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Abstract
Imitation learning trains control policies by mim-
icking pre-recorded expert demonstrations. In par-
tially observable settings, imitation policies must
rely on observation histories, but many seemingly
paradoxical results show better performance for
policies that only access the most recent observa-
tion. Recent solutions ranging from causal graph
learning to deep information bottlenecks have
shown promising results, but failed to scale to real-
istic settings such as visual imitation. We propose
a solution that outperforms these prior approaches
by upweighting demonstration keyframes corre-
sponding to expert action changepoints. This sim-
ple approach easily scales to complex visual imi-
tation settings. Our experimental results demon-
strate consistent performance improvements over
all baselines on image-based Gym MuJoCo con-
tinuous control tasks. Finally, on the CARLA
photorealistic vision-based urban driving simu-
lator, we resolve a long-standing issue in behav-
ioral cloning for driving by demonstrating effec-
tive imitation from observation histories. Sup-
plementary materials and code at: https://
tinyurl.com/imitation-keyframes.

1. Introduction
Learning controllers for complex, unmodeled agents and
environments is a challenging problem. For tasks where at
least one “expert” controller exists, such as a human driver
for autonomous driving, imitation learning offers a simple,
powerful family of solutions that exploit demonstrations
provided by this expert to bootstrap control policy learn-
ing. Many imitation approaches employ a straightforward
“behavioral cloning” (BC) strategy, to train policies com-
pletely “offline”, i.e., with no environmental interaction, by
simply mapping expert observations to expert actions on
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the demonstration data. While BC has well-documented
distributional shift issues due to compounding imitation er-
rors when executed in the environment, several effective
approaches have been proposed to address them, and BC
remains widely used in practice (Pomerleau, 1989; Schaal,
1999; Muller et al., 2006; Mülling et al., 2013; Bojarski
et al., 2016a; Giusti et al., 2015).

We focus on the open problem of effectively extending BC
to realistic partially observed settings such as driving, where
the agent cannot observe all task-relevant information in-
stantaneously. This is commonly resolved in other controller
design paradigms by integrating historical information in
the control policy, but this has proven challenging in BC.
For over 15 years now, researchers have reported seemingly
paradoxical results that show performance drops in some
POMDP settings from allowing BC agents to access history
information, compared to when they are restricted to instan-
taneous observations alone (Muller et al., 2006; Bansal et al.,
2019; de Haan et al., 2019; Wang et al., 2019). Recently,
Wen et al. (2020) coined the phrase “copycat problem” to
describe the issue, and show that the problem is wider still:
even when history information does improve BC perfor-
mance, the learned policies often perform suboptimally and
have room to improve if the copycat problem is correctly
addressed.

Figure 1 shows a snippet of an expert driving demonstration
from the imitation dataset CARLA100 (Dosovitskiy et al.,
2017; Codevilla et al., 2019), where a car waiting at a red
traffic light starts to move when the light turns green. We
can see that the expert’s action at is identical to its previous
action at−1, except at one moment when the light turns
green (figure shows throttle). Thus, a “copycat” policy that
repeated the previous action without paying any attention to
the images would only commit one imitation error on the
expert data. Upon execution in the environment however,
since no expert would be available, it would repeat its own
previous action at each step, and never move at all! Indeed,
Codevilla et al. (2019) report this special case of the copycat
problem as the “inertia” problem.

We study the reasons for the copycat problem and iden-
tify one key reason that can be algorithmically addressed:
when expert actions are highly temporally correlated, the
demonstration dataset has a very tiny fraction of important
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Figure 1. An instance of the copycat issue in the CARLA autonomous driving simulator. Views from the expert data show the policy
waiting at a red light and then accelerating (throttle) when it turns green. A simple copycat policy is mostly correct but makes a mistake at
this critical keyframe. We define a notion of changepoints to detect such keyframes and upweight them during behavior cloning.

“changepoint” samples that typically correspond to the ex-
pert responding to some external change in the observations,
such as when the traffic light turns green. We then propose
a simple, well-motivated metric to automatically identify
these underrepresented changepoint samples in the demon-
strations, and propose to upweight them in the behavioral
cloning objective function for policy learning.

We evaluate our method across four varied simulated envi-
ronments, ranging from robotic control from clean images,
to photorealistic urban driving environments. Our exper-
imental results validate that our method offers the most
effective and scalable solution yet for tackling the copycat
problem, while also being very simple to implement.

