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Figure 1. TLControl, a novel method for Trajectory and Language Control for Human Motion Synthesis. The dotted lines represent
the input control trajectories. The corresponding control joints are highlighted in orange. Our method demonstrates versatile multi-
joint controls (see Figures 1a to 1c), the ability to handle complex trajectories (see Figure 1d), multi-stage control (see Figure 1e), and
the preservation of language semantics while utilizing trajectory controls (see Figure 1f). We highly encourage readers to view our
supplementary video to see our results.

Abstract
Controllable human motion synthesis is essential for ap-

plications in AR/VR, gaming, movies, and embodied AI.
Existing methods often focus solely on either language or
full trajectory control, lacking precision in synthesizing mo-
tions aligned with user-specified trajectories, especially for
multi-joint control. To address these issues, we present TL-
Control, a new method for realistic human motion synthe-
sis, incorporating both low-level trajectory and high-level
language semantics controls. Specifically, we first train
a VQ-VAE to learn a compact latent motion space orga-

nized by body parts. We then propose a Masked Trajecto-
ries Transformer to make coarse initial predictions of full
trajectories of joints based on the learned latent motion
space, with user-specified partial trajectories and text de-
scriptions as conditioning. Finally, we introduce an efficient
test-time optimization to refine these coarse predictions for
accurate trajectory control. Experiments demonstrate that
TLControl outperforms the state-of-the-art in trajectory ac-
curacy and time efficiency, making it practical for interac-
tive and high-quality animation generation. Project Web-
site: https://tlcontrol.weilinwl.com

https://tlcontrol.weilinwl.com


1. Introduction
Human motion generation is a fundamental problem in
computer graphics, with a wide range of applications in
AR/VR, gaming industry and large-scale training data gen-
eration for embodied AI. In these applications, it is crucial
to support user control at different levels on motion gen-
eration. For example, users may want to have high-level
semantics control (e.g., text descriptions) for motion syn-
thesis, and, meanwhile, expect flexible and precise spatial
control to “drag” any joint on arbitrary trajectories. In this
work, we study the problem of realistic and precise human
motion generation with both high-level language and low-
level trajectory controls.

Recently, great advancements have been made in
language-conditioned human motion generation [1, 2, 8,
12, 13, 22, 23, 30, 32, 39, 41, 48, 59]. However, most
existing works only support language control [7, 48, 58].
Another line of research explores trajectory-controlled mo-
tion generation [5, 38, 40], a.k.a., inverse kinematics, but
it lacks high-level language semantics control. Further-
more, inverse kinematics can only infer joint configurations
from full (complete) trajectories of end-effectors, while our
method generates full motions from partial (incomplete)
trajectories. The most related works are PriorMDM[39],
GMD [22], and a concurrent work, Omnicontrol [54],
that incorporate spatial control signals in a language-
conditioned motion generation model, but neither of them
can accurately align the motion with specified trajectories,
especially when controlling multiple joints simultaneously,
as depicted in Figure 4. Moreover, their motion genera-
tion process is time-consuming due to inefficient multi-step
sampling in the motion diffusion model, restricting its prac-
ticality in real-world applications.

To address these issues, we propose TLControl for Tra-
jectory and Language-controlled human body motion gen-
eration. We propose to operate in a part-structured la-
tent encoding of human motions, learned with a VQ-VAE
exploiting knowledge of the skeletal topology of human
body. We then synthesize full-body motions from partial
trajectory and language input in two steps: a feed-forward
coarse estimation, and a subsequent optimization-based re-
finement. To efficiently train the feed-forward model, we
propose a Masked Trajectory Transformer (MTT) that is
trained by synthesizing various possible partial trajectory
controls through spatial and temporal masking, enabling
highly flexible operation. The optimization step starts at the
MTT solution, and then more precisely aligns it with user-
specified trajectories through an iterative search procedure.

We conduct extensive experiments to validate the effec-
tiveness of our approach. Compared to existing methods,
TLControl exhibits superior performance in both trajectory
accuracy and time efficiency. The results further illustrate
that our method empowers users to interactively generate

and modify high-quality animations within a brief runtime,
affirming its practicality and effectiveness.

In summary, our technical contributions are as follows:
1. We introduce a new method TLControl that generates

high-quality and precise human motions with highly
flexible language and partial trajectory-based user spec-
ifications.

2. TLControl learns a human body morphology-aware
structured latent space suitable for flexible motion syn-
thesis.

3. An efficient feed-forward transformer model trained us-
ing carefully designed masking strategies initializes iter-
ative optimization for large computational efficiencies in
motion synthesis compared to prior work, at comparable
or superior performance levels.

