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Abstract
Across applications spanning supervised clas-
sification and sequential control, deep learning
has been reported to find “shortcut” solutions
that fail catastrophically under minor changes
in the data distribution. In this paper, we show
empirically that DNNs can be coaxed to avoid
poor shortcuts by providing an additional “prim-
ing” feature computed from key input features,
usually a coarse output estimate. Priming
relies on approximate domain knowledge of
these task-relevant key input features, which is
often easy to obtain in practical settings. For
example, one might prioritize recent frames
over past frames in a video input for visual
imitation learning, or salient foreground over
background pixels for image classification. On
NICO image classification, MuJoCo continuous
control, and CARLA autonomous driving, our
priming strategy works significantly better
than several popular state-of-the-art approaches
for feature selection and data augmentation.
We connect these empirical findings to recent
theoretical results on DNN optimization, and
argue theoretically that priming distracts the
optimizer away from poor shortcuts by creating
better, simpler shortcuts. Project website:
https://sites.google.com/view/
icml22-fighting-fire-with-fire/.

1. Introduction
Supervised deep neural networks (DNNs) have led to re-
markable achievements across many applications (He et al.,
2016; Schrittwieser et al., 2020; Brown et al., 2020). To-
day’s DNNs learn from a very limited form of supervision,
namely, target annotations for each sample in a training
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Figure 1. DNNs trained only from label annotation supervision
often struggle to disambiguate between competing hypotheses
for a target concept, and end up learning “shortcuts”, such as
classifying the background as the “zebra”. We propose to expand
DNN supervision to include a key input specification function that
identifies important portions of the input (such as the foreground
object) according to domain knowledge, leading the optimization
towards the intended solution.

dataset. In contrast, when humans learn from annotated
examples, they often benefit from richer supervision. When
teaching a child to recognize a “zebra” in a zoo enclosure, a
parent might draw the child’s attention to the animal and its
black-and-white stripes. Without such priming, the learning
task is much more poorly defined and there are many equally
plausible concepts that the child might learn to identify as
“zebra”, such as a zoo enclosure, or any large equine animal
including horses and donkeys.

Indeed, modern DNNs suffer from problems very reminis-
cent of this confused child. For example, Beery et al. (2018)
reports that DNNs trained for animal image recognition suc-
cessfully classify cows on grass but not on beaches, because
they wrongly attribute the label “cow” to the grass. Sim-
ilarly, autonomous driving DNNs, rather than generating
new steering actions in response to changing road observa-
tions, commonly learn to copy the previous action, since
adjacent actions in training data were almost always very
similar (Wen et al., 2020; Bansal et al., 2019; Codevilla
et al., 2019). We review more such examples in Section 2.
In all these cases, the annotated examples in the training
dataset alone cannot sufficiently distinguish the correct so-
lution and prevent the DNN from learning the wrong thing.
Following Geirhos et al. (2020), we use the term “short-
cut issue” to refer to these phenomena where DNNs fail
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catastrophically under small distributional shift from train-
ing data. How to generalize beyond training distributions
is a uniting fundamental question driving many decades-
old sub-disciplines of machine learning research, including
distributional robustness, domain generalization, zero-shot
learning, causality, and invariant learning (Shen et al., 2021;
Wang et al., 2021a).

In this work, we argue that many practically encountered
ML shortcuts can be circumvented by a simple fix: richer
supervision by providing auxiliary “priming” information,
beyond merely the target labels. What form should such
priming information take? Much like the parent in the intro-
ductory example, we propose to exploit commonly available
domain knowledge of where in the input the task-relevant
information is most likely to lie, for example, the salient
foreground for an image classification task, or the most re-
cent observations in autonomous driving. While these “key
inputs” do not typically contain all relevant information,
and may occasionally not even contain the most relevant in-
formation,1 we find that this is not a problem. It is sufficient
that they are likely in many cases to contain key information.

Having decided upon key input-based priming information,
how should we provide it to a target DNN learner to help
avoid shortcuts? We propose to fight fire with fire by creat-
ing a new shortcut that biases the DNN optimization process
towards solutions that pay attention to the key inputs. In
practice, our “PrimeNet” method consists of first inferring a
“priming variable”, typically a coarse estimate of the label,
from the key inputs alone. Then, the target DNN which is
supplied with this priming variable alongside the full input
during training becomes much more likely to avoid shortcuts
and “learn the right thing.”