2. Related Work
Imitation Learning. Imitation learning is a powerful pol-
icy learning method that can learn complex decision be-
haviors from expert demonstrations (Widrow and Smith,
1964; Osa et al., 2018; Argall et al., 2009). In this paper,
we focus on the widely used behavioral cloning paradigm
of imitation, which directly regresses from observations
to expert actions (Pomerleau, 1989; Schaal, 1999; Muller
et al., 2006; Mülling et al., 2013; Bojarski et al., 2016a;
Giusti et al., 2015). Like other imitation approaches, be-
havioral cloning must contend with distribution shift: small
errors between imitator and expert policies accumulate over
time leading the imitator into unfamiliar states (Ross et al.,
2011). It is possible to resolve this through environmental
interactions (Ho and Ermon, 2016; Brantley et al., 2020)
or queryable experts (Ross et al., 2011; Sun et al., 2017;
Laskey et al., 2017b; Sun et al., 2018). Our focus is on a
specific well-documented problem arising due to distribu-
tional shift in partially observed imitation settings, recently
coined the “copycat problem” (Wen et al., 2020). We dis-

cuss work specifically related to the copycat problem in
detail in Sec 3.2, after setting the context.

Importance Weighting To Tackle Data Imbalance. Sam-
ple reweighting / resampling, a well-known technique in
machine learning and statistics, has recently been shown
to remain very effective at tackling long-tail problems aris-
ing from data imbalances in machine learning (Cui et al.,
2019; Cao et al., 2019; Kang et al., 2020; Zhou et al., 2020).
Wang et al. (2018) assume access to environmental rewards,
and reweight training samples for imitation based on their
corresponding value functions. While these approaches
rely on “labels” such as category annotations or environ-
mental rewards, we instead discover an unlabeled group
of “changepoint” keyframes in imitation learning datasets.
By identifying the scarcity of such frames as a data imbal-
ance that causes copycat problems, we are able to propose a
simple and surprisingly effective sample reweighting-based
technique to alleviate them.

Shortcut Learning. With the increasingly widespread use
of machine learning, researchers have begun to pay attention
to various intriguing errors and quirks, particularly with
deep neural networks (DNNs). DNN image classifiers often
classify images based on irrelevant backgrounds rather than
foregrounds (Beery et al., 2018) and object textures rather
than shapes (Geirhos et al., 2019). Geirhos et al. (2020)
recently surveyed several such phenomena, identifying them
as instances of “shortcuts”: models that are easy to learn,
perform well on the data they were trained on, but then fail
to generalize to the real world. We view the copycat problem
as another instance of the shortcut learning problem, identify
conditions that lead to its emergence in imitation learning,
and make progress towards alleviating it.
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3. Preliminaries
We are interested in learning control policies in settings
that can be modeled as partially observed Markov decision
processes (POMDP). In POMDPs, the environment at time
t provides to the agent a reward rt, and an observation ot
which only partially represents its true state. To account for
this missing state information, it is common practice (Mur-
phy, 2000; Schulman et al., 2017) to augment the current
observation ot with the last H observations to form the
“observation history” õt = [ot−H , · · · , ot]. Optimal con-
trollers that maximize the sum of environmental rewards1

R =
∑
t rt must rely on this observation history õt rather

than solely on ot.

3.1. Behavioral Cloning

While the above point about observation histories also
holds for control policies synthesized through reinforcement
learning or other approaches, we are interested in policies
trained via imitation learning. In particular, we focus on
the widely used behavioral cloning (BC) paradigm, which
reduces imitation to simple supervised learning to mimic
expert actions. Specifically, an expert policy πe, such as
a human demonstrator, generates training demonstrations
D = {(ot, at)}Nt=1. The goal of BC is to train a parameter-
ized policy πθ(õt) = ât that estimates the expert’s action
at time t. To do this, BC methods typically minimize the
following mean squared error (MSE) loss on D:

argmin
θ

MSED(θ) =
1

N

N∑
t=0

(πθ(õt)− at)2. (1)

3.2. The “Copycat” Problem in Behavioral Cloning

As mentioned above, optimal controllers typically require
historical information to account for partial observability.
Therefore, we would expect BC policies with access to the
observation history õt (“BC-OH”) to perform better than
those that map a single observation ot to at (“BC-SO”).
Yet, in practice, many prior works (Muller et al., 2006;
Bansal et al., 2019; de Haan et al., 2019; Wen et al., 2020;
Codevilla et al., 2019; Wang et al., 2019) report that BC-OH
performs poorly compared to BC-SO. In particular, BC-OH
produces better (lower) values of the BC loss in Eq (1) on
both training and validation data from expert demonstra-
tions, but performs poorly when actually executed in the
environment. In recent attempts to deal with this issue, it
has variously been identified as the “copycat” problem (Wen
et al., 2020), the “inertia” problem (Codevilla et al., 2019),
and “causal confusion” (de Haan et al., 2019): an imitator
exploits the strong temporal correlation of expert actions
to learn policies that predict at purely as a function of pre-
vious actions at−1, at−2, · · · . Wen et al. (2020) make two

1ignoring discount factors for simplicity

important observations that widen the scope of the copycat
problem: (1) Even when history information does improve
BC performance as we would expect, the learned policies
often perform suboptimally and have room to improve if
the copycat problem is correctly addressed. (2) Even when
past actions are not explicitly available as input, the imita-
tor commonly learns to recover them from the observation
history õt and manifest the copycat problem.