2. Related Work
There have recently been significant advances in human
motion generation, incorporating diverse, multi-modal in-
puts such as text prompts [1, 8, 12, 13, 21, 23, 29, 30,
32, 41, 48], action labels [10, 31], partial motion se-
quences [9, 15, 51], control signals [8, 28, 43, 45], mu-
sic [2, 24, 25], and images [6, 38]. In this section, we
conduct a comprehensive review of the existing literature
in the field of motion generation. Our reviews covers the
studies ranging from unconditional motion generation to
conditional approaches, particularly focusing on language-
conditioned motion synthesis, known as action-to-motion
and text-to-motion. We also explore the integration of tra-
jectory or path controls in these processes, highlighting how
these innovations contribute to advancing the field.
Unconditional Motion Generation This area of research
focuses on the autonomous generation of motion sequences
without specific guiding conditions or annotations. Pioneer-
ing studies, such as those referenced in [36, 48, 55, 60, 61]
have made notable strides in this domain. These works
stand out for their unique ability to capture and model the
entire motion space, leveraging raw motion data to produce
diverse and dynamic motion patterns. These methods ex-
hibit innovation in interpreting and representing complex
motion dynamics. However, as our research primarily fo-
cuses on conditional motion generation, our discussion of
unconditional motion generation only serves as a contextual
background to our primary focus.
Conditional Motion Generation In the realm of condi-
tional, tasks, ACTOR [31] presents a class-agnostic trans-
former VAE as a baseline. It introduces learnable biases
within a transformer VAE to encapsulate action for motion
generation. But similar to other works in the field of action-
to-motion [10], it is limited to cover changes in the con-
ditional inputs. Recent studies in the task text-to-motion
[1, 3, 12, 23, 32, 33, 48, 59] has emerged as a principal
driver, reshaping research frontiers with its user-friendly



nature by allowing nature languages input. The advance-
ments can be categorized into two methodologies: joint-
latent models and diffusion models. Joint-latent models
like TEMOS [32] typically employs a motion VAE along-
side a text variational encoding. These components are then
aligned into a compatible latent space by using divergence
loss. This method advances the synthesis of human motion
sequences from natural language inputs, representing a sig-
nificant step forward in the field. However, as observed in
the misalignment of Gaussian distributions [47], there are
difficulties remained in aligning the structure and distribu-
tion of natural language and human motions.

Recent advancements in image synthesis have been
marked by the successful application of diffusion genera-
tive models [42]. Building on this progress, these models
have now been extended to the domain of human motion
synthesis. This novel application is being applied in re-
cent works such as those presented in [2, 7, 19, 23, 48, 54].
Notably, MotionDiffuse [59] emerges as the first text-based
motion diffusion model, offering fine-grained instructions
for individual body parts. MDM [48] introduces a motion
diffusion model that operates directly on raw motion data,
further expanding the scope of natural language controls in
human motion generation. This method represents a sig-
nificant leap forward in terms of enabling intuitive, natural
language inputs to motion synthesis.
Motion Generation with Spatial Constraints Despite
these previous efforts, the language description itself is still
limited to a coarse control over the motion. To tackle the
issue, Shafir et al. [39] proposed PriorMDM to generate
long-sequence human motion and joint control signals. To
further support more flexible fine-grained motion genera-
tion, GMD [22] integrates spatial constraints by employing
a two-stage diffusion strategy. However, GMD only con-
trols the 2D positions of the pelvis, a limitation that reduces
its flexibility in many practical scenarios. Recently, the con-
current work Omnicontrol [54] incorporates flexible spatial
control signals over different joints by introducing analytic
spatial guidance and realism guidance that ensure the gener-
ated motion from the diffusion model can tightly conform to
the input control signals. However, Omnicontrol struggles
to generate body motion accurately aligned with specified
trajectories, as we will illustrate. Furthermore, it exhibits a
relatively prolonged motion generation time. In comparison
with Omnicontrol, our method excels in producing motion
that precisely adheres to the control signal, demonstrating
superior accuracy and significantly faster runtime.

3. Method
We aim to generate full-body motions to match user spec-
ifications, which consist of two parts: a text description L,
and a partial trajectory R′. R′ has T frames, corresponding
to the target motion length. In each frame t, R′ contains

the 3D positions of some subset mt < n of the n full-body
joints, corresponding to the “control joints” which the user
chose to specify for that frame. For example, the user might
choose to specify only the head joints for all frames t, or
even specify different joints in different frames. The de-
sired final output is the full body motion J ∈ RT×M of
the character, where M is the dimension of the single frame
pose represented by the joint rotations and positions.

We propose to train such a system, TLControl, using data
in which each sample (R,J,L) is a tuple containing a full
trajectory specifying some key joints, ground truth full body
motions, and language description. To achieve the goal, we
first learn a motion embedding by training a VQ-VAE [49]
to establish part-based latent spaces, representing human
body motion at the body part level (Sec.3.1). We then train
a text-conditioned Masked Trajectory Transformer (MTT)
to output a coarse completion of partially masked trajecto-
ries in this learned part-based embedding (Sec.3.2). This
coarse completion is then further refined by a simple yet
effective optimization over the learned latent space to min-
imize the distance between control targets and completed
motions, leading to accurate and efficient trajectory con-
trol (Sec. 3.3). An overview of our framework is shown
in Fig. 2.

