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ABSTRACT
As the size and ubiquity of artificial intelligence and computational machine learning models grow, the energy required to train and use them
is rapidly becoming economically and environmentally unsustainable. Recent laboratory prototypes of self-learning electronic circuits, such
as “physical learning machines,” open the door to analog hardware that directly employs physics to learn desired functions from examples at
a low energy cost. In this work, we show that this hardware platform allows for an even further reduction in energy consumption by using
good initial conditions and a new learning algorithm. Using analytical calculations, simulations, and experiments, we show that a trade-off
emerges when learning dynamics attempt to minimize both the error and the power consumption of the solution—greater power reductions
can be achieved at the cost of decreasing solution accuracy. Finally, we demonstrate a practical procedure to weigh the relative importance of
error and power minimization, improving the power efficiency given a specific tolerance to error.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0181382

I. INTRODUCTION

There has been a meteoric rise in the adoption and usage of
artificial intelligence (AI) and machine learning (ML) tools in just
the past 15 years,1,2 accompanied by an equally spectacular rise in
the sizes of ML models and the amount of computation required
to train and apply them.3,4 In recent years, the energy required to
train state-of-the-art ML models, as well as to use the trained mod-
els, has been rising exponentially, doubling every 4–6 months.5 This
energy cost will eventually severely constrain further increases in
model complexity and already constitutes significant economic and
carbon costs.6–8

The field of neuromorphic computing9–13 strives to recreate the
ability to learn in hardware. A major motivation for the development
of neuromorphic systems is the possibility of massive energy savings
compared to ML implemented on standard computers.13,14 Many
proposals for synthetic “neurons” and “synapses” have been laid out
over the past three decades, promising lower power consumption
compared to standard computers by 2–5 orders of magnitude.15–18

While much neuromorphic computing research has been focused

on the development of power-efficient hardware, usually for per-
forming inference (applying already-trained ML models), some
attention has recently been given to the study of power-efficient
learning “algorithms.”19–22 However, most neuromorphic hardware
implementations considered thus far specifically attempt to mimic
standard ML algorithms, such as backpropagation23–25 or phe-
nomenological neural synaptic learning processes such as STDP
(spike-timing-dependent plasticity).26–30

Recently, a new avenue was opened toward realizing power-
efficient neuromorphic computing, dubbed physical learning
machines or self-learning physical networks.31 Rather than mim-
icking known learning algorithms, such as backpropagation, such
systems exploit their inherent physics in order to learn, using local
learning rules that modify the learning degrees of freedom based on
locally available information, such that the system globally learns to
perform desired tasks. A certain class of local learning rules, known
as contrastive learning,32–36 describe how learning degrees of free-
dom should be modified in order for systems to achieve desired
outputs in response to inputs supplied by observed examples of use
(i.e., supervised learning).
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In order to realize any power gains, such learning rules must be
implemented in hardware. Coupled learning, a particular contrastive
learning rule, has been realized successfully in laboratory hardware
for electronic circuits of variable resistors.37–40 Such systems already
consume less power than conventional computers doing inference
because they are analog rather than digital.41 Here, we use analytical
theory, computation, and experiments to show that the propensity
of electronic circuits to minimize power dissipation enables even
greater reductions in power consumption via appropriate initializa-
tion and power-efficient learning rules. We specifically demonstrate
these results for regression tasks. However, it should be noted that
our analysis and results should apply to other physical learning
machines in different physical media (e.g., mechanical networks)
if they can be developed in the lab,42 as well as to other types of
problems (e.g., classification).

This paper is organized as follows: in Sec. II, we describe the
physical learning approach and discuss how the power consumption
of the system is modified by learning, in particular, as we change
the initial conditions of the learning degrees of freedom. A judi-
cious choice of initial conductances yields learning solutions with
low power consumption, while also reducing the energy consumed
in training. In Sec. III, we introduce a modification to the local
physical learning rule in order to minimize both error and power
consumption. We analyze this new local rule theoretically and test
it in simulations and lab experiments, concluding that it leads to
an error–power trade-off; lower-power solutions may be obtained
at the expense of higher errors. The energy required to train the sys-
tem can be reduced as well. Finally, in Sec. IV, we demonstrate how a
power-efficient learning algorithm with dynamical control over the
weighting of power and error optimization can lead to an efficient
adaptation of low-power solutions beyond simply using good initial
conditions and constant weighting.

II. POWER CONSUMPTION
IN PHYSICAL LEARNING CIRCUITS

In previous work, we established theoretically and experimen-
tally that self-learning resistor networks can be trained to perform
tasks such as allostery, regression, and classification.37,39,40 Training
a deep neural network corresponds to minimizing a learning cost
function with respect to learning degrees of freedom (edge weights
and biases). The learning landscape, described by the learning cost
function as one axis in the high-dimensional space where each of
the other axes corresponds to a different learning degree of free-
dom, remains fixed during the minimization. On the other hand,
successful training of physical learning machines corresponds to the
simultaneous minimization of two cost functions—the learning and
physical cost functions—with respect to two different sets of degrees
of freedom (DOF), the learning and physical degrees of freedom,
respectively. In the case of a self-learning electrical network of vari-
able resistors, the physical cost function is the dissipated power, the
physical DOF are the node voltages, and the learning DOF are the
conductances.

Notably, the physical cost function, or power, depends implic-
itly on the learning DOF. As a result, both the learning landscape and
the physical landscape evolve during training. For example, training
gives rise to soft modes in the physical landscape and to stiff modes

in the learning landscape, making the system more conductive and
lowering its effective response dimension.43

The height of a minimum in the physical landscape corre-
sponds to the power required to actuate the desired response (to
obtain the desired outputs in response to the given inputs from train-
ing data). Due to the coupling between the learning and physical
landscapes, it is possible to find and push down the minima in the
physical landscape corresponding to the global minima in the learn-
ing landscape during training, thus decreasing the amount of power
required to perform a given task.

Consider an electrical circuit that minimizes a scalar physical
cost function P(V ; k) (e.g., the dissipated power), depending on a
set of physical DOF V (e.g., the node voltages) and a set of learning
DOF k (e.g., the edge conductances). When an input signal (e.g., a
set of voltages at input nodes) is applied, the system responds by
optimizing the physical DOF to minimize P subject to the input
constraints, producing a stable free state VF with an associated free
power PF

(VF ; k). Training this system for specific output responses
using coupled learning34 involves clamping the targets T by slightly
nudging them toward the desired response VC

T = VF
T + η(ṼT − VF

T),
with ṼT being the desired response and nudge amplitude η≪ 1. The
physical system then minimizes the physical cost function subject to
both the inputs and this clamping, yielding a clamped state VC with
a clamped power PC

(VC; k). The contrast (or contrastive function)
is defined as the difference between the physical cost (powers) for
the clamped and free states,

C ≡ η−1
[PC
− PF
], (1)

which is intrinsically non-negative. Minima with vanishing con-
trast are also minima of the error (loss) function L that is typi-
cally used to measure the quality of a learning solution, e.g., the
mean squared difference between the desired and obtained behavior,
L ≡ 1

2(Ṽ T − VF
T)

2.34

Physical learning is achieved by a learning rule that corresponds
to modifying the learning degrees of freedom according to the partial
derivative of the contrast. This learning rule is local,

k̇ = −α
∂ C
∂ki
= −αη−1 ∂

∂ki
[PC
− PF
], (2)

with α being a scalar learning rate, setting the time scale for the learn-
ing dynamics. A system following these dynamics with a sufficiently
low learning rate tends to minimize the learning cost function L [as
shown in Fig. 1(b)]. See Appendix A for more details on the learning
dynamics close to a solution for the learning degrees of freedom k∗.