4. Method
We now analyze the copycat problem and identify its key
causes. Motivated by this analysis, we then propose a simple
approach that aims to resolve the problem by reweighting
training data samples based on the temporal characteristics
of expert action sequences.

4.1. What Causes the Copycat Problem?

We argue that the copycat problem arises from (A) strong
temporal correlation among expert actions, (B) misalign-
ment between environmental reward and the imitation objec-
tive, and (C) the difficulty of learning truly optimal policies
that fit the expert data. First, temporal correlation makes
it possible for a “copycat policy” ψ(at−1, at−2, ....) that re-
lies purely on expert action histories to produce low MSE
for predicting expert actions at on expert demonstrations
(training as well as held-out data) without accessing envi-
ronmental observations at all. Second, the well-documented
distributional shift problem in imitation (Ross et al., 2011),
compounded by misalignment between the MSE objective
and the true environment reward R, means that ψ(·) yields
low rewards upon environmental execution. And finally,
it is difficult to learn a “good” policy that correctly identi-
fies and relies on the causes of expert actions among the
observations. This means that the copycat policy offers an
excellent “shortcut” (Geirhos et al., 2020) to the BC learner.
We expand further on these intuitions below.

Suppose we train an optimal copycat policy ψ∗(·) on the
training dataset through behavioral cloning as:

ψ∗ = argmin
ψ

1

N

N∑
t=0

(ψ(at−1, at−2, · · · )− at)2. (2)

Suppose further that the expert data has a fraction εCP of
“changepoint” frames for which at is not predicted well
by the optimal copycat policy ψ∗(·). For convenience, we
will assume these samples all suffer from uniform copycat
error equal to 1, so that the training MSE of ψ∗(·) is the
changepoint fraction εCP . Low εCP corresponds to low-
MSE copycats. This relates to A above.

Next, we turn our attention to the reward-optimal policy pa-
rameters θR∗ corresponding to the policy within the model
class, that yields the highest environmental reward R. Ob-



Keyframe-Focused Visual Imitation Learning

serve that, in general, θR
∗

does not fit the expert data per-
fectly. In other words, it produces a non-zero training error
MSED(θR∗) > 0. This happens due to the misalignment
issue (B above), and optimization difficulties, model class
mismatch or noisy demonstrations (C above).

When we synthesize the above observations, a clear-cut
domain for the copycat problem begins to emerge. BC
learners will always prefer the copycat solution ψ∗ over the
reward-optimal parameters if:

MSED(θR∗) > εCP , (3)

or in other words, the BC training loss is lower for the
copycat ψ than it is for πθR∗ .2 Note that we operate in
data-rich settings without overfitting, so that all the above
statements about training errors also hold for validation
errors. So, to restate, copycat problems occur when the
changepoint fraction is lower than the error of the reward-
optimal imitator.

While the above argument is not fully rigorous or compre-
hensive,3 it yields strong intuitions for the factors that make
copycat problems more likely in POMDP imitation: (1) the
higher the temporal correlation among expert actions, the
more infrequent the changepoints (i.e., lower εCP ), and (2)
the harder the imitation setup (such as high-dimensional
observations or noisy demonstrations), the higher the value
of MSED(θR∗). In both cases, the copycat-producing in-
equality in Eq (3) becomes more likely to hold.

These observations directly motivate our approach. We as-
sume fixed standard datasets, architectures, and optimizers
in this paper, so we cannot address (2) above. However, we
can artificially inflate the changepoint fraction εCP simply
by upweighting changepoints when setting up the BC objec-
tive, to address (1). This is the crux of our approach, which
we describe in more detail next.

4.2. Reweighted Behavioral Cloning Objective

In datasets with high temporal correlation among expert
samples, the natural changepoint fraction εCP is very low,
which makes copycat issues more likely, as we have argued
above. However, we can effectively upsample these change-
points by shifting to a weighted version of the behavioral
cloning objective in Eq (1):

θ∗ = argmin
θ

N∑
t=0

wt(πθ(õt)− at)2, (4)

2Since ψ is typically a very simple function, we implicitly
make the assumption that the learning algorithm can easily find
parameters θ such that πθ(·) = ψ∗(·).

3In particular, Eq (3) does not rule out that that may be other
parameter vectors θ 6= θR∗ that yield higher reward and produce
lower error than the copycat ψ∗(·).
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Figure 2. Action prediction error (APE) computation (Equa-
tion (5)) as a function of expert and copycat actions in a traffic
light setting similar to Figure 1. APE peaks align with keyframes.