3.1. Part-based VQ-VAE

Learning discrete representations has proven effective in
motion synthesis tasks in recent works [14, 58]. These
methods use VQ-VAE [49] for discretizing a continuous
motion space, facilitating the capturing of complex motion
patterns in a structured manner and enhancing the genera-
tion of coherent and high-fidelity motion sequences. How-
ever, previous works [14, 58] encode the full body into the
discrete motion space, treating the human body as a holistic
entity. Instead, in this paper, we propose to learn a bet-
ter representation of part-based motion priors, which have
demonstrated impressive results for computer character an-
imation [4, 18, 34, 44]. To do so, we propose a part-based
VQ-VAE that disaggregates the motion at the human body-
part level for learning a well-structured and compact latent
space.

Specifically, we first divide all the joints into six joint
groups. The first five groups contain the end-effectors and
related joints: Head, Left arm, Right arm, Left leg, and
Right leg. The sixth group comprises the Root joint only.
The input to our VQ-VAE is the ground-truth full body mo-
tion J ∈ RT×M of the character. By reorganizing the fea-
tures into these six groups, we can arrange the input J to be:
J = [JHead,JLarm,JRarm,JLleg,JRleg,JRoot].

In our model, we have a unique encoder Ek for each joint
group Jk where k ∈ {Head, Lhand, Rhand, Lfoot, Rfoot,
Root} to learn a codebook Ck for each joint group sepa-
rately. Here, Ck = {ci,k}|C|

i=1 and ci,k ∈ Rd, where |C|



Figure 2. Overview of TLControl framework: At training stage I, we train the part-based VQ-VAE in 3.1 for reconstructing human
motions. In training stage II, the decoder of the part-based VQ-VAE is frozen and we train the masked trajectory transformer (MTT) in
3.2 for predicting code indices from control inputs. Finally, at test time, the MTT receives text description and partial control trajectories
to predict an initial VQ-VAE quantized code seed, which is refined by run-time optimization as in 3.3 before decoding with the VQ-VAE
into full body motions.

represents the number of discrete codes within the code-
book and d is the dimension of the code. When encoding an
input motion Jk into its latent representation Qk = Ek(Jk),
Qk = {qt,k}T/s

t=1 is of a reduced time length, where T is the
total number of frames and s is a temporal downsampling
factor, and qt,k ∈ Rd is the feature for each time step t.

Subsequently, we quantize Qk using Ck. For each time
step feature qt,k, quantization is achieved by locating the
closest code ci,k in the codebook by

q̂t,k = arg minci,k∈Ck
∥ci,k − qt,k∥2, (1)

where the quantized feature q̂t,k is reassembled in their
original time order to form Q̂k.

The decoder D of our part-based VQ-VAE is designed
to consider the features of all groups comprehensively to
reconstruct the full body motion. Hence the input to D is
the concatenation Q̂ =

⊕
k Q̂k of quantized features from

all groups. This enables the decoder to reconstruct the full
body motion as Ĵ = D(Q̂).

For training our part-based VQ-VAE, we adopt standard
loss terms including quantization, commitment and recon-
struction losses:

L = Σk(β∥sg[Q̂k]−Qk∥2+

∥Q̂k − sg[Qk]∥2) + ∥J− Ĵ∥2 (2)

where β represents a weight hyper-parameter, while sg de-
notes the stop-gradient operator. Also, suggested by pre-
vious works in this field [58], we apply code reset and the

exponential moving average [46] to prevent codebook col-
lapse during training.

3.2. Masked Trajectory Transformer

Having trained this part-based discrete embedding space,
we now train a feed-forward transformer network to pro-
duce an initial coarse guess Q̂0 of the full-body motion em-
bedded in this space, given the specification (R′,L).

Specifically, our Masked Trajectory Transformer (MTT)
takes CLIP embeddings of the text prompts, as in prior
work [48, 58]. For trajectories, we adopt the same joint
partition in 3.1 and treat the trajectories of the five end-
effectors and the root joint as the ground truth “full” tra-
jectories R for training. Recall that in our application set-
tings, we would like to enable users to provide rough partial
sketches of the desired trajectories to control motion gen-
eration. To simulate such specifications when training the
MTT, we apply two masking strategies to R to obtain the
masked control trajectories R′:
▷ Continuous Trajectory Masking. Rather than treating
each waypoint’s masking as an independent event, we con-
sider the influence of adjacent points, which simulates the
common scenario where a user’s drawn trajectory might
have breaks or be sketched in segments. Our method in-
volves first determining a proportion of the trajectory points
that need to be masked. Then, we randomly select segments
of varying lengths to mask, ensuring that the total number
of masked points matches the predetermined proportion.