A. Power consumption in learned solutions
We now turn our attention to the scalar physical cost (i.e.,

power consumption) of the free state PF . This free power is the rele-
vant measure for the power used by the system to perform inference.
As noted, this is the power associated with the application of the
input voltages, allowing the output readouts. Our work is primarily
concerned with minimizing this free power PF , while also achiev-
ing good learning solutions with low error. We will show how the
free power can be lowered by non-hardware means, such as choos-
ing better initialization for the learning DOF and using learning
rules that minimize the free power at the same time as the error.
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FIG. 1. Effects of varying the conductance initialization scale. (a) Simulated resistor networks with edges corresponding to variable resistors. We train networks with N = 64
nodes to perform linear regression, i.e., to simulate desired linear equations with two variables (red source edges) and two results (blue target edges), see Appendix B for
details. (b) The error L as a function of training time for several conductance initialization values κ. The error is successfully reduced by the coupled learning rule by multiple
orders of magnitude, regardless of the choice of the initialization scale κ. (c) Training time T (epochs taken for the error to drop to error level L̃ = 10−4) as a function of
initialization κ. The training time remains constant when initialization is far from the bounds but grows linearly for low initialization close to kmin. (d) Free power PF during
training for different initialization κ. At the end of the training, the system finds a solution with trained power marked by the colored dots. (e) The trained power as a function
of initialization κ. Decreasing the conductance initialization scale has a strong effect, reducing the trained power needed to actuate the learned solution. (f) Training energy
E as a function of initialization κ. Choosing a proper optimal initialization (here, κ ≈ 2 × 10−2) can optimize the training energy. The results averaged over 50 realizations of
networks and regression tasks.

The free power of a system trained for a specific task will, hence-
forth be referred to as the trained free power. We will also look at
the total energy required to train the system E, henceforth termed as
the training energy, which can be estimated by integrating the free
power over the training time. We show how this training energy
can also be optimized by these initialization schemes and learning
rules.

We first study how the free power PF is affected by the basic
coupled learning rule of Eq. (2), and later see how it can be substan-
tially reduced by modifying this rule. Using the chain rule in Eq. (2),
we can derive an ODE for the free power during training,

Ṗ F
(k) = k̇ T

∇kPF
(k) = −α∂k CT

⋅ ∂kPF. (3)
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Note that the free state is a minimum of the power subject to
the inputs so that the derivative ∂V PF vanishes exactly, and hence,
∇kPF

= ∂kPF
+ dv

dk ∂V PF
= ∂kPF . We see that the free power tends to

decrease if the gradients of the free power and the contrast with
respect to k align and increase otherwise. Assuming the free power
changes slowly with k, or that the learning DOF k are close to the
learning solution k∗, we can approximate the free power using the
following Taylor expansion:

PF
(k) ≈ PF

(k∗) + (k − k∗)T∂kPF
(k∗). (4)

The free power changes due to the learning dynamics, starting at
the initial condition PF

(k0
) and ending after training with PF

(k∗).
Next, we discuss the sign of this shift, determined by the alignment
between the gradients of the contrast and free power.

Here, we specialize to the case of learning electrical circuits, e.g.,
adaptive resistor networks, where the physical DOF are the voltages
at nodes Va, while the learning DOF are conductances ki of edges i
connecting pairs of nodes. An adjacency matrix Δia is defined such
that each row of the matrix corresponds to an edge, having a value
of +1 at the index of the incoming node of that edge, −1 at the
index of the outgoing node, and 0 elsewhere. The choice of which
node is incoming or outgoing is a matter of convention and sets the
direction of currents but has no physical consequence. The vector
of voltage drops on the edges is given by ΔV i = ∑aΔiaVa. Resistor
networks minimize the total power dissipation,

P =
1
2∑i

kiΔV2
i . (5)

In such networks, where one of the nodes is grounded at VG = 0, the
native state of the network (in the absence of any inputs) is where all
voltage values are zero, all voltage drops are zero, and the total power
dissipation is P = 0. When the free/clamped boundary conditions are
applied, for example, by introducing currents in certain input and
output edges, the free and clamped power are

PF,C
=

1
2∑i

ki(ΔVF,C
i )

2.

Given weak clamping (VC
− VF

∼ η≪ 1), we write the con-
trast function C, neglecting the terms of order η2,

C = η−1
[PC
− PF
]

≈ η−1
∑

i
ki[Δ(VC

− VF
)]i[ΔVF

]i. (6)

We take the partial derivative of the contrast with respect to k (as
done in Ref. 35),

∂ C
∂ki
≈ η−1

[Δ(VC
− VF

)]i[ΔVF
]i. (7)

In this simple case, the learning modification is determined by
the alignment of each component of the free state response ΔVF

i with
its nudge in the clamped state (ΔVC

− ΔVF
)i. In these particular

models, we also know that the free power gradient is positive ∂PF

∂ki

= (ΔVF
)

2
i ≥ 0. We conclude that if the clamped state nudge aligns

with the free state response, the free power tends to decrease. This

is sensible as the system has to decrease its conductances to achieve
a stronger response required by the clamping. The opposite effect
occurs when the nudged response is misaligned with the free state,
resulting in increased conductances.

B. Power dependence on initial conditions
In Sec. II A, we established how physical learning affects the

system’s free power PF , i.e., its power consumption in the free
state. In the following, we consider how the initial conditions of
the learning degrees of freedom determine the trained free power,
i.e., free power of the learned solutions. We will show that judicious
initialization leads to considerable savings in power consumption.

It is well recognized in the ML literature that the dynamics and
obtained solutions of learning algorithms strongly depend on ini-
tialization, i.e., the initial values of the learning DOF.44–47 In the
context of physical learning, the choice of initialization may not only
affect the training time and accuracy of a solution but may also have
important effects on the trained free power. Suppose a set of volt-
age drops is applied over some input edges of a resistor network,
and we read out the resulting voltage drops over some other out-
put edges. In addition, suppose that the conductance values of the
network have a certain scale κ. It is known that the output voltage
drops do not depend on the scale κ but only on the relative ratios of
the conductance of different edges. However, reducing the conduc-
tance scale does, in fact, linearly decrease the free power [Eq. (5)].
Thus, we can, in principle, improve the trained free power indefi-
nitely by reducing the conductance scale. Realistically, we are bound
by experimental considerations: variable conductive elements have
minimal conductance values (corresponding to maximal resistance).
Furthermore, low conductance necessitates more precise hardware
implementations as the network response becomes highly sensitive
to small variations in the conductance.

The above-mentioned considerations suggest that initializing
the conductance values k (learning DOF) at lower values may yield
solutions with lower trained free power. To verify these ideas, we
trained N = 64 node networks [Fig. 1(a)] for multiple regression
tasks with two inputs and two outputs. The error for these regres-
sion tasks, noted as L, is given by mean squared differences between
the desired and the obtained target voltage drops in the training
set (Appendix B presents details on the simulated resistor networks
and regression tasks). We initialized the conductance values uni-
formly with different conductance scales in the range 10−3

≤ κ ≤ 101.
We note that in these simulations, the minimum conductance for
any given edge is kmin = 10−3, and the maximum conductance is
kmax = 101. Learning modifications that attempt to push the con-
ductances out of this range are not performed. The learning rate α
has been chosen such that κ = 1 and α = 0.1, a value which typically
results in a relatively quick and stable learning performance for these
networks and tasks. We find that as long as the learning rate is cho-
sen to be slow enough, the learning dynamics are well behaved and
our results scale as expected with the learning rate.