PrimeNet is very simple to implement, can be trained end-
to-end, and yields large gains across benchmark tasks for
several practical applications ranging from out-of-domain
image classification on NICO (He et al., 2021) to imitation
learning for controlling robots in MuJoCo (Todorov et al.,
2012) and autonomous cars in CARLA (Dosovitskiy et al.,
2017). Finally, we argue from recently developed theories
of neural network learning that shortcuts are caused by
optimization biases that prefer simpler solutions even if
they may be trivial or wrong, and that our priming approach
works by creating an even simpler yet approximately correct
solution within the optimization landscape.

2. Preliminaries: Shortcuts
As introduced above, many surprising error tendencies in
deep neural networks arise from strategies that are “super-
ficially successful” (under training circumstances), but fail

1such as a pedestrian who is occluded behind a car in the most
recent observation, but who was visible in an older observation

catastrophically under slightly different circumstances. Fol-
lowing Geirhos et al. (2020), we use the term “shortcut issue”
to refer to such errors.

Formally, let Pin(x,y) denote a joint probability distribu-
tion over X and Y from which training data is drawn I.I.D.
i.e. Din = {(xi,yi)}ni=1 ∼ Pin. Let Pout(x,y) denote
a different distribution from which the out-of-distribution
(O.O.D.) testing set is similarly drawn, i.e. Dout =
{(xi,yi)}mi=1 ∼ Pout. A neural network fθ(·), parameter-
ized by θ, is trained by SGD with a loss function l(·, ·) on the
training set Din. Let θ∗ denote the intended solution, which
can successfully generalize to the O.O.D. distribution, i.e.
θ∗ = argminθ EPin+Pout

[l(fθ(x),y)]. For simplicity, we
use LP(θ) to denote the population loss of solution θ on dis-
tribution P . Shortcut learning, or the shortcut issue, refers
to learning solutions θs that perform well under the train-
ing distribution, i.e. LPin(θs) ≈ LPin(θ

∗), but generalizes
very poorly to O.O.D. data, i.e. LPout(θs) ≫ LPout(θ

∗).

Shortcut issues have been observed in many applications,
including computer vision (Beery et al., 2018; Geirhos et al.,
2019), NLP (Niven & Kao, 2019; McCoy et al., 2019), imi-
tation learning (Bansal et al., 2019; Codevilla et al., 2019;
Wen et al., 2020) and reinforcement learning (Amodei et al.,
2016; Zhang et al., 2021a). We highlight image classifica-
tion and imitation learning shortcuts below, which we will
later validate our proposed approach on.

Image classification shortcuts: Consider a DNN-based
animal image classifier. Cows in training typically have
grass backgrounds, and the classifier may easily learn to
rely on grass as an important “shortcut” cue for the “cow”
label. Indeed, such a solution would even generalize to in-
distribution test data, but fail on in-the-wild distributionally
shifted images with cows at home (see Figure 2). Many
such shortcuts have recently drawn attention in the image
recognition literature (Beery et al., 2018; Rosenfeld et al.,
2018; Buolamwini & Gebru, 2018).

Imitation learning shortcuts: Next, consider the task of
learning to control a robot or autonomous car from observ-
ing expert demonstrations of actions at corresponding to
sensory observations (such as camera image streams) xt at
the same time t. “Behavioral cloning” (BC) treats this as
supervised learning to regress at from recent observation
histories [xt−k, · · · ,xt]. In theory, the inclusion of older
observations as inputs allows the imitator to compensate for
partial observability: for example, a pedestrian occluded in
the current camera image from a car dashboard might have
been visible earlier. However, the core problem of BC lies
in generalizing beyond expert (hence in-distribution) data.
Indeed, many previous works (Wen et al., 2020; Muller
et al., 2006; de Haan et al., 2019; Bansal et al., 2019; Codev-
illa et al., 2019; Wen et al., 2021; Ortega et al., 2021) find
that BC from observation histories, much like the image
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Figure 2. (Left) An example of shortcut learning in image classification in NICO (He et al., 2021). The trained model successfully
predicts the “cow” class in the image where the background is grass, while it classifies the cow at home poorly. It indicates that the model
recognizes the cow according to the backgrounds rather than the objects. (