▷ Joint-Level Masking. Recognizing that users may not al-
ways provide trajectories for all six joints, we include joint-
level masking. This approach simulates scenarios where
only a subset of joint trajectories are specified. Specifically,
we randomly select a number of joints and mask all corre-
sponding trajectory points during training.

These masking strategies enable the network to learn the
overall relationship among human motion, joint trajecto-
ries, and textual information. This approach strengthens the
model’s capability to handle real user specifications, par-
ticularly when detailed and complete joint trajectories are
unavailable.

We train the MTT encoder T to encode user-provided
observations into a compressed latent space Z = T (R′,L).
Then, we employ a decoders on Z, which focuses on infer-
ring a list of code indices Î in the codebooks from Z, where
the codes of these indices should form the quantized latent
codes Q̂0 that can be decoded to corresponding motion se-
quences through our decoder. The loss function for training
the MTT is:

L = EÎ∼P (I)[−logP (Î|R′, L)] + ||D(Q̂0)− J||2 (3)

3.3. Test-Time Optimization

At test time, the MTT takes a partially specified control tra-
jectory R′ to produce an initial coarse feed-forward pre-
diction Q̂0 in the quantized latent code space as above.
We then use test-time optimization over the learned latent
space to refine this initial coarse prediction. Specifically,
we solve:

Q̂ = arg minQΣj ||Pj(D(Q))−R′
j ||2 (4)

where j indexes the provided control joints, and Pj is a
projection function that converts the human pose represen-
tation into the global joint positions of joint j which are in
the same frame as the waypoints in R′. By applying D(Q̂),
we are able to achieve the final body motion controlled by
the given trajectories. The optimization is performed us-
ing search initialized with the coarse MTT output prediction
Q̂0.

Since our body-part level motion embedding effectively
captures the motion distribution in a compact space, this
simple yet effective optimization framework produces high-
quality human motion with the desired controllability while
maintaining semantic coherence with the textual descrip-
tion. In contrast to the closest prior work OmniControl [54]
where limited control specifications are coupled with the
network during training, this framework allows for flexible
controls, such as simultaneously controlling multiple joints
at different time steps; See Sec. 4.1. Moreover, it is much
more computationally efficient compared with SOTA meth-
ods, which we investigate in Sec. 4.2.

4. Experiment
We conduct extensive experiments of our method and com-
pare it with state-of-the-art methods in terms of motion
quality, controllability, accuracy, and efficiency. We further
investigate the key design choices by conducting ablation
studies.

Datasets Our study utilizes two prominent datasets for
tasks involving text-based motion generation: KIT Motion
Language (KIT-ML) [35], and HumanML3D [11]. The
KIT-ML dataset encompasses 3,911 unique human motion
sequences and 6,278 individual text annotations, with a
frame rate of 12.5 FPS for the motion sequences. On the
other hand, HumanML3D offers a more extensive collec-
tion of human motions, featuring 14,616 unique motion
capture data paired with 44,970 textual descriptions. For
uniformity, all motion sequences in both KIT-ML and Hu-
manML3D are padded to a length of 196 frames.

Metrics Following the experiments setting in [54], we
evaluate the fidelity of our result using Frechet Inception
Distance (FID), R-Precision and Diversity. FID measures
the quality of motion created by generative techniques. It
calculates the disparity between actual and produced dis-
tributions within the feature space of a pre-trained model
as being used in [11]. R-Precision measures a motion se-
quence against 32 text narratives, one of which is accurate
and the remaining 31 are random descriptions. It involves
computing the Euclidean distances between the embeddings
of the motion and the textual narratives. The accuracy of
retrieving the correct text from the motion is then reported
based on the top-3 matches. Diversity is evaluated by ran-
domly pairing all generated sequences from the test texts.
The average cumulative difference within each pair is then
calculated to determine diversity.

We also include an analysis of several metrics to evalu-
ate control accuracy. Following [7, 54], we adopt metrics
including Trajectory error, Location error, and Average er-
ror. These metrics evaluate the 3D control accuracy of joint
positions in keyframes when generating motions with tra-
jectory controls. Trajectory Error quantifies the propor-
tion of trajectories that is unsuccessful, characterized by any
keyframe’s joint location deviating beyond a set threshold.
Location Error calculates the percentage of keyframe lo-
cations not attained within a specified proximity limit. Av-
erage Error is computed as the mean Euclidean distance
between the joint positions in the generated motion and the
given control trajectories at each keyframe motion step.

