) with our method (MCNN+MLP) using between
2.5% to 80% of the dataset as memories. We find a
"sweet spot" for number of memories at 10-20%. We
also see the expected decrease to 1-NN performance
as number of memories increases to 100%.

Figure 7: Fixed vs Tuned Hyperparameters in
MCNN+MLP: Comparison of returns (across 20 eval
trajectories and 3 seeds) between our method with
fixed hyperparameters across all tasks and with hy-
perparameters tuned online. This shows that limited
online interaction (20 ep) for finetuning hyperparame-
ters can further improve our method.

Discussion: We identify some high-level trends across our results here. For every architecture –
MLP, BeT, or Diffusion, plugging in MCNN significantly improves performance in every task. The
best-performing method in nearly every task is an MCNN-based method. MCNN can even improve
the performance of simple MLP architectures to beyond that of more sophisticated recent architectures
such as Diffusion models. For example, in pen-human-v1 in Figure 4, diffusion outperforms MLP
but MCNN+MLP significantly improves upon Diffusion. The above statements remain true across
different types and sizes of expert data and across disparate tasks. We discuss some ablations next.

Figure 8: CARLA [400 de-
mos]: Comparison of return (across
20 evaluation trajectories and 3
random seeds) between baselines
and our methods (MCNN+BeT and
MCNN+MLP). For the results shown
here, our MCNN methods use the
same fixed set of hyperparameters
across all tasks.

Ablations: We plot return against number of memories in Figure
6 for MCNN+MLP. It demonstrates the existence of a "sweet
spot" for the number of memories around 10-20% of the dataset.
This allows for more efficient inference in MCNN than in base-
lines like VINN and 1-NN. It also shows the expected degradation
to 1-NN performance as the number of memories increases to-
wards 100%. Additional discussion on computation cost and
improved efficiency of MCNN compared to VINN and 1-NN can
be found in Appendix E.

In Figure 7, we show that given limited online interaction (here,
20 episodes), simply selecting the best-performing hyperpa-
rameters (λ, L, and a number of memories) further improves
MCNN+MLP performance. We also demonstrate the signifi-
cance of neural gas-based memories by comparing MCNN+MLP
with a version that uses randomly chosen memories in Figure 13
in Appendix F. We observe significantly reduced performance
with randomly chosen memories. We attribute this to the com-
petitive Hebbian learning algorithm for the neural gas, which is
better at capturing the distribution of training points (and creating
memories that are "spread out"). This in turn reduces the distance
to the most isolated state, improving imitation performance. Additional results on ablating the values
of λ and on all other tasks can be found in Appendix F.

6 CONCLUSIONS AND LIMITATIONS.

Imitation learning, and in particular behavior cloning, is one of the most promising approaches when
it comes to transferring complex robotic manipulation skills from experts to embodied agents. In
this work, we introduced MCNNs, a semi-parametric approach to behavior cloning that significantly
increases the performance of behavior cloning methods across diverse realistic tasks and datasets
regardless of the underlying architecture (MLP, transformer, or diffusion). While our theoretical and
empirical results support the idea that appropriately constraining the function class based on training
data memories improves imitation performance, MCNNs are only one heuristic way to accomplish
this; it is very likely that there are even better-designed model classes in this spirit, that we have not
explored in this work. Finally, we would like in future work to explore MCNNs as model classes
beyond just behavior cloning, such as in reinforcement learning and meta-learning.
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APPENDIX

A EXAMPLES OF THE MCNN FUNCTION CLASSES

We demonstrate the effects of varying number of memories, λ, and L in Figures 9, 10, and 11
respectively. By increasing L or decreasing the number of memories, we directly increase the
width of the model class. By increasing λ, we quicken the interpolation from the nearest neighbor
components to the neural network function class. Similarly, by decreasing λ, we slow this transition.

Figure 9: Effects of varying number of memories (keeping λ and L fixed) on the MCNN function
class.

13



Under review as a conference paper at ICLR 2024

Figure 10: Effects of varying λ (keeping L and number of memories fixed) on the MCNN function
class.