.

where wt is the weight for each data sample. With the right
weighting scheme, the reweighted MSE error of the copycat
policy εCP would rise and therefore making the condition
in Eq (3) more difficult to meet, alleviating the copycat
problem.

4.3. Action Prediction Error (APE)

What would an appropriate sample weighting scheme look
like? Since the copycat problem arises from exploiting
temporal correlation among expert actions, we must up-
weight and emphasize those keyframe samples where this
correlation breaks down. Identifying such samples amounts
to a type of changepoint detection in the expert action se-
quence. While many generic changepoint and keyframe
detection approaches have been proposed for time series
or video (van den Burg and Williams, 2020; Sheng et al.,
2019), in our specialized setting, the most appropriate choice
is a changepoint detection score that is closely tied to
the copycat policy defined in Eq (2), as foreshadowed in
Sec 4.1. Specifically, we first train a small MLP copycat
policy network ψ∗ with the training objective of Eq (2) —
recall that the only inputs to this policy are the past ac-
tions [at−1, at−2, · · · ]. Then, we use its prediction error
for each training sample to set the sample weight wt in the
reweighted BC objective of Eq (4). These weights need only
be computed once, before training the BC policy πθ(õt).

In more detail, for every training sample (õt, at) ∼ D, we
define the “action prediction error” (APE) as the squared
error of the copycat policy ψ∗ with respect to expert actions:

APEt = (ψ∗(at−1, at−2, · · · )− at)2. (5)

Figure 2 shows a schematic. To avoid copycat overfitting
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Figure 3. Action prediction error (APE) and behavioral cloning
loss of BC-OH and our approach along a validation driving trajec-
tory in CARLA. Dotted lines segment the trajectory into different
annotated phases. APE is well-aligned with BC-OH errors.

when working with small datasets, the APE can instead be
computed through cross-validation, always training copycat
policies and measuring their errors on disjoint data.

Samples with high APEt are more likely to be changepoints.
Since we would like to upweight changepoints, we set the
sample weights wt in Eq (4) to be monotic non-decreasing
functions of APEt:

wt = f(APEt). (6)

Figure 3 shows a plot of the APE and the MSE loss for
BC-OH along a validation trajectory, for a driving policy in
a photorealistic image-based driving environment. Sample-
wise BC-OH errors align very well with the APE, which are
the copycat errors, verifying the existence of the copycat
issue. We evaluate setting f(.) to softmax and step func-
tions in our experiments. Plugging this back into Eq (4), all
that remains is to train the BC policy by solving:

θ∗ = argmin
θ

N∑
t=0

f(APEt)(πθ(õt)− at)2. (7)

Algorithm 1 summarizes our complete approach. Intuitively,
our approach amounts to focusing the behavioral cloning ob-
jective on the demonstration frames where copycat policies
fail, so that the BC learner becomes less likely to discover
such copycat policies.

4.4. Implementation Details

Our copycat policy network ψ∗ is a a two-layer MLP.
For f(·), we experiment with softmax and step functions.
The softmax function is applied within each training mini-
batch, i.e., wi = eτAPEi∑

j e
τAPEj

; the temperature τ is a hyper-

parameter. The step function assigns a constant weight

Algorithm 1 Keyframe-Focused Visual Imitation Learning
1: Input: Expert demonstrations D = {(õt, at)}.
2: Train an optimal copycat policy MLP ψ∗ on D (Eq (2)).
3: Compute APEt for each sample in D (Eq (5)).
4: Compute the sample weights wt (Eq (6)).
5: Optimize the imitation policy neural net πθ to minimize

the reweighted behavioral cloning objective (Eq(4)).
6: Return πθ

Figure 4. The four environments used in our experiments: CARLA,
Hopper, HalfCheetah and Walker2d.

wi =W to samples in the top THR percentile of APE and
wi = 1 otherwise; W and THR are hyper-parameters. All
hyperperameters were set through a simple grid search; see
Supp for details. All policies using observation histories are
trained by stacking image observations along the channels
dimension. Architectural details are environment-specific
and discussed in Sec 5.

Our method introduces barely any computational overheads
over baseline behavioral cloning (BC-OH). At test time,
our method is exactly identical to BC-OH. At training time,
the only extra steps are training the copycat policy ψ∗ and
calculating the sample weights, before following the BC-
OH training procedure. Since the inputs to ψ∗ are only
the action histories, rather than the visual observations, this
all amounts to a fast data preprocessing step (less than 15
mins even on our largest and most complex environments).
Further, once this is completed, any number of policies may
be trained on that data with zero additional overhead.

5. Experimental Setup
We now comprehensively evaluate our approach on a pho-
torealistic driving simulator, CARLA (Dosovitskiy et al.,
2017), and three image-based OpenAI Gym MuJoCo
robotics environments.