Implementation Details In the part-based VQ-VAE, the
settings of the encoder and the decoder module are based on
T2M-GPT [58] with the downsampling s factor set to 4. For



Method Control Joint FID↓ R-precision↑ (Top-3) Diversity→ Traj. Err.↓ (50 cm, %) Loc. Err.↓ (50 cm, %) Avg. Err. (cm)↓
Real - 0.002 0.797 9.503 0.00 0.00 0.00

MDM 0.698 0.602 9.197 40.22 30.76 59.59
PriorMDM 0.475 0.583 9.156 34.57 21.32 44.17

GMD Pelvis 0.576 0.665 9.206 9.31 3.21 14.39
OmniControl 0.218 0.687 9.422 3.87 0.96 3.38

Ours 0.271 0.779 9.569 0.00 0.00 1.08
OmniControl Head 0.335 0.696 9.480 4.22 0.79 3.49

Ours 0.279 0.778 9.606 0.00 0.00 1.10
OmniControl Left Hand 0.304 0.680 9.436 8.01 1.34 5.29

Ours 0.135 0.789 9.757 0.00 0.00 1.08
OmniControl Right Hand 0.299 0.692 9.519 8.13 1.27 5.19

Ours 0.137 0.787 9.734 0.00 0.00 1.09
OmniControl Left Foot 0.280 0.696 9.553 5.94 0.94 3.14

Ours 0.368 0.768 9.774 0.00 0.00 1.14
OmniControl Right Foot 0.319 0.701 9.481 6.66 1.20 3.34

Ours 0.361 0.775 9.778 0.00 0.00 1.16
OmniControl All Joints above 2.614 0.606 8.594 75.59 12.30 23.67

Ours 0.032 0.794 9.750 0.00 0.00 1.57

Table 1. Quantitative results of comparison with state-of-the-art methods on Humanml3D test set. The best scores are highlighted in red.

Method Control Joint FID ↓ R-precision ↑ (Top-3) Diversity → Traj. Err. ↓ (50 cm, %) Loc. Err. ↓ (50 cm, %) Avg. Err. (cm) ↓
Real - 0.031 0.779 11.08 0.000 0.000 0.000

PriorMDM 0.851 0.397 10.518 33.10 14.00 23.05
GMD Pelvis 1.565 0.382 9.664 54.43 30.03 40.70

OmiControl 0.702 0.397 10.927 11.05 3.37 7.59
Ours 0.432 0.757 10.723 0.28 0.11 2.76

OmiControl Average 0.788 0.379 10.841 14.33 3.68 8.54
Ours 0.487 0.751 10.716 0.52 0.15 2.98

Table 2. Quantitative results of comparison with state-of-the-art methods on KIT test set. The best scores are highlighted in red.

the masked trajectory transformer, we use a frozen CLIP-
ViT-B/32 [37] model for pre-processing the text prompt L,
and then a 4-layer transformer processes the text informa-
tion and control trajectories R′ into the latent Z, followed
by a 3-layer transformer decodes Z to the codes indices.
The embedding dimension of these two stage transformers
are 512 and 256 respectively. The networks are trained us-
ing AdamW optimizer with learning rate decayes from 1e-4
to 1e-7 with a batch size of 64. For the run-time optimiza-
tion step, we use Limited-Memory BFGS [26] as the opti-
mization algorithm with learning rate set to 0.1. The accu-
racy criteria is set to 1E-6 and we provide an ablation study
of the criteria setting in 4.3.4.

In this experiments section, we use a machine with
RTX4090 GPU for running the tests except in 4.2 for a fair
comparison. The testing batch size is 32 following previous
works using HumanML3D [11] and KIT-ML [35] dataset.

4.1. Controllable Human Motion Generation

We compare our method in controllable human motion gen-
eration with the current SOTA methods. When compar-
ing with MDM [48], PriorMDM [39], and GMD [22], we
focus on controlling the pelvis only for fair comparisons.
We further compare with Omnicontrol [54] with more set-
tings of different combinations of control joints. The re-
sults are shown in 1 and 2. For the single joint controlling
task, our method achieves better scores in R-precision while

having comparable results in other fidelity metrics. How-
ever, our approach consistently surpasses existing method-
ologies in the metrics measuring control accuracy. On the
Humanml3D test set, the results generated by our approach
steadily remained within a 50 cm range of the intended
control signals, showcasing remarkable accuracy and sta-
bility. We also demonstrate enhanced control accuracy on
KIT dataset for using the pelvis only and the average of
controlling the joints individually, where we continues to
outperform other methods in accuracy.

In the task that utilize all six joints for controlling, Omni-
control struggles with multi-joint controls. In contrast, our
method can handle multi-joint control effectively, produc-
ing highly realistic outcomes with such abundant control
signals. Visual comparison is shown in Fig 4.

Methods Ours OmniControl MDM GMD
Time (s/frame) ↓ 0.016 0.619 0.200 0.561

FPS ↑ 61.7 1.6 5 1.8

Table 3. Runtime Efficiency of different methods.