Figure 11: Effects of varying L (keeping λ and number of memories fixed) on the MCNN function
class.
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B PROOF OF LEMMA 4.6

The width of the function class F, ∀ θ1, θ2 ∈ Θ, and ∀s ∈ S, defined as
max
θi,θj

|
(
fMC
θi,B − fMC

θj,B

)
(s)| is upper bounded by 2L×

(
1− e−λ dI

B|S

)
Proof. Using Equation 2, we can express the difference as the following :

|fMC
θi,B − fMC

θj ,B |(x) = |L
(
1− e−λ d(x,s′)

)
σ(fθi(x))− L

(
1− e−λ d(x,s′)

)
σ(fθj (x))| (4)

= L
(
1− e−λ d(x,s′)

)
|σ(fθi(x))− σ(fθj (x))| (5)

≤ L
(
1− e−λ dI

B|S

)
|σ(fθi(x))− σ(fθj (x))| (6)

Now, observing that |σ(fθi(x))− σ(fθj (x))| ≤ 2 completes the proof.

C EXTENDED RELATED WORK

Compounding errors in imitation learning have previously been tackled by permitting online
experience [12, 31], reward labels [25], queryable experts [34], or modifying the demonstration
data collection procedure [18]. Our work is orthogonal to these methods and creates a model class
that avoids compounding errors by construction. Other works that propose new models for IL such
as Implicit BC (IBC) [7], Behavior Transformer (BeT) [35], Action Chunking Transformer [45],
and Diffusion Policies [41, 1] are orthogonal to our approach. MCNN can be used as a plug-in
approach to improve any of these methods. In fact, we show that MCNN with a BeT backbone
outperforms vanilla BeT and MCNN with a diffusion model outperforms diffusion BC on all tasks in
our experiments in Section 5. We also show that MCNN outperforms IBC in Section 5.

Non-parametric and semi-parametric methods in imitation learning such as nearest neighbors
[36], RBFs [32], and SVMs [19] have historically shown competitive performance on various robotic
control benchmarks. But, only recently, a semi-parametric approach consisting of neural networks for
representation learning and k-nearest neighbors for control was proposed in Visual Imitation through
Nearest Neighbors (VINN) [24]. This is the closest paper to our work and in Section 5, we compare
with VINN and demonstrate that we outperform their method comprehensively.

Theoretical guarantees on the sub-optimality gap in imitation learning with MCNN are provided
in this paper. Such guarantees are not available with vanilla neural networks. Our theorem builds on
earlier work on reductions for imitation learning in [33, 28, 2, 29] and leverages intuitions from [23]
on bounding the width of the model class.

Learning a codebook of prototypes, like our memories, has been previously explored for image
reconstruction [40, 6], physics-constrained learning [37], online RL [21, 44, 11, 5], interpretable
OOD detection [42, 15, 16, 14], robust classification [4, 13, 38], and motion prediction [43]. The
closest related usage of memories that are representative of the topology of the input space is in [37].
But, here, external information in the form of physics and medical constraints plays a key role in
enforcing constraints at these pivotal points. In this paper, our prior is simply a kind of “consistency”
with no external information utilized.

D COMPUTE

We ran the experiments on either two Nvidia GeForce RTX 3090 GPUs (each with 24 GB of memory)
or two Nvidia Quadro RTX 6000 GPUs (each with 24 GB of memory). The CPUs used were Intel
Xeon Gold processors @ 3 GHz.

E DETAILED EXPERIMENTAL SETUP

Normalization of inputs: We normalized all observations by subtracting the mean and dividing by
standard deviation. We didn’t have to normalize the actions as they are already in the range [−1, 1]
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but if we are learning transition models instead, the outputs (next state or reward) would have to be
normalized.

Our tanh-like dynamic activation function: We plot our activation function σβ(.) described in
Algorithm 2 in Figure 12. It is exactly like the tanh function for β = 0 as seen in Figure 2. Further,
as given in Algorithm 2’s Line 3, we set β = max

(
0, 1− ⌊ step

100 ⌋
)
. Hence, β = 0 after 100 steps

until 1 million steps during training. We also set β = 0 during inference. For β = 0, our activation
function reduces to −1 for x < −1, x for −1 ≤ x ≤ 1, and 1 for x > 1. This is exactly like tanh.
The reason for using this activation function is the very few initial steps when it is not like tanh where
gradients are available beyond [−1, 1] during which time, the neural network component adjusts for
the presence of the nearest neighbor component. We use the standard tanh activation function for
our reimplementation of BC.