We set the units for these simulations such that the conduc-
tance scale [k] is defined as k = 1 inside the allowed range of our
conductors, and the voltage scale [V] corresponds to the typical
highest input values chosen for our regression tasks V = 1 (shown
in Appendix B). The networks are trained for 106 learning itera-
tions of Eq. (2). Each such iteration encompasses an epoch, i.e., the
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time taken for the network to observe and respond to all training
examples, similar to full-batch gradient descent.48 Our units of time
are scaled by the learning rate [τepoch] = α−1. With these definitions,
the units for the free power are given by [PF

] = [k][V]2. The train-
ing energy is given by the free power, integrated over training time,
which has units of [E] = [τepoch][k][V]2.

As expected, we find that coupled learning reduces the error
by many orders of magnitude [Fig. 1(b)]. We also find that when the
learning rate is scaled appropriately α∝ κ0.5, the scaled training time
T (number of epochs taken for the system to reach a certain error
threshold L̃ = 10−4, scaled by the learning rate) does not change
much for relatively high initialization κ [Fig. 1(c)]. However, initial-
ization close to the lower boundary kmin induces a linear increase in
the scaled training time, scaling as κ−1. This increase in the train-
ing time is reasonable as a large part of the training modification Δki
is not performed because it would require the conductances to go
below the minimum.

More importantly, at lower initialization scales κ, physi-
cal learning finds lower trained free power solutions PF

(k∗)
[in Figs. 1(d) and 1(e), note that the colored dots in panel d mark the
trained free power]. These results clearly show the benefit of initializ-
ing the conductances of edges close to their minimal values in terms
of learning power efficient solutions. While so far, we referred to the
power necessary to actuate the solution (i.e., the free power PF), one
often needs to consider the total energy required to train the network
to adopt this solution, the training energy E. In some applications,
this training energy is small compared to the total energy spent on
using the system throughout its life cycle. However, when this is not
the case, one should consider learning algorithms that reduce the
required training energy and the free power. In our simulations, the
training energy E can be measured as the integral over time of the
free power during training, until the error reaches a certain tolerable
level (e.g., L̃ = 10−4) at time T,

E = ∫
T

0
PF
(k(t))dt.

We find that the training energy E scales linearly with the ini-
tialization at high κ [Fig. 1(f)], similar to the trained free power.
However, lowering κ close to kmin actually increases the training
energy. This is because we can no longer realize gains in the free
power [the saturating region shown in Fig. 1(e)], while the training
time increases linearly with decreasing κ [Fig. 1(c)]. As a result, the
training energy in this regime increases with decreasing κ [Fig. 1(f)].
Thus, there is an optimal value for the initialization κ corresponding
to the minimum training energy. We note that in this regime, as the
training energy is proportional to the training time, it is inversely
proportional to the learning rate so that increasing the learning rate
can reduce the energy E. However, this improvement only persists
for low enough learning rates, when the learning process is consis-
tent and well behaved. We leave the study of power efficiency of fast
learning system for future study.

In machine learning, however, the greatest energy cost is
incurred during inference. In our case, this cost is quantified by the
trained free power PF

(k∗). We note that training reduces the free
power for high κ but increases it for low κ next to the lower con-
ductance limit [Fig. 1(d)]. This is sensible because for low initial
conductances at or near the minimum, the network must increase

some edge conductances in order to decrease its error. That being
said, we conclude that initializing the network with proper low con-
ductance values can save a significant energy during learning and
when using the trained network.

III. EXPLICIT POWER MINIMIZATION
We have seen that the learning rule in Eq. (2) modifies the free

power during learning. Our next step is to find a way to explicitly
control the learning process to produce solutions with lower trained
free power. This is possible because the learning rule in Eq. (2) is
already written in terms of the free power. It is natural to modify
this learning rule to locally minimize the free power and the error.
Consider the addition of an explicit free power minimization term
to the contrast,

Cλ = η−1
[PC
− PF
] + η−1λPF , (8)

where λ is a tunable parameter, termed as the power minimization
amplitude, which dictates the importance of free power minimiza-
tion. The learning rule, the partial derivative of the contrast, then
becomes

k̇ = −α∂k Cλ = −αη−1∂k[P
C
− (1 − λ)PF

]. (9)

Note that as the free power can be partitioned as a sum over the
network edges, the power minimizing rule is still local and physi-
cally realizable. This modified learning rule tends to decrease the free
power PF as the modified learning dynamics lower the free power
and the contrast in Eq. (1). If we set λ = 1, the free power cancels out
and we recover the directed aging learning rule49,50 that solely tends
to reduce the clamped power.

Using the modified learning rule [Eq. (9)], one can derive ODEs
for the contrast and free power, similar to Eq. (3),

Ċ(k) = −∣∂k C∣2 − λ∂k CT∂kPF ,

ṖF
(k) = −∂k CT∂kPF

− λ∣∂kPF
∣
2.

(10)

These dynamics tend to reduce the value of the contrast C over
time, up to interference from a term that encodes the alignment
between the gradient of the contrast and the free power. Moreover,
we find that the free power PF tends to be reduced by these dynamics,
again up to an effect determined by the alignment. We now discuss
the dynamics of the contrast and free power in a simplified linear
setting. First, note that in the limit λ→∞, the learning rule solely
minimizes the free power. We denote this free power minimum as
k∗∞. Around this local minimum, the free power can be expanded to
quadratic order,

PF
(k) ≈ PF

(k∗∞) +
1
2
(k − k∗∞)

TH(k − k∗∞),

where H ≡ ∂2
k PF
(k∗∞) is the free power Hessian with respect to

learning degrees of freedom. We can similarly expand the contrast
in series around the λ = 0 learning solution (the unmodified solution
discussed earlier),

C(k) ≈ 1
2
(k − k∗0 )

T H(k − k∗0 ),
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where H ≡ ∂2
k C(k

∗
0 ) is the contrast Hessian with respect to learn-

ing degrees of freedom at λ = 0 [in over-parameterized networks, the
constant term C(k∗0 ) vanishes, see Appendix A]. If the learning solu-
tion at finite λ, k∗λ is close to the limiting solutions k∗∞ and k∗0 , we can
express the new contrast approximately as

Cλ(k) ≈
1
2
(k − k∗0 )

T H(k − k∗0 )

+ λ[PF
(k∗∞) +

1
2
(k − k∗∞)

TH(k − k∗∞)]. (11)

We can now discuss the dynamics of the learning degrees of
freedom k̇ = −∂k Cλ. Taking the partial derivative of Eq. (11), we find
a first order ODE for k, whose solution is exponential,

k(t) = k∗λ + e−(H+λH)t
[k(t = 0) − k∗λ ],

k∗λ = (H + λH)−1
[Hk∗0 + λHk∗∞].

(12)

Starting from an initial condition k(t = 0) ≡ k0, the learn-
ing DOF exponentially decay to k∗λ . Let us discuss the learning
DOF solution k∗λ . It is clear that when no power minimization is
applied, k∗λ = k∗0 . If both Hessians H, H are full rank (and invert-
ible), the λ parameter would smoothly interpolate between k∗0 and
k∗∞. However, we know that the Hessian of the contrast in over-
parameterized learning machines is low-rank (with the number of
non-zero eigenvalues equal to the number of training tasks, see
Appendix A for details).43 This means that the contrast Hessian H is
not invertible and has vanishing eigenvalues. In the eigen-directions
of these vanishing eigenvalues, the power minimization is domi-
nant for any finite value of λ. Thus, the power minimization term
introduces a singular perturbation so that for infinitesimal power
minimization amplitude λ = 0+, the learning solution approaches
k∗0+ = limλ→0k∗λ ≠ k∗0 . The solution k∗0+ tends to minimize the free
power, while keeping the contrast low. For over-parameterized
learning in the λ→ 0 limit,

k∗0+ = arg min
k

PF
(k)

s.t. C(k) = 0.
(13)

The solution k∗λ is then a weighted average of the limiting solu-
tions k∗0+ , k∗∞, weighted by the Hessian matrices H, λH. For weak
power optimization (λ≪ 1),

k∗λ ≈ k∗0+ + λs,

s ≡ (H + λH)−1H(k∗∞ − k∗0+).
(14)

For λ≪ 1, note that the vector s is nearly constant as the
inverse matrix is dominated by H. This means the solutions shift
λs is approximately linear in the optimization parameter λ (see
Appendix A). Let us further denote Δk0

= k0
− k∗λ and introduce

a time propagator Uλ(t) ≡ e−(H+λH)t . The solution for k can be
plugged in the equations above to express the dynamics of the
contrast and free power,

C(t) ≈ 1
2

Δk0TUλ H[UλΔk0
+ 2λs] +

1
2

λ2sT Hs,

PF
(t) ≈ PF

0+ +
1
2

Δk0TUλ[HUλΔk0
+ 2∂kPF

0+]

− λ(∂kPF
0+)

T
(H + λH)−1

[HUλΔk0
+ ∂kPF

0+].