CARLA. CARLA is a photorealistic urban driving simula-
tor with varying road and traffic conditions. It has recently
emerged as a standard testbed for visual imitation learning,
through the publicly available 100-hour CARLA100 driving
dataset (Codevilla et al., 2019). This dataset is generated by
a PID expert controller with access to simulator states. We
use the hardest CARLA100 benchmark, NoCrash-Dense,
which has the most pedestrians and traffic. We set history
size H = 6. For each method, we train three policies from
random initializations, and evaluate each policy three times
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to account for environmental stochasticity. We measure
the mean and standard deviation of four metrics: %suc-
cess, #collision, %progress and avg. speed. %success is the
number of test episodes correctly completed by the agent,
#collision counts the times the agent crashes into pedestri-
ans, vehicles and other obstructions, %progress measures
the fraction of the distance traveled towards a goal location,
and avg. speed is the average speed at which the agent drives.
All metrics are measured on 100 predefined benchmark test
episodes. More details in Supp.

Note that CARLA100 is a particularly challenging testbed
because it applies the best known techniques for alleviating
distributional shift issues in offline imitation, namely, noise
injection (Laskey et al., 2017a) which is an offline counter-
part of DAGGER (Ross et al., 2011), and multi-camera data
augmentation (Bojarski et al., 2016b; Giusti et al., 2015).
Further, all approaches use the speed prediction regulariza-
tion scheme introduced in Codevilla et al. (2019) to partially
address the copycat problem (coined there as the “inertia
problem”). Finally, we train all approaches with Imagenet-
pretrained Resnet-34 backbones (Codevilla et al., 2019) and
weighted control losses (Codevilla et al., 2018) to reflect
the state of the art. See Supp. More broadly, autonomous
driving is the setting in which prior works have most often
reported severe copycat issues (Muller et al., 2006; Bansal
et al., 2019; Codevilla et al., 2019; Wang et al., 2019). Any
persistent copycat issues in CARLA thus represent a key
open problem in imitation learning.

MuJoCo-Image (Hopper, HalfCheetah, Walker2D). Fol-
lowing previous work that had identified environments
where the copycat problem arises (de Haan et al., 2019;
Wen et al., 2020), we evaluate our method in three stan-
dard OpenAI Gym MuJoCo continuous control environ-
ments: Hopper, HalfCheetah and Walker2D. We set the
observation ot to be the 128x128 RGB image of the envi-
ronment, naturally excluding velocity and force information
and making the environments partial observed. We set the
history size H = 1, so that õt = [ot−1, ot]. These tasks
vary in their state and action spaces, environmental dynam-
ics, and reward structure. We generate expert data from a
TRPO policy (Schulman et al., 2015) with access to true
states (1k samples for HalfCheetah, and 20k for Hopper
and Walker2D). For each imitation method, we train three
policies from random initializations and report the reward
mean and standard deviation. See Supp for hyperparameters
and training details.

5.1. Baselines and Ablations

We compare our method against the following baselines:

Behavioral Cloning (BC-SO and BC-OH). As introduced
in Sec 3.2, BC-SO and BC-OH are BC with a single obser-
vation and observation histories respectively.

HistoryDropout. Bansal et al. (2019) proposed to ran-
domly drop out the historical part of the observations to
tackle copycat problems in imitation for driving. We im-
plement this baseline by adding a dropout layer to the past
observations, i.e. ot−1, ot−2, · · · .

Fighting-Copycat-Agents (FCA). Wen et al. (2020) pro-
posed to remove all information about the last action at−1
from an embedding of the observation history, using ad-
versarial learning. They report promising results in low-
dimensional state-based environments, and we extend their
publicly available code to our image-based settings, with
upgraded backbone networks and re-tuned hyperparameters.
See Supp for details.

DAGGER. This is a widely used method to mitigate distri-
butional shift issues in imitation learning (Ross et al., 2011).
While our method operates completely offline, DAGGER
requires online environmental interaction with a queryable
expert. Nevertheless, it provides a useful comparison point.
We set the number of environment queries to 100 and 1k for
the MuJoCo environments and 120K for CARLA.

We also attempted to compare against de Haan et al. (2019),
which, like DAGGER, proposes an online approach that
targets “causal confusion”, a more general version of the
copycat problem. However, their causal graph learning
method, demonstrated with up to 30 observation dimensions
at most, does not scale to our image-based settings.

Aside from these standard and published baselines for imita-
tion learning, we also study three ablations of our approach,
replacing our APE-based sample reweighting with alter-
natives: (1) BCPD (Xuan and Murphy, 2007) represents
the widely used family of Bayesian changepoint detection
techniques (Adams and MacKay, 2007; Fearnhead, 2006)
for general multivariate time series, (2) ActFreq clusters
expert actions in the training data to form action “cate-
gories” before applying category frequency-based sample
reweighting, a standard approach for handling imbalanced
data (Bowyer et al., 2011; Dong et al., 2017; Cui et al.,
2019; Cao et al., 2019; Kang et al., 2020; Zhou et al., 2020),
and (3) Boosting uses the standard Adaboost (Freund and
Schapire, 1997) scheme for iteratively training BC-OH poli-
cies and upweighting high error samples. See Supp for more
details about these ablations.