Implementation details for baselines and MCNN+MLP: In BC and MCNN+MLP, we use an MLP
with two hidden layers (three total layers) of size [256, 256] for Adroit tasks and [1024, 1024] for
CARLA. We use an Adam optimizer with a starting learning rate of 3e− 4 and train for 1 million
steps. We simply minimize the mean squared error for training the policies. We use a batch size
of 256 throughout. We describe the MCNN-specific hyperparameters, namely λ, L, and number of
memories in another paragraph below. For all other BC hyperparameters, we use the recommended
values in the TD3-BC implementation in [39].

For VINN, we set k = 10 in the Euclidean weighted k nearest neighbors algorithm. This value was
recommended by the original paper [24].

For BeT, we follow the official implementation1. We use 6 layers, 6 heads, and an embedding
dimension of 120 in the transformer model. We also 64 clusters for action discretization performed
on the actions seen in the first 100 steps. Since the original paper [35] did not run experiments on
D4RL tasks, we ran a sweep over various choices of number of layers (4, 6), number of heads (4, 6),
and embedding dimension (32, 64, 120). Following previous work [7], we chose the hyperparameters
(6 layers, 6 heads, 120 embedding dimension) with the highest average scores on three human tasks.
We used these hyperparameters on all other tasks as well. For all other BeT hyperparameters, we use
the recommended values in the official BeT implementation.

For Diffusion-BC, we use the official implementation from [41]2. We also use the recommended
hyperparameters provided in the code for pen-human-v1 in all human and expert tasks.

In CQL-Sparse, we use an MLP with three hidden layers (three total layers) of size [256, 256, 256]
for Adroit tasks. We give a reward of 1 for the last timestep in both expert and human datasets where
each trajectory achieves task completion. Hence, we run CQL-Sparse only on the human and expert
datasets where each trajectory has achieved task completion. We use a reward of 0 in all preceding
timesteps. For all CQL-sparse hyperparameters, we use the recommended values in [17]. We also
ran a sweep over the three key hyperparameters of CQL, namely actor learning rate (3e− 5, 1e− 4),
initial α (5, 10), and Lagrange threshold (5, None). We note that while performing the sweep, if the
Lagrange threshold is None, CQL was run with fixed α. Otherwise, α is tuned automatically, as
described in Kumar et al. [17], based on the Lagrange threshold and starting from its initial value.
We found that the recommended values in [17], i.e. actor learning rate = 3e− 5, initial α = 5, and
Lagrange threshold = 5 performed the best overall.

Implementation details for MCNN + Behavior Transformer (BeT): We train MCNN+BeT
following the official BeT implementation described above with one major change to the action
offsets output by the BeT model. Let us denote the sequence of input observations as τ and the action
offsets output by the BeT model as fBeT(τ)). Then, the output of MCNN+BeT is given as follows:

fMC
BeT,B(τ) = fNN

B (τ)
(
e−λ d(τ,τ ′)

)
+ L

(
1− e−λ d(τ,τ ′)

)
2σ(fBeT(τ)/2) (7)

where τ ′ is the nearest (memory) sequence to τ and fNN
B (τ) retrieves the corresponding sequence of

actions from the codebook. We also multiply and divide by two inside the tanh-like function since
each item in the sequence output by the BeT lies in [−2, 2].

Implementation details for MCNN + Diffusion: We augment the diffusion process to use memories
in every step. Rather than predicting the noise value, we predict the true values. This amounts to a

1 https://github.com/notmahi/miniBET
2 https://github.com/Zhendong-Wang/Diffusion-Policies-for-Offline-RL
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Figure 12: Dynamic tanh-like activation function σβ(x) shown for β = 0 and β = 1.

minor change to the loss function within the official implementation. We provide this code in our
repository.