(15)

For both the contrast and free power, we keep the largest non-
vanishing contribution at long times due to the modified learning
dynamics,

C(t →∞) ≈ 1
2

λ2sT Hs,

PF
(t →∞) − PF

0+ ≈ λ(∂kPF
0+)

T
(H + λH)−1∂kPF

0+.
(16)

These are our key results: (1) the error induced by power mini-
mization scales with λ2, while (2) the free power reduction compared
to PF

(k∗0+) scales linearly with λ. In other words, the free power dif-
ference, i.e., the difference between the free power with and without
λ-minimization, ΔPF

λ ≡ PF
λ(k
∗
λ ) − PF

0+(k
∗

0+)∝ λ, scales linearly with
this minimization amplitude.

Our argument considers the error and trained free power of
solutions at infinite training time but a practical learning scenario
ends after some finite training time t = τ. This training time must
be large compared to the natural scale of the contrast Hessian to
allow learning to occur. However, in the weak power minimization
limit, this time can be much smaller than the power minimization
timescale H≫ τ−1

≫ λH. In this case, the dynamics can be approx-
imated by a fast decay toward the unmodified solution k∗0 , followed
by a slow decay from k∗0 to the power minimizing solution k∗λ . For
small λ, the learned solution at a finite time τ is

k(τ) − k∗0 ≈ λτ ×H(k∗λ − k∗0 ). (17)

The learned solution moves away from k∗0 at a rate linearly pro-
portional to λ. This solution can be used to estimate both the contrast

FIG. 2. Physical learning with power minimization. (a) Error L (blue) and trained
free power difference between learning with and without power minimization,
ΔPF

λ (black), for varying values of the power minimization amplitude λ. As λ is
increased, the error of the learned solution increases quadratically but the trained
free power of these solutions is linearly decreased. (b) The trained free power
(black) as well as the training energy E (green) decreases with λ, underscoring
a trade-off between power-efficiency and error. The results are averaged over 50
realizations of networks and training tasks.
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and the free power at time τ. As seen before, we find that the con-
trast scales as λ2, while the free power is reduced proportional to λ
and the elapsed time ΔPF

λ ∼ λτ.
Overall, these considerations suggest that under λ-modified

dynamics, a trade-off emerges between the error and trained free
power. This intuition is verified in the numerical simulations shown
in Fig. 2. We train a 64 node resistor network, initialized with inter-
mediate conductance values k0

i = 1, for a regression task as before.
Here, the training proceeds with the modified power minimiza-
tion learning rule [Eq. (9)], varying λ in the range 10−10

≤ λ ≤ 10−2.
We train these networks for τ = 105 steps and then measure the
trained error and free power, averaging the results over 50 realiza-
tions of the network and regression tasks. We find that for small
λ, the error L and free power reduction ΔPF

λ scale as predicted
by Eq. (16) [Fig. 2(a)]. As before, we also compute the training
energy E. We plot the trained free power PF

(k∗λ ) and the training
energy as a function of the minimization amplitude λ in Fig. 2(b).
Both of these are markedly decreased when λ is increased, show-
ing the predicted trade-off between power efficiency and error. In

these settings, choosing the optimization parameter λ = 10−5 allows
us to maintain a reduction of five orders of magnitude in error,
while reducing the free state power and the total energy required
for training by a factor ∼10 compared to standard learning (λ = 0).

A. Experimental results
So far, we argued on theoretical grounds that error can be

traded-off for power efficiency by employing the learning rule in
Eq. (9) and verified these arguments in simulations. Here, we ver-
ify the existence of the trade-off in laboratory experiments. We use
an experimental network of variable resistors implementing cou-
pled learning, similar to the realizations in previous studies.37–39

However, in this new implementation of the experiment, transistors
replace the digital potentiometers in the role of variable resistors.41

Unlike in the previous work,37 this system is also able to learn
according to the continuous coupled learning rule [Eq. (2)] as each
resistance element is set by a charged capacitor on the gate of the
transistor instead of by a discrete counter. Modifications to the

FIG. 3. Experimental results for power optimization show a trade-off between error and power. (a) Error L as a function of time in laboratory experiments with different
optimization amplitude values λ. An adaptive nonlinear resistors network can physically learn to adopt the desired function. This network learns to perform node allostery
tasks, gradually minimizing the error down to a finite error floor. (b) Free power in physical learning experiments for different values of λ. As experiments are run with
increasing λ, the learning process finds solutions with an increasing error but with improved trained free power. (c) Error vs the trained free power of experimentally learned
solutions. Overall, we observe an error–power trade-off in this experimental learning machine. The inset shows a photograph of the experiment. (d) Error vs the trained free
power of learned solutions in numerical simulations on the same network geometry and type of tasks. The trade-off between power efficiency and error is recapitulated in
simulated learning resistor networks, where the units of time conductance and voltage are matched with the experiments.
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learning rule of the form in Eq. (9) are achieved by varying the
measurement amplification from the free and clamped networks. In
addition, unlike previous implementations, this new network oper-
ates continuously in time, with the clamped state value updated
automatically via an electronic feedback loop, and so, training dura-
tion is measured in real time rather than training steps. Because of
unavoidable noise in the experiment, η→ 0 is unobtainable. As the
clamped state approaches the free state, their difference becomes
more and more difficult to measure. Therefore, we use a finite value
η = 0.22 for these experiments with an effective learning rate of α
= 1

24 ms . The experiments lasted 20 seconds each, and the network’s
resistances had completely settled at the end of each run. The net-
work is a 4 × 4 square lattice of edges [inset in Fig. 3(c)] with periodic
boundary conditions; the edges are initialized with uniform conduc-
tance in the approximate middle of their range at the start of each
experiment.

The network was trained for 150 two-source, two-target node
allostery tasks, wherein the sources were held at the low and high
ends of the allowable range (0 and ∼0.45 V, respectively), with the
two desired target outputs at either 20% and 80% or at 10% and 90%
of this range, respectively. Across these experiments, λ was varied to
seven values ranging from 0 to 0.055. In all cases, the network was
able to lower the error, as shown for typical error vs training time
curves in Fig. 3(a). For these tasks, the network also consistently low-
ered the free power, as shown for the complementary power curves
over training time in Fig. 3(b). Consistent with theoretical predic-
tions, error and trained power increased and decreased, respectively,
with increasing λ, with their trade-off shown in Fig. 3(c). White dia-
monds correspond to the mean error and the trained free power of
all the experiments performed with the same value of λ.