4.2. Run-time Performance

We further compared our method with the SOTA methods
in terms of run-time performance. We run our method on a
machine with an RTX2080Ti GPU and record the average
process time for a sample using one control joint. As shown



Figure 3. Qualitative results of our method. Figure 3a and Figure 3d demonstrate that our method enables separate controls using language
and joint-level trajectories. Figure 3b and Figure 3c showcase the capability of our method to manage multi-joint control simultaneously.
Please refer to our supplementary for more qualitative results

Figure 4. Qualitative comparison results. We compare our results
with Omnicontrol[54]. Our results are shown in Yellow, while
those of Omnicontrol are depicted in Green. Please refer to our
supplementary for more comparison results

in Tab. 3, due to our structured and compact latent space and
efficient optimization framework, our method consistently
outperforms all existing methods with a significant margin.

4.3. Ablation Study

4.3.1 Motion Latent Space

We investigate the learned part-based VQ-VAE for motion
embedding. In Fig. 5, we randomly choose 10 test cases
from Humanml3D test set, and process them with MMT for
achieving the corresponding features. We present the re-

Figure 5. t-SNE visualization of learned motion latent space. Each
color stands for a textural description of the motion. We randomly
select ten sentences for visualization.

sult of using t-SNE [50] for visualizing these features, offer-
ing insights into the structure of the acquired motion latent
space. Our part-based VQ-VAEcontributes a compact mo-
tion latent space while preserving the semantics described
by language inputs, as evidenced in Fig. 5.

Next, we visualize the learned body part-level motion
prior. As shown in Fig. 6, our framework for motion em-
bedding learns a well-structured latent space. This results
in generating motions that conform to the language descrip-
tion while capturing a diverse distribution of motions under
each text condition.

4.3.2 Trajectory Incompleteness

We investigate the performance of our method under differ-
ent levels of trajectory incompleteness, for which we sim-
ulate various incompleteness scenarios by adjusting the ra-
tio of random masking. As revealed in Fig. 7, our model’s
performance degrades gracefully even as the control trajec-
tories become more incomplete. As a reference, note that
even with full joint trajectories, the performance of previ-
ous methods [54] in terms of FID and R-precision are 2.614
and 0.606.



Figure 6. Motion variations controlled by language (text in blue)
and randomly sampled body part level latent codes. Three sample
motions in red, blue, and green are shown.

Figure 7. Influence of different trajectory incompleteness. We
simulate the incompleteness by applying random masking. The
left vertical axis represents the FID metric, while the right vertical
axis indicates the R-precision metric.

Optimize Acc Setting 1E-4 1E-5 1E-6 1E-7 1E-8
Runtime (per batch, s) 3.48 11.89 28.86 61.43 127.90

Joint Name Avg. Err (cm)
Pelvis 4.92 2.03 1.20 0.71 0.45
Head 5.87 2.77 1.46 0.77 0.48

Left Hand 8.41 4.14 1.83 0.89 0.56
Right Hand 8.45 4.08 1.80 0.88 0.56
Left Foot 6.32 3.05 1.57 0.92 0.61

Right Foot 6.37 3.04 1.55 0.91 0.60
Avg. 6.72 3.19 1.57 0.85 0.54

Table 4. Average Error for Different Joints v.s. Accuracy criteria
during optimization when controlling all the joints.

Figure 8. Running time statistics of our optimization when apply-
ing different controlled joints. “Upper Body” includes the joints
of the hands and the head joint. “Lower Body” includes the joints
of two feet and the joint of the pelvis.

4.3.3 Runtime of different joint control strategy

We present the runtime associated with different joint con-
trol strategies. In Figure 8, we record the average runtime
for processing a batch under the condition of using different
combinations of joint trajectories. Due to the complexity
of hand motions, optimization that exclusively using both
hands trajectories is the most time-consuming.

4.3.4 Optimization Scheme

Finally, we present the average error in controlling all six
joints of our method under varying accuracy criteria dur-
ing optimization. These errors for each joint are recorded
in Table 4, utilizing the Humanml3D dataset test set. As
indicated in Table 4, higher optimization accuracy settings
result in lower accuracy errors but require more optimiza-
tion time. In this paper, we consistently set the optimization
accuracy to 1E-6.

5. Conclusion

We introduce TLControl, a method for controllable hu-
man motion generation using a combination of joint trajec-
tory and language inputs. TLControl leverages a disentan-
gled latent space for diverse human motion, allowing for
effective optimization and producing high-fidelity motion
aligned with both language descriptions and specified tra-
jectories. The proposed Masked Trajectories Transformer
captures the correspondence between trajectories and tex-
tual information, leading to a well-structured compact la-
tent space. We further introduce an efficient optimization
framework for joint-level motion editing while maintaining
motion semantics encoded by the language, thus enabling
interactive generation and modification of high-quality mo-
tion within a short run-time. Extensive experiments validate
the effectiveness of our framework, highlighting its capa-
bility to enable users to quickly generate and modify high-
fidelity human motion interactively.
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TLControl: Trajectory and Language Control for Human Motion Synthesis

Supplementary Material

This supplementary material covers: the abalation study
of our part-based VQ-VQE embedding (Sec. 1); an experi-
ments of our multi-joint control results (Sec. 2); more qual-
itative comparisons with the SOTA methods (Sec. 3); more
implementation details (Sec. 4); and a discussion of limita-
tions and future work (Sec. 5).