MCNN-specific hyperparameters: We use a value of L = 1.0 for all runs. This is suitable for BC
because our actions in the range of [−1, 1]. For both MCNN+MLP(Fixed) and MCNN+BeT(Fixed),
we use the same set of hyperparameters across all tasks. In particular, the MCNN-specific hyperpa-
rameter values are λ = 0.1 and 10% memories. We show an abltaion study of normalized scores with
varying number of memories (2.5%-80%) in Figure 14. We also show an ablation study with both
varying λ (0.1, 1.0, 10.0, 100.0) values and number of memories (2.5%, 5%, and 10%) in the 3D bar
charts of Figure 15. We also tabulate the highest value across all MCNN-specific hyperparameters
(obtained by evaluating on 20 trajectories) in the MCNN+MLP(Tuned) and MCNN+BeT(Tuned)
columns of Tables 1 and 2.

Implementation details for Figure 1: We run MCNN+MLP experiments on randomly sampled
subsets of the human and expert task datasets and report our performance normalized with that of
the D4RL BC scores from [9]. This means that for many points in Figure 1 we used a smaller set of
datapoints from a particular task for training an MCNN+MLP policy and yet performed better than
D4RL BC’s score on that task.

Discussion on computational costs: The computation cost of MCNN during inference is dominated
by the 1 nearest neighbors search among the M memories in an observation space Rd. From the
neural gas, we obtain a graph connecting memories. The search for the nearest memory is O(Md)
for the first observation. For every subsequent observation, we simply perform a nearby breadth-first
search starting from the previous memory. This is Θ(nearby search depth * d) in the average case.
Please note that the nearby search depth is kept small (1, 2, 3, 4). The search for the first memory can
also be further reduced to O(d logM) with the K-D trees data structure. Alternatively, leveraging the
parallel processing power of GPUs, this search can be done very quickly (<1 ms) in practice even
without a graph and by simply searching amongst all memories for the closest memory.

Further, since the vanilla neural net is a component of MCNN, we are less efficient at in-
ference than the vanilla neural net component alone. But, MCNN is more efficient than baselines like
VINN and 1-NN since we only have M memories, and this value is set to 10% of the total number of
datapoints or lower. VINN and 1-NN have to perform nearest neighbors search on a much larger
dataset than MCNN. Further VINN requires the top k neighbors (usually k=10) while we require
only the 1 nearest memory.

F ADDITIONAL FIGURES AND DETAILED RESULTS TABLES

We tabulate all reward values from our previous bar charts in Table 1. We tabulate all corresponding
normalized scores obtained following the methodology in D4RL [9] in Table 2. We plot all the
ablation results for replacing neural gas memories with random memories for human and expert tasks
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in Figure 13. We plot performance variation against number of memories (from 2.5% to 80%) for all
human tasks in Figure 14. We also plot a comparison of scores with varying λs (0.1, 1.0, 10.0, 100.0)
and varying number of memories (2.5%, 5%, and 10%) for each task in the 3D bar charts of Figure
15.
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Figure 13: Neural Gas vs Random Memories in MCNN+MLP: Comparison of returns (across 20 eval
trajectories) between our method with neural-gas-based memories and randomly chosen memories. This shows
that MCNN+MLP performs better with neural gas memories. We attribute this to the spread-out nature of neural
gas memories that reduces the distance to the most isolated state, improving imitation performance.

Figure 14: Number of Memories in MCNN+MLP: Comparison of returns (across 20 evaluation trajectories)
with our method (MCNN+MLP) using 2.5% of the dataset as memories up to 80% of the dataset as memories.
We find a "sweet spot" for num memories at 10-20%. We also see the expected decrease to 1-NN performance
with as num memories increases to 100%.
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Figure 15: Bar chart of returns for our method against various combinations of λ and memories for
each task. Each of the 12 bars in each of the 14 subfigures represents the average performance across
20 evaluation trajectories and three seeds. We notice that the best performance can be obtained for λ
values at the middle, i.e., λ ∈ {0.1, 1.0}, for any number of memories. This is where our method can
interpolate, by design, between the nearest memories and vanilla BC. These plots also demonstrate
that by training MCNNs on offline data for a few sets of hyperparameters and simply choosing
the best hyperparameter with limited online interaction, we can obtain significant improvements in
performance.
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