6. Results and Analysis
We now report the results of experiments performed to an-

swer: (1) Does our method improve visual behavior cloning
from observation histories? (2) Does it handle changepoints
well? (3) To what extent does it reduce distributional shift
issues in the learned policies? (4) Do our policies behave
less like copycat policies?, and (5) When do our policies
perform worse than the baselines?
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Question 1. Does our method improve visual behavior
cloning from observation histories?

CARLA. See Table 1 for %success results, and Supp for
other metrics. The single-frame imitator BC-SO performs
significantly better than BC-OH, illustrating the copycat
problem. Our method easily outperforms all history-based
baselines, including, surprisingly, even DAGGER which has
the advantage of 120k expert queries! As we show in Supp,
DAGGER does drive at higher average speed (18.5 km/h
vs. 14.9 km/h), but at the cost of many more collisions (60
vs. 43) than our method. On other metrics (#collision and
%progress), our method is comfortably best. Of the three
sample reweighting ablations, BCPD performs the best, but
still produces worse results compared to BC-OH without
any sample reweighting, and falls far short of our approach.

However, even with these large gains over history-based
baselines, our approach only recovers the performance
of the single-frame imitator BC-SO — we do not signifi-
cantly surpass it. Specifically, we get comparable %success,
%progress, and avg. speed with higher consistency (lower
variance) and fewer #collisions. We believe the limited
extent of these gains may be because this setting does not
emphasize information integration over time. CARLA-100
data (Codevilla et al., 2019) is collected largely in low traffic
settings where the ego-agent’s own speed might very well be
the main historical information missing in the current image
observation. However, CARLA-100 provides the velocity as
part of the observation, i.e., ot = [imaget, velocityt]. Thus,
BC-SO already has access to agent velocity, meaning that
the environment is nearly fully observed.

CARLA-w/o-speed. To understand why the CARLA
setting does not reward agents that condition on multiple
frames, we report results in a modified setting, CARLA-
w/o-speed, where we withhold the ego-agent velocity from
the observation for all methods. See Table 1 (right). The
main differences from above are: (1) BC-SO is dramatically
worse than before, (2) BC-OH improves significantly over
BC-SO, and (3) our method improves by a large margin over
BC-OH and therefore over BC-SO. These findings suggest
that the ego-agent velocity does indeed encapsulate most
of the driving-relevant information contained in õt, and our
method makes significant progress towards recovering this
information from the frame history. Our approach continues
to comprehensively outperform all history-based baselines.
All three alternative sample reweighting schemes all con-
tinue to perform poorly in this setting. See Supp for other
metrics, which are consistent with the above results.

Figure 5 shows an example test sequence from CARLA
where BC-OH speeds straight into a slow-moving car in
front of it, while our policy correctly slows down as the car
nears, to avoid crashing.

Table 1. CARLA %success (↑). More metrics in Supp.

METHOD CARLA CARLA-W/O-SPEED

BC-SO 42.667 ± 8.668 9.222 ± 2.380
BC-OH 33.000 ± 4.190 25.667 ± 0.981

OURS (STEP) 43.444 ± 0.786 36.778 ± 5.808

FCA 35.667 ± 3.559 27.444 ± 4.113
HISTORYDROPOUT 34.000 ± 2.625 25.333 ± 5.375
DAGGER (120K) 35.222 ± 3.067 28.333 ± 3.496

BCPD 28.667 ± 2.494 20.000 ± 1.414
ACTFREQ 20.333 ± 5.825 14.667 ± 1.764
BOOSTING 3.000 ± 1.414 10.0 ± 2.160

Table 2. MuJoCo-Image environment rewards (↑).

METHOD HOPPER HALFCHEETAH WALKER2D

BC-SO 601±168 4 ± 5 481±40
BC-OH 740±35 615 ± 41 614 ± 107

OURS (STEP) 905±135 470 ± 205 654 ±53
OURS (SOFTMAX) 951±117 819±96 769±97

FCA 735± 106 270 ± 168 534 ± 99
HISTORYDROPOUT 617±111 96±40 594±61

DAGGER (100) 745±157 936 ± 86 598±26
DAGGER (1K) 1034±45 822 ± 186 699 ± 111

Hopper, HalfCheetah, Walker2D. See Tab 2. BC-OH
does manage to yield higher rewards than BC-SO in these
settings, but it is further improved by addressing the copy-
cat problem. We experimented with two simple choices of
monotonic transformations f(·) applied to APE in Eq (6),
namely step and softmax — softmax performs consistently
better. While step is arguably a simpler weighting scheme,
we find that softmax enjoys the benefits of easier hyperpa-
rameter tuning since it requires only a single temperature
hyperparameter. Compared to all the other offline baselines,
Ours (Softmax) easily yields the highest rewards across all
environments. With the advantage of online interaction and
expert queries, DAGGER with 100 queries is worse than our
method on Hopper and Walker2D but better on HalfCheetah.
With 1k queries, DAGGER performs marginally better than
our method on all three environments.