To study this trade-off seen in the experiment, we simulated
N = 16 node resistor networks constructed similarly to the exper-
imental network [the inset in Fig. 3(d)]. These networks are sim-
ulated for similar two-source, two-target node allostery tasks (see
Appendix B). We added a Gaussian white noise term to Eq. (9)
with scale δ = 10−3V2 to approximate the noisy conditions of exper-
imental learning. The white noise term leads to an error floor
L ∼ 10−6V2. A time step in our simulations is equivalent to one
experimental learning step (∼0.1 ms), while we can set the simu-
lated conductance and voltage scales to match the experiment as well
(conductance scale [k] = 10−3 Ω−1 and voltage scale [V] = Volt).
The results for error and free power with λ in the range 10−6–10−3,
averaged over 50 realizations of the network and tasks, are shown in
Fig. 3(d) and qualitatively show the same error–free power trade-off.
However, we note that these simulations are not intended as faith-
ful realistic representations of the experimental learning machine
as we simulate a linear flow network and are not attempting to
model the specific details regarding the noise and bias profiles of
the experiment. The comparison here is only intended to show that
realized experimental learning machines display a qualitatively sim-
ilar performance to power efficiency trade-off as predicted by our
theory.

IV. DYNAMICAL CONTROL
FOR GREATER POWER MINIMIZATION

In Sec. III, we showed how adding an explicit power minimiza-
tion term in the contrast function leads to a new local learning rule

that attempts to minimize both the error and the free power at the
same time, leading to a trade-off between them controlled by the
power minimization amplitude λ. We note that noisy inputs make
it impossible to reach zero training error, and in any case, there is
experimental noise in the self-learning circuits so there is, in prac-
tice, a non-zero error floor. Here, we use this insight to design a
practical control scheme to dynamically modify λ during learning
in order to attain a tolerable error with more power-efficient solu-
tions. We will show how such a control scheme can yield even more
power-efficient solutions compared to using a smart initialization
(as in Sec. II) and constant λ (as in Sec. III).

Assume that we initialize the conductances of a resistor net-
work at their minimal value (maximum resistance). This initializa-
tion leads to a free state VF

(kmin)with the lowest possible free power
PF

min. This state corresponds to the minimum power found by the
power minimization dynamics with λ≫ 1, which selects the learn-
ing degrees of freedom resulting in the lowest free power PF

min. As
seen in Fig. 2, reducing the amplitude λ from infinity toward zero
monotonically decreases the error, while increasing the trained free
power PF

(k∗λ ).
Here, we consider a simple dynamical control scheme. Briefly,

we set a specific error tolerance as a target, L̃. We measure the
instantaneous error L while learning using the local rule in Eq. (9).
If the instantaneous error is larger than the desired tolerance,
we decrease λ to promote error minimization, while if the error
is smaller than the tolerance, we increase λ to emphasize power
minimization. In other words,

λ̇ = ρ−1
[(

L̃
L
)

p

− 1]λ, (18)

with ρ setting the update timescale of λ and the parameter p
controlling the rate of the control scheme (a low p value sets
the first term in the parentheses close to 1 so that λ dynamics
are slow).

To test this dynamical control scheme for learning with power
minimization, we simulate the training of N = 64 nodes for regres-
sion tasks as before. We initialize the conductance values at their
minimum kmin = 10−3 and set α = 0.03, ρ = 1, p = 0.02. We find that
the network trained with the λ dynamical control scheme quickly
converges on the desired error tolerance [Fig. 4(a), full line and
closed circle. We compare these results with an “early stopping
algorithm,” defined as follows: In this algorithm, we consider a learn-
ing network without power minimization (λ = 0) [the dashed line
shown in Fig. 4(a)]. The network reaches the desired error toler-
ance L̃ = 10−3 after some time [marked by the open circle on the
dashed line in Fig. 4(a)], which we call the “early stopping time.”
Note that our dynamical control scheme in Eq. (18) reaches the
same error at a time given by the solid circle on the solid line. Evi-
dently, the dynamical control scheme achieves a lower trained free
power compared with early stopping [Fig. 4(b)]. Once the dynam-
ical control scheme reaches the time indicated by the solid circle
in [Fig. 4(b)], λ stays constant but the system now keeps training
at this value of λ, finally reaching a steady state at long times. As a
result, the power advantage of this scheme [gray arrow in Fig. 4(b)]
improves over training time until it converges at some free power
value.
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FIG. 4. Power-efficient solutions with dynamical control. (a) Error trajectories with our λ dynamical control scheme (full line) compared to simple learning without power
minimization (broken line). We see that the controlled learning rapidly converges to a desired tolerance error level of L = 10−3. (b) Free power under dynamical control
of λ vs free power without power minimization. The dynamically controlled system finds solutions that lower the free power compared to an early stopped training of the
uncontrolled system at L = 10−3 (open dot). The gray arrow signifies the saved power. (c) The power gain given our control scheme GPF compared to early stopping for
different levels of tolerable error L̃. We find that dynamical control can generate significantly more power-efficient solutions. (d) Power gain GPF compared to the ratio of
training energies R E between the dynamically controlled learning and early stopping algorithm. We find that to utilize the full benefit of low free power solutions, one needs
to train the system for longer times, increasing the network training energy. All results are averaged over 50 realizations of networks and tasks.

We measure the power gain fraction

GPF ≡
PF

L̃ − PF
min

PF
EarlyStop − PF

min

at long training times and compare to the trained free power for
the early stopping algorithm for different error tolerances [Fig. 4(c)].
The power saving fraction is measured at τ = 105 in relation to the
minimal free power produced by the network given for the lowest
possible conductance values kmin. As higher error L̃ is tolerated, the
dynamical control scheme improves in comparison to the simple
early stopping algorithm, saving an additional fraction of power that
scales as ln L̃. In this case, tolerating an error level of L̃ = 10−3 allows
us to save ∼50% of the trained free power PF required for inference.
We emphasize that this improvement in power is on top of using the
best conductance initialization.

However, we note that gaining the full benefit of this power
reduction requires long training, possibly much longer than the early
stopping time, meaning that the training energy E is higher com-
pared to the early stopping algorithm. This consideration means that
in our dynamical control scheme, there is a trade-off between the
training energy and the trained free power of the solution. This is
verified in Fig. 4(d), where we measure the power gain GPF in terms
of the total training energy ratio between the dynamical control
scheme and early stopping algorithm, R E = E/EEarlyStop. Such trade-
off also depends on the error tolerance, but we find that if one is
willing to spend ∼5 − 10 times the training energy compared to the
early stopping algorithm, the network achieves most of the benefit of
power reduction due to the dynamical control scheme. If the train-
ing energy is a major concern and constitutes a significant fraction
of the energy expended by the network during its life, one should
consider this trade-off for overall lowest power solutions. Finally, we
note that our dynamical control scheme is not optimized. Choosing
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different parameters or another dynamical control scheme alto-
gether may produce superior power saving at a possibly lower
training energy.

V. DISCUSSION
In this work, we studied how electrical circuits can physi-

cally learn to adopt desired functions in power-efficient ways. We
established that physical learning affects the free power required
to actuate the circuit given input signals. This free power can be
lowered by choosing better initialization schemes for the learning
degrees of freedom, e.g., initializing low conductances in electronic
resistor networks.

We have also introduced a modified local learning rule that
attempts to minimize both the error and the free power. We showed
that this learning rule indeed lowers the trained free power of the
obtained learning solutions in both simulations and experiments.
This learning rule weights the importance of minimizing error vs
power, giving rise to a trade-off between the two. While improving
power efficiency at the expense of error (performance) may seem
undesirable, a very low error is typically not required and can even be
infeasible in real learning situations. Therefore, one can often train
learning networks for lower power solutions without much of an
adverse effect (Appendix C). In our experiments, there is a natural
noise floor and there is no point in striving for a lower error than the
floor. For these systems, power-efficient learning rules can improve
the solution power with little to no penalty in error.