We also include a video showing more visual results in
our supplementary. We highly encourage our readers to
view the supplementary video for our qualitative compar-
ison and results.

1. Ablation Study on Part-based VQ-VAE
To validate the effectiveness of the proposed part-based
VQ-VAE, we compared our network structure with a coun-
terpart VQ-VAE without body-part level disentangling,
which we referred to as Unsplit VQ-VAE. To guarantee a
fair comparison, both models were configured with an iden-
tical feature dimension that represents the full-body motion
and is utilized for the runtime optimization. As summa-
rized in Tab. 1, our proposed part-based VQ-VAE demon-
strated superior performance in generating controllable mo-
tion, showing its efficacy in preserving language seman-
tics alongside facilitating flexible trajectory control. This
is attributed to our disentanglement design of our VQ-VAE
that allows an efficient representation of motion dynamics
at the body-part level. Moreover, our part-based VQ-VAE
exhibits the capability to encode motions into a more com-
pact latent space. This compactness not only enhances the
model’s accuracy in handling complex motion but also sig-
nificantly reduces processing time during the runtime opti-
mization, making it more suitable for real-time applications
where rapid motion generation and adaptation are crucial.

Figure 1 illustrates the comparative analysis of the aver-
age processing times for motion synthesis using our part-
based embedding versus the unsplit embedding under vari-
ous control strategies. On average, our embedding design
demonstrates a significant reduction in processing time,
specifically a 27.3% decrease compared to the unsplit VQ-
VAE embedding. This efficiency gain is primarily attributed
to the optimized structure of our part-based embedding,
which streamlines the synthesis process by effectively han-
dling the complexities of motion data.

2. Multi-Joint Control Results
In this section, we present the performance metrics of our
method when applied to various groups of joints. This test is
performed in the test set of HumanML3D dataset [11], and
the results are shown in Tab. 2. Our approach demonstrates

Figure 1. Per batch running time statistics of our embedding com-
paring to the unsplit embedding. “Upper Body” includes the joints
of the hands and the head joint. “Lower Body” includes the joints
of two feet and the joint of the pelvis.

notable efficiency and accuracy in managing multiple joints
simultaneously. As we integrate additional control trajec-
tories, the motion representation becomes increasingly de-
tailed. This enhancement allows our method to generate
more realistic results, showcasing its adaptability and pre-
cision in complex joint operations.

3. More Qualitative Comparisons on Control-
lable Motion Synthesis

We present more detailed qualitative results in this section,
comparing our method with the SOTA methods in terms of
controllable human motion synthesis: GMD [22] and Om-
nicontrol [54].

Given that GMD only concentrates on the trajectory con-
trol of the root joint, we demonstrate cases where only the
root path is assigned, as depicted in Figure 2. Omnicontrol
allows control over multiple joints simultaneously. To illus-
trate this, we compare tasks that involve controlling differ-
ent joints concurrently with Omnicontrol, with the results
displayed in Figure 3. Our method demonstrates superior
accuracy in adhering to the control trajectories and achieves
this with a notably reduced runtime. Our approach exhibits
enhanced adaptability and precision in complex motion pat-
terns, outperforming the compared methods in dynamic mo-
tion scenarios where precise joint control is critical.

4. Implementation Details
In this section, we provide a more detailed explanation of
the implementation of our method. Following [58], our en-
coder and the decoder consist of standard 1D convolutional
layers, residual blocks [17], and ReLU activation functions.



Method Control Joint FID↓ R-precision↑ (Top-3) Diversity→ Avg. Err. (cm)↓ Runtime Per Batch (s)↓
Real - 0.002 0.797 9.503 0.00 -

Unsplit VQ-VAE Pelvis 0.334 0.767 9.681 1.52 22.81
Ours 0.271 0.779 9.569 1.08 17.67

Unsplit VQ-VAE Head 0.325 0.768 9.687 1.61 26.61
Ours 0.279 0.778 9.606 1.10 19.80

Unsplit VQ-VAE Left Hand 0.156 0.786 9.776 1.57 30.22
Ours 0.135 0.789 9.757 1.08 25.35

Unsplit VQ-VAE Right Hand 0.145 0.783 9.793 1.60 29.89
Ours 0.137 0.787 9.734 1.09 25.17

Unsplit VQ-VAE Left Foot 0.433 0.753 9.839 1.59 25.29
Ours 0.368 0.768 9.774 1.14 20.90

Unsplit VQ-VAE Right Foot 0.412 0.756 9.802 1.64 25.34
Ours 0.361 0.775 9.778 1.16 21.15

Unsplit VQ-VAE All Joints above 0.066 0.790 9.780 2.51 38.84
Ours 0.032 0.794 9.750 1.57 28.86

Table 1. Quantitative results of comparison with different embedding design on Humanml3D test set. The best results are highlighted in
red.