Question 2. Does our method imitate the expert better at
the changepoints, as it was designed to do? What about
non-changepoints?

We showed earlier in Figure 3 that high APE samples (i.e.,
changepoints) do in fact correspond well with imitation
errors in BC-OH models. The same figure also plots the
error for our approach. At all the changepoints, such as
turning right and slowing down in front of a red light, the
validation errors of our method are significantly lower than
BC-OH. On other frames, it sometimes produces higher
errors than BC-OH.

We investigate this phenomenon more quantitatively, report-
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BC-OH
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Throttle

Throttle Throttle
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Brake Brake Stop

Figure 5. An example test scenario from CARLA navigated by a BC-OH policy (top) and ours (bottom). Frames displayed in sequence
from left to right. Actions (“Throttle”/“Brake”) are overlaid on the frames.

ing the unweighted imitation MSE (corresponding to Eq (1))
for BC-SO, BC-OH, and ours, on all frames, and then sep-
arately for changepoints and other frames. All MSEs are
computed on held-out data. See Figure 6. On CARLA, BC-
OH performs worse than BC-SO at the APE-based change-
points and better at other frames, once again validating
our changepoint-focused approach. In comparison, our ap-
proach performs significantly better on changepoints and
marginally worse on other samples. Since there are many
fewer changepoints, this corresponds to marginally higher
overall validation MSE for our approach (despite the higher
reward). This is not directly a concern however since, as we
have reported above, our method comprehensively outper-
forms BC-OH in terms of environment reward. Instead, this
finding lines up with our intuition that, for optimal reward,
it is more important to act correctly at some “keyframes”
than at others. Supp has full quantitative results.

Finally, on CARLA-w/o-speed, BC-SO suffers from remov-
ing agent velocity information, producing the highest errors
on changepoints as well as other samples. Our method
yields the lowest errors in both cases (and therefore low-
est overall). Note that while we report validation losses
here, Supp shows very similar trends for training losses.
We find this trend surprising: BC-OH is trained on the un-
weighted loss over all samples and yet produces a policy
that has higher value of this loss on the training set than our
approach which optimizes a weighted objective that empha-
sizes changepoints. We believe this may be a case of data
rebalancing avoiding optimization-related shortcuts. Similar
phenomena have been observed before in ML systems that
amplify biases in the training data (Geirhos et al., 2020).

Question 3. To what extent does our method reduce distri-
butional shift issues in the imitation policies?

For each policy, we now compute the BC MSE of Eq (1)
on the test data generated by executing the policy in the
environment. The resulting “rollout imitation error” directly
measures distributional shift between the expert data and the
policy. Note that this measurement is possible in CARLA
because the CARLA expert is rule-based rather than learned

All
 Samples

Changepoints Other
 Samples

0

1

2

3

4

5

V
al

id
at

io
n 

B
C

 E
rr

or

CARLA
BC-SO
BC-OH
Ours

All
 Samples

Changepoints Other
 Samples

0

2

4

6

8

10

CARLA-w/o-speed
BC-SO
BC-OH
Ours

Figure 6. Imitation MSE losses for different sets of validation
frames: changepoints, others, and all combined.

from data — therefore, it does not itself suffer from distribu-
tional shift, and allows evaluating shift issues with respect
to the imitator alone. On both CARLA and CARLA-w/o-
speed, our policies (0.07, 0.16) have lower rollout imitation
error than BC-OH (0.11, 0.40). This suggests that our ap-
proach does in fact suffer less distributional shift.

Question 4. Do our policies behave less like copycats?

We have thus far measured APE by training copycat policies
on expert action sequences and measuring their errors. We
now define a similar notion called APE(π). To measure
APE(π) for some policy π, we generate data Dπ by exe-
cuting π, then train a new optimal copycat policy ψ∗π on
Dπ, and measure its average error on held-out data (gen-
erated from π again). This “avgAPE(π)” measures how
temporally correlated actions from π tend to be — lower
error corresponds to less interesting policies that generate
smooth, predictable action sequences. Wen et al. (2020)
used a similar metric and showed that approaches that suffer
from the copycat problem commonly have lower avgAPE(π)
than the expert policy. This is related to our comment above
about bias amplification and shortcuts: if the expert policy
has low avgAPE(π), the imitator trained to mimic it ends
up with even lower avgAPE(π).