Finally, we have introduced a dynamical scheme for control-
ling the relative importance of error and power minimization to
rapidly converge on power-efficient solutions with desired error tol-
erance. We find that such dynamical control can lead to lower power
solutions. It is likely that an optimized version of such a dynamical
control scheme could further reduce both the solution power and
the overall training energy. This is a subject of future study.

While we presented details of the analytical approach for
the case of resistor networks, our theoretical arguments apply to
other physical systems trained using coupled learning, such as
mechanical spring networks (Appendix D). Neuromorphic com-
puting often promises to improve power efficiency by embedding
learning algorithms in hardware, solving a major problem in mod-
ern power-hungry computational learning algorithms. While the
hardware platform discussed here, self-learning electronic circuits,
does indeed improve power efficiency, our work here focuses on
how to achieve power efficiency in the learning process itself. As a
result, our power-efficient learning approach may be easily adapt-
able to other neuromorphic hardware systems that can perform
self-learning to offer additional power savings compared to only
using efficient hardware.
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APPENDIX A: LEARNING DYNAMICS

Here, we provide more details on the derivation of the learn-
ing dynamics as well as how the free power PF required to actuate
the network response changes during learning. Before tackling the
question of the free power of a learning network, let us study the
dynamics of the learning DOF, k, and the contrast, C, due to the
learning rule in Eq. (2). We assume that there exists a solution of
the learning degrees of freedom k∗ such that the contrast vanishes
C(k∗) = 0 (this is the statement that the learning model is over-
parameterized so that the learning degrees of freedom can be trained
to nullify the training error). Over-parameterization implies the
existence of many connected solutions in k space for which the con-
trast vanishes, and we denote by k∗ the solution obtained in practice
by learning. The contrast C is a complicated non-convex function of
the learning DOF, but we can expand it around the solution k∗ to
first non-vanishing order (second order),

APL Mach. Learn. 2, 016114 (2024); doi: 10.1063/5.0181382 2, 016114-10

© Author(s) 2024

 17 April 2024 17:38:01

https://pubs.aip.org/aip/aml
https://doi.org/10.6084/m9.figshare.24923685.v1


APL Machine Learning ARTICLE pubs.aip.org/aip/aml

C(k) ≈ 1
2
(k − k∗)T H(k − k∗),

where H ≡ ∂2
k C(k

∗
) is the “learning Hessian,” i.e., the Hessian of the

contrast with respect to the learning DOF evaluated at the solution.
Close enough to the learning solution k∗, we find that despite the
explicit partial differentiation in Eq. (2), the learning dynamics are
equivalent to the gradient descent on the contrast.34 Therefore, if
we absorb the learning rate into the definition of the time unit, the
weight dynamics are given by k̇ = −∇k C = −H(k − k∗). This leads to
simple exponential decaying dynamics. If we set the initial condition
at k(t = 0) ≡ k0, then

k(t) = k∗ + e−Ht
(k0
− k∗). (A1)

Setting the time propagator operator U(t) ≡ e−Ht
= UT , we can

use this result to obtain the decaying dynamics of the contrast,

C(t) = 1
2
(k0
− k∗)TUHU(k0

− k∗). (A2)

While these results are consistent with simple exponential
decay of the learning DOF k and contrast C, one complication typ-
ically arises for over-parameterized learning. We have seen before
that the learning Hessian in over-parameterized learning machines
tends to be low rank (with the number of non-zero eigenvalues equal
to the number of training tasks).43 As the learning Hessian has zero
eigenvalues, it is not invertible. There are no dynamics in the eigen-
directions of these vanishing eigenvalues, as can be explicitly seen by
rotating the frame into the coordinate system that diagonalizes H.
The learning dynamics are agnostic to the components of k in the
large null-space of H. We can plug these results in Eq. (3) to obtain
the free state power dynamics,

Ṗ F
(k) = (k∗ − k0

)
TUH∂kPF

(k∗). (A3)

As only U(t) depends on time, this ODE can be integrated to
find that the free power exponentially saturates to a value

PF
(t →∞) = PF

(t = 0) + (k∗ − k0
)

TATA∂kPF
(k∗), (A4)

FIG. 5. Learning dynamics with power minimization. (a) Error L (blue) and free state power (black) as functions of time for a case where the gradients of the error and the
free power align. We see that both are reduced by learning, and the error undershoots its steady state value before relaxing back to it. (b) Error L (blue) and free state power
(black) as functions of time for a case where the gradients of the error and free power do not align. Here, learning increases the free power while smoothly reducing the error
to its final value. (c) Solution shifts (orange) ∣Δk∗λ ∣ as well as training error (full blue line) and test error (dashed blue line) as a function of the power minimization amplitude
λ. As λ is increased, the learned solution k∗λ linearly displaces from the limiting solution k∗

0+
. The error increases quadratically with λ, both for the training set and for the test

set. (d) Trained free power for the training and test sets in the learned regression problem, both decrease as a function of λ. The results in panels (c) and (d) averaged over
50 realization of networks and tasks.
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where A is a projection matrix, projecting weight vectors into the
stiff (i.e., non-null) subspace of H. Here, we see again that the power
can increase or decrease during learning, depending on the align-
ment between the gradient of the free state power and the direction
of weight dynamics.

We now discuss the modified learning dynamics that mini-
mizes both error and free power [Eq. (9)]. In the main text, we
showed that these learning dynamics lead to exponentially decay-
ing weight solutions [Eq. (12)] and associated error and free power
dynamics given in Eq. (15). The dynamical trajectories given these
error/power dynamics follow two different prototypes, depend-
ing on the sign of ϕ ≡ −∂k CT∂kPF . For ϕ < 0 (where the contrast
gradient is aligned with the free power gradient), the contrast under-
shoots the infinite time limit, getting arbitrarily close to C = 0 before
rebounding exponentially to C(t →∞) [Fig. 5(a)]. This scenario is
common when initializing the network with high conductance val-
ues. For ϕ > 0 (i.e., anti-alignment of the contrast and free power
gradients), the dynamics tend to increase the free power, and we see
analytically regular dynamics, where the contrast smoothly decays
exponentially to its terminal value C(t →∞) [Fig. 5(b)]. This sce-
nario is common in flow/resistor networks initialized at low con-
ductance values. Figure 5(c) shows the verification of the argument
laid out in the main text that the solution k∗λ − k∗0+ ∼ λ. We also
show as before that the error grows quadratically with λ. Crucially,
the arguments for the error are relevant not only for the training
set (regression examples used to train the network) but also for the
test examples that the network had not seen previously, whose error
also scales quadratically in λ. More information about the regression
tasks, as well as the training and test sets, is presented in Appendix B.
Similarly to the error, the arguments about the trained free power are
valid for both the training and test sets so that our modified learning
dynamics reduces both of them [Fig. 5(d)].