Figure 2. Qualitative comparison results with GMD [22] in the
task of controlling root path. Our results are shown in Yellow,
while the results of GMD are depicted in Green. Please refer to
our supplementary video for more details of the comparison.

The settings of each encoder and the decoder of our part-
based VQ-VAE are based on T2M-GPT [58] using standard

Control Joint FID ↓ R-precision ↑ (Top-3) Diversity → Avg. Err. (cm) ↓
Both Hands 0.108 0.789 9.747 1.25
Upper Body 0.088 0.791 9.740 1.35
Both Feet 0.320 0.775 9.748 1.29

Lower Body 0.249 0.777 9.746 1.38

Table 2. Quantitative results of multi-joint control. “Upper Body”
includes the joints of hands and the head joint. “Lower Body”
includes the joints of two feet and the joint of pelvis.

1D convolutional layers, residual blocks [17], and ReLU
activation functions.

For each joint encoder, we use a codebook of 126 code
vectors and each code of dimension 126. Our input data
first passes through an 1D convolutional layer, followed by
a ReLU activation function. By setting the temporal down-
sampling rate to 4, the feature is processed by 2 sequences,
where each sequence is a compound module that includes a
1D convolutional layer with a stride of 2, which downsam-
ples temporal dimension of the data by a scale of 2, then
followed by a residual block. The encoded feature is also
normalized by the norm of itself before being quantized.
By combining the quantized codes from all 6 joint encoders,
we achieve a full-body latent code of size 126 × 6 = 756.
The decoder has the same structure as the encoder, where
the convolution with stride is replaced with nearest inter-
polation for temporal upsampling, and the full-body pose
output dimension is 263 for Humanml3D [11] dataset and
251 for KIT [35] dataset.

In implementing the masked trajectory transformer, we
employ a frozen CLIP-ViT-B/32 [37] model for the initial
processing of the text prompt, which translates it into a 512-
dimensional vector representative of language features. The
joint trajectories are grouped with every 4 closest waypoints
being bundled into a single temporal token. This bundling
is reflective of our choice to use a downsampling rate of
4 within the part-based VQ-VAE framework. Each way-



Figure 3. Qualitative comparison results with Omnicontrol[54]. Our results are shown in Yellow, while the results of Omnicontrol are
depicted in Green. Please refer to our supplementary video for more details of the comparison.

point group is then mapped onto a 512-dimensional feature
space. A standard 4-layer transformer encoder is used to
integrate the language and trajectory features into a cohe-
sive latent space, where tokens comprise both the language
feature vector and the feature representations of the trajec-
tory at each temporal token. Following this, a 3-layer trans-
former encoder is designed to transform the latent space
into a sequence of logits, which are used to determine the
code indices. We then apply a softmax function followed
by an argmax operation to select the most probable code in-
dices, which serve as the initial full-body state for the VQ-
decoder. For the masking strategies, each iteration within a
batch has a 50% probability of using continuous trajectory
masking or joint-level masking. The proportion of contin-
uous trajectory masking is gradually increased, starting at
0% and steadily advancing to 75%.

During the run-time optimization stage, the Limited-
Memory BFGS [26] method is utilized as the optimization
technique. The learning rate is configured at 0.1, and we set
the precision target at 1E-6. We limit the process to a max-
imum of 1000 iterations, maintain an update history size of
200, and employ the ‘strong wolfe’ condition for the line
search function.

5. Limitations and Future Work

Although TLControl achieves controllable motion synthe-
sis that is faithfully aligned with language semantics and
control trajectories with high efficiency, there are still some
limitations. In particular, the absence of a physics-based
simulation in the current version of TLControl may produce
human motions that deviate from established physics rules.

Thus, one promising direction is to incorporate physics-
based simulation [8, 27, 29, 30] into the generation process,
as evidenced by [20, 56].

Furthermore, our approach facilitates detailed motion
synthesis, enabling its application in the generation of mo-
tions responsive to scenes or objects. This can be achieved
by defining control trajectories that align with the move-
ments of specific objects or scenes. However, more effort
can be made to realize scene-aware motion synthesis that
accurately responds to dynamic changes, e.g., simulating
walking on terrains with diverse elevations [16, 43, 52, 53,
57], which can be an intriguing avenue for future research.
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