Our results, shown in Table 3, are consistent with this. BC-
OH has much lower avgAPE(π) than the expert in all envi-
ronments. Our method consistently improves upon BC-OH,
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Table 3. avgAPE for various approaches. All values are (×10−2)

METHOD CARLA CARLANS HOPPER HALFCHEETAH WALKER2D

EXPERT 1.602 1.602 0.86 9.81 2.47

BC-OH 0.966 0.741 0.61 5.86 0.74
OURS 1.187 1.305 0.75 9.00 0.85

but continues to produce lower avgAPE(π) than the expert.
While this is not a direct metric, it indicates that our method
makes progress towards resolving copycat policy learning,
and that there may still be further room for improvement.

Question 5. When does keyframe-focused imitation per-
form systematically worse than simple behavior cloning
baselines?

Our approach specifies that weights for frames in training
data should be set as monotonic functions f of the action
prediction error of a copycat policy, as specified in Eq 6.
In practice, the choice of the weighting function f is im-
portant. While experimenting with various options for f ,
we observed that overly flat functions f would not suffi-
ciently alter the behavior of BC-OH, but overly steep func-
tions would sometimes assign inordinately large weights
to changepoint keyframes, causing the model to underfit to
ordinary frames which constitute the majority of the data.
For example, when f is set to the step function, with a high
value W assigned to high-APE frames, that trained policy
fails even to follow its lane sometimes. In our experimental
setups, we found that the sweet spot of functions f that
produced our desired behavior was easy to find through a
search over the parameters of simple function families (step
and softmax). Further, the same parameters worked well
across many setups. We report hyperparameter sensitivity
results in Supp.

Another potential failure case is in imitation datasets where
some samples have noisy action labels. Upweighting
changepoints using our approach might assign high weights
to such samples, since the copycat policy would fit the noise
poorly. Eventually, this might produce bad policies. While
we haven’t encountered this in our experiments, it might
warrant systematic study in future work.

7. Conclusion
We have proposed a sample weighting strategy to learn
effective imitation policies that can integrate information
over time without succumbing to learning copycat shortcut
policies, while also being very easy to implement and tune.
Stepping back to take a broader view, our results show that
minimizing the standard empirical risk as in Eq (1) is not op-
timal in offline imitation learning because of distributional
shift issues. Instead, minimizing a carefully reweighted
empirical risk produces better-performing policies.

Across four image-based environments spanning simulated
locomoting robots and photorealistic urban driving, our ap-
proach trivially scales well and yields better results than
all prior approaches tackling similar issues. On the long-
standing problem of behavioral cloning for driving, we
demonstrate that the widely used current standard bench-
mark CARLA100 might not be challenging enough to ef-
fectively benefit from information integration across time,
and show large gains in a modified variant that does require
such information integration. A future benchmark with
more unpredictable vehicles, pedestrians, congested roads,
and obstructions would offer a more realistic evaluation of
current approaches.

8. Acknowledgement
This work is supported by an Amazon Research Award and
gift funding from NEC Laboratories America to DJ, and
funding from the Ministry of Science and Technology of the
People’s Republic of China, the 2030 Innovation Megapro-
jects ”Program on New Generation Artificial Intelligence”
(Grant No. 2021AAA0150000) to YG.

References
Ryan Prescott Adams and David JC MacKay. Bayesian

online changepoint detection. arXiv preprint
arXiv:0710.3742, 2007.

Brenna D Argall, Sonia Chernova, Manuela Veloso, and
Brett Browning. A survey of robot learning from demon-
stration. Robotics and autonomous systems, 57(5):469–
483, 2009.

Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauf-
feurNet: Learning to Drive by Imitating the Best and
Synthesizing the Worst. Robotics: Science & Systems
(RSS), art. arXiv:1812.03079, 2019.

Sara Beery, Grant Van Horn, and Pietro Perona. Recogni-
tion in terra incognita. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 456–473,
2018.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,
Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D.
Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin
Zhang, Jake Zhao, and Karol Zieba. End to end learning
for self-driving cars. CoRR, abs/1604.07316, 2016a.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,
Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D.
Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin
Zhang, Jake Zhao, and Karol Zieba. End to end learning
for self-driving cars. CoRR, abs/1604.07316, 2016b.



Keyframe-Focused Visual Imitation Learning

Kevin W. Bowyer, Nitesh V. Chawla, Lawrence O. Hall,
and W. Philip Kegelmeyer. SMOTE: synthetic minority
over-sampling technique. CoRR, abs/1106.1813, 2011.

Kiante Brantley, Wen Sun, and Mikael Henaff.
Disagreement-Regularized Imitation Learning. In-
ternational Conference in Learning Representations,
pages 1–19, 2020.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and
Tengyu Ma. Learning imbalanced datasets with label-
distribution-aware margin loss. In Advances in Neural
Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019.

Felipe Codevilla, Matthias Miiller, Antonio López, Vladlen
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