It is also interesting to combine our results for the dependence
of the free power on both the power optimization λ and the initial-
ization scale of the learning DOF κ, as discussed in Sec. II B. We
simulated the learning of regression tasks on N = 64 networks as
earlier and varied λ in the range 10−10–10−2 and the initialization
scale κ in the allowed range 10−3–101. We observe the emergence
of two regimes of interest, one where the power minimization is

FIG. 6. Interplay of initialization and power minimization. (a) Free power reduction
ΔPF

λ depends on both the power minimization amplitude λ and the initialization
scale κ. When using better initialization (lower κ), less power is saved by the
power-efficient learning rule. (b) The free power ΔPF

λ as a function of the initial-
ization scale κ. For weak minimization (λ = 10−8, full line), ΔPF

λ ∼ κ0.5. For strong
power minimization (λ = 10−4, dashed line), ΔPF

λ ∼ κ. The results are averaged
over ten realizations of networks and tasks.

weak λ≪ 1 and the other where λ is large [Fig. 6(a)]. The large
λ regime is simpler to understand as the learning solutions there
primarily reduce free power at the expense of error. Therefore, the
free power reduction ΔPF

λ is essentially the reduction from the free
power at initialization to the minimal free power supported by the
system, which scales as κ [at λ = 10−4, Fig. 6(b)]. For weak mini-
mization λ≪ 1, the effect of the initialization is more subtle. We
find that the free power reduction scales approximately as a power
law κ0.5 [at λ = 10−8, Fig. 6(b)]. Since here we measure the free power
reduction, we find that at lower initialization scales, less power is
saved by applying power minimization. However, there is still a sub-
stantial benefit in free power reduction even for good initialization.
These results also help contextualize our dynamical control scheme
in Sec. IV, where we show that the dynamical scheme supports addi-
tional free power saving compared to just using good initialization.
We reserve the detailed study of the interplay between initialization
and free power minimization for future study.

APPENDIX B: PHYSICAL LEARNING TASKS

Here, we describe the regression tasks explored numerically in
the main text. We simulated linear resistor networks with N = 64
whose structure is derived from jammed two-dimensional pack-
ings.52 We randomly choose two edges as input edges and another
two as output edges [see Fig. 1(a)]. The input and output voltage
drops are noted by the vectors ΔV i, ΔVo, respectively. The network
is trained to perform regression recovering a linear relation,

ΔVo + ϵ =∑
i

ÃoiΔVi. (B1)

Here, the 2 × 2 matrix Ãoi contains the desired function para-
meters and ϵ, a possible addition of white noise. Since we train a
linear resistor network, the functional relation between the input
and output voltage drops is always linear ΔVo = ∑iAoiΔV i, and the
correct matrix relation Ãoi is supposed to be recovered by learning.
The values for the desired matrix were randomly chosen from the
distribution

Ã ∼
⎛
⎜
⎝

0.2 0.3

0.1 0.5

⎞
⎟
⎠
+ 0.1N (0, 1)2×2. (B2)

We trained these networks in many realizations of geome-
try, choice of input/output edges and Ãoi. To train each realization
of the problem, we sampled ntr = 20 training examples ΔVTraining

i
∼ U(0, 1)2 and corresponding outputs ΔVTraining

o = ∑i ÃoiΔVTraining
i

+ ϵ. Note that the scale of the input voltage drops determines the
scale of power dissipation in the free state PF

∼ ΔV̄i
2.

In the main text, we looked at noiseless regression problems
with ϵ = 0, for which, the network can find exact solutions with zero
error. In Appendix C, we study a case with finite label noise ϵ = 10−3.
The training examples are sampled randomly during training and
used to define the free and clamped states in the iterative learning
process. Apart from the ntr = 20 training examples, we also sampled
nte = 100 test examples from a wider distribution VTest

i ∼ N (0, 1)
and their associated desired outputs. The test points are not used
during the learning process but help in verifying that the network
can generalize. In our work, the test set is also interesting for showing
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the power-efficient property of the solutions that generalizes beyond
the training set [Fig. 5(d)].

Once the training set is established, we can measure the error
by simulating the output response of the network given input val-
ues, ΔVO(ΔVTraining

i ) and comparing it to the sample desired output
values ΔVTraining

O by using a mean squared error loss function,

L = 0.5n−1
tr ∑ [ΔVO(ΔVTraining

i ) − ΔVTraining
O ]

2.

Similarly, we can compute the loss value associated with the
test set. We simulate physical learning by applying the local learn-
ing rules described in the main text, picking a nudging amplitude
value η = 10−3.

For better comparison to the physical experiment of Fig. 3, we
also simulated a resistor network of the same geometry and a simple
allostery task as the experiment [inset of Fig. 3(d)]. In these simu-
lations, we randomly choose two input nodes and assign to them
input voltages, V i1 = 0V and V i2 = 0.45V . We further choose two
random output nodes and train them such that when the inputs are
applied, they would have output voltage values Vo1 = 0.09V and Vo2
= 0.36V . In this case, we again use a mean squared error loss func-
tion and compare the output voltages at the output nodes to the
desired values Vo1,2.

APPENDIX C: POWER MINIMIZATION
FOR LIMITED ACCURACY TASKS

The numerical results in the main text were limited to tasks that
can, in principle, be learned perfectly by the learning machine. In
such cases, there exist solutions with no error L(k∗) = 0, as dis-
cussed in Appendix A. There are, however, cases in which it is
impossible to obtain solutions with zero error. The typical exam-
ple is when the training set does not capture all the information
contained in the broader data (or the test set). There are also cases
where it is impossible to find solutions that nullify the error even on
the training set. This can occur due to under-parameterization (too
few learning degrees of freedom to learn the task), an insufficiently
expressive model (e.g., a linear network cannot represent nonlinear
relations) and noise in the learning process.48

First, we will consider the case where the system ends up in a
local minimum with L > 0. From the definition of coupled learning,
we know that if the loss is finite L > 0 so is the contrast C > 0. In such
as case, a minimum of the coupled learning dynamics k† would have
finite error and contrast values L(k†

), C(k†
). Nonetheless, we can

still perform a quadratic approximation around the contrast mini-
mum k† similar to Appendix A, where the constant term C(k†

) is
retained,

C(k) ≈ C(k†
) +

1
2
(k − k†

)
T H(k − k†

).

Using this expansion, we can redo the derivation in Sec. III to
find the steady state solution error and the trained free power when
a finite power minimization amplitude λ is applied in Eq. (9),

Cλ ≈ C(k†
) +

1
2

λ2sT Hs,

ΔPF
λ ≈ λ(∂kPF

0+)
T
(H + λH)−1∂kPF

0+.
(C1)

Comparing these expressions to Eq. (16), we see that the trained
free power behavior stays the same. We also see that the error shift
is the same, scaling as λ2, but now there is a finite contrast floor
C(k†
) associated with a finite error. The trade-off between error and

power is still maintained, although in this case, it may be much more
favorable. For a small enough λ, 1

2 λ2sT Hs≪ C(k†
), and so the con-

trast (and error) is nearly unaffected by the power minimization.
As a result, we can apply a finite power minimization parameter λ,
reducing the trained free power at nearly no penalty. Thus, power
minimization is particularly useful for problems in which zero error
solutions are not possible.

To verify these considerations, we simulated physical learning
in N = 64 networks on regression and classification tasks (Fig. 7).
Excess noise was added to the regression labels (outputs) in the train-
ing and test sets, sampled from a distribution ΔVo ∼ ∑i ÃoiΔVi + ϵ,
with ϵ = 10−3 (see Appendix B). The simulated networks can suc-
cessfully learn these tasks, reducing the error to some finite value
L ≈ 10−5 [Fig. 7(a)]. When adding a small power minimization
λ < 10−7, the learning trajectories are almost unchanged and the
error is nearly unaffected. When λ increases, the error starts increas-
ing beyond the error floor [Fig. 7(b)]. At the same time, we observe
that the trained free power is decreased linearly at finite λ, as seen
before. These results show that in noisy cases, such as those seen in
physical learning experiments, free power reduction can be achieved
at little expense in errors up to a certain point.

Another case where this result is particularly relevant is in clas-
sification problems, where we would like to assign discrete labels
to inputs. A standard example for such tasks is the classification
of Iris specimens based on the measurements of lengths of their
petals and sepals.53 Previously, we have shown that our flow/resis-
tor networks can successfully learn to classify the Iris dataset, as
well as could be expected from linear network models, in simu-
lations43 and experiments.37 In discrete classification tasks, we are
typically not concerned with the mean squared error but with a
measure of accuracy given by a discrete choice of the label based
on the network response; excellent classification is possible even at
relatively high values of the mean squared error. Therefore, it may
be possible to induce power optimization without a penalty in clas-
sification accuracy. To test this idea, we simulated the training of
our N = 64 node networks to classify the Iris dataset (a detailed
description of the training protocol can be found in Ref. 37). Train-
ing at different power minimization amplitudes λ in the range 10−10

< λ < 10−2, we find that the classification accuracy (for the training
and test sets) is not affected by power minimization until λ ≈ 10−7

[Fig. 7(c)]. At the same time, the solution free power is signifi-
cantly reduced starting at λ > 10−8, showing that power gain (in
this case, by a factor ∼2) is possible at little penalty in accuracy
[Fig. 7(d)].

Now, we turn to another case in which tasks cannot be learned
perfectly, this time due to the existence of noise. In any real phys-
ical learning, machine noise in measurement and learning DOF
updates will lead to a non-zero error floor associated with physi-
cal learning. This is true even for tasks that, in the absence of noise,
could be learned with no error. In such a setting, the random noise
pushing the system away from the zero contrast (and error) min-
ima implies that physical learning behaves as a high dimensional
Ornstein–Uhlenbeck process54 in the space of the learning DOF. The
instantaneous values of the learning DOF are then sampled from a
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FIG. 7. Power reduction with little error/accuracy loss in regression and classification problems. (a) Error vs time trajectories for regression task with label noise (with
minimum possible error L ≈ 10−5) for different values of the power minimization amplitude λ. As long as λ < 10−7, the error is largely unaffected. (b) Error (blue) and free
power reduction (black) as a function of λ. The trained free power is still reduced by increasing λ, as before, even in the range where the error is unaffected. The regression
results averaged over 50 realizations. (c) Classification accuracy of the Iris dataset for the training (full line) and test (dashed line) sets, as a function of λ. Similar results
are obtained, as increasing the power minimization amplitude λ decreases accuracy (i.e., increases error), but only beyond a finite value of λ. (d) Power gain ΔGPF due to
power minimization for the training (full line) and test (dashed line) sets. In this case, we gain a factor 2 in trained free power with little loss in accuracy (at λ ≈ 10−7). The
classification results averaged over 100 realizations.

normal distribution centered around k∗λ in Eq. (14), with a standard
deviation scaling with the white noise amplitude σ,55

kλ,i(σ) ∼ k∗λ,i(σ = 0) +
σ

√
2θλ,i

N (0, 1), (C2)

where θλ,i are the eigenvalues of the matrix H + λH. In other words,
the noise induces the conductances to explore a vicinity of the solu-
tion k∗λ , whose size depends on the noise amplitude σ, and the
curvature is given by the eigenvalues θλ,i. We can take this distri-
bution of values of the learning DOF and plug it in the equation for
the contrast [Eq. (11)], finding the distributions of this quantity,

Cλ(σ) ∼
1
2

λ2sT Hs +∑
i

λσsi
√

2θλ,i
N i(0, 1) +∑

i

σ2

4θλ,i
N 2

i (0, 1).

(C3)

Similarly, this can be done for the free power reduction ΔPF
λ .

The average contrast induced by the noise, as well as the average

free power reduction, can be deduced by taking the expectation
value over these distributions. Here, note that the expectation val-
ues of these normal distributions are ⟨N i(0, 1)⟩ = 0, ⟨N 2

i (0, 1)⟩ = 1
so that we are left with

⟨Cλ(σ)⟩ ≈
1
2

λ2sT Hs +∑
i

σ2

4θλ,i
,

⟨ΔPF
λ ⟩(σ) ≈ λ(∂kPF

0+)
T
(H + λH)−1∂kPF

0+.

(C4)

We find that if we know the noise scale σ, measuring the aver-
age contrast value ⟨C0(σ)⟩ allows us to glean information about the
effective average curvature of the contrast near the learning solution.
Note that the learning DOF diffuse freely in the space of zero con-
trast solutions, so the effective curvature is associated with the typical
slopes of the contrast leaving the zero manifold. Overall, we see that
the free power reduction is, on average, the same as in the case with
no noise (up to second order terms in λ). However, the contrast
now has a finite added term due to the exploration of values of the
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learning DOF beyond the minimum k∗λ . This means that additive
white noise has a similar effect to the finite contrast floor discussed
earlier; finite power minimization λ can reduce the trained free
power while having nearly no effect on the contrast (or error) up
to a certain scale.

APPENDIX D: POWER MINIMIZATION
IN MECHANICAL SPRING NETWORKS

In this work, we presented general arguments on how local
learning rules could balance minimizing the error and trained-free
power of obtained physical learning solutions, giving rise to a trade-
off between the two. However, in the main text, we only tested these
ideas numerically and experimentally in resistor networks. Here, we
show in simulations that these arguments apply similarly to phys-
ical learning systems governed by different physics, e.g., an elastic
network of harmonic springs [Fig. 8(a)].

Elastic networks have been studied as a nonlinear substrate
for physical learning.49,50,56–60 Specifically, coupled learning can
train spring networks to perform the desired tasks by modifying
the spring constants or rest lengths.34 The physical cost function
naturally minimized by such networks is the elastic energy E,

E =
1
2∑i

ki(ri − ℓi)
2, (D1)

where ki is the spring constant of spring i, ℓi is its rest length, ri
the Euclidean distance between the nodes connected by the spring,
and the energy is summed over all individual springs. For a spring
network with adaptive spring constants, the local learning rule is

k̇i = −αη−1 ∂

∂ki
[EC
− EF
]

= −
1
2

αη−1
[(rC

i − ℓi)
2
− (rF

i − ℓi)
2
], (D2)

FIG. 8. Energy-efficient learning in mechanical spring networks. (a) A mechani-
cal spring network, each edge corresponding to a spring with adaptive stiffness
k. Such networks are trained for allostery tasks so that prescribed strains at input
edges (red) lead to desired strains at output edges (blue). (b) Error L (blue) and
free energy reduction ΔEF

λ (black) as functions of the power minimization ampli-
tude λ. As seen for flow networks, including a power minimization term in the local
learning rule leads to a trade-off between error and trained free energy, also hav-
ing the same scaling behaviors. The results are averaged over five realizations of
networks and tasks.

where rF
i , rC

i are the distances between the nodes separated by spring
i in the free and clamped state, respectively. More details on the
derivation of this learning rule can be found in Ref. 34. To see if
spring networks can be trained to adopt low free energy solutions,
i.e., spring configurations for which the desired state is easy (takes
little energy) to actuate, we add a local free energy minimization
term with amplitude λ, similarly to Eq. (9),

k̇i = −αη−1 ∂

∂ki
[EC
− (1 − λ)EF

]. (D3)

We simulate this modified learning algorithm on an unstrained
spring network with N = 27 nodes, as shown in Fig. 8(a). These net-
works are trained for allostery tasks, in which we apply prescribed
relative strains 0.2 (randomly choosing contraction or extension)
and desire particular strain values at another two random bonds
(0.05 or 0.03, randomly choosing contraction or extension). With no
energy minimization applied, λ = 0, and coupled learning generally
succeeds in training these networks to a numerical normalized error
floor of L ∼ 10−8. As we increase the power minimization ampli-
tude λ, we observe that the error increases as λ2 and the trained free
energy EF is reduced as λ [Fig. 8(a)], as predicted by Eq. (16) and
observed in simulations of resistor networks. These results show that
our approach to physical learning of power efficient solutions can
be employed beyond linear resistor networks. Recent experimen-
tal progress has been achieved for implementing coupled learning
in elastic networks,42 but we leave the experimental validation of
energy reduction in such networks for future study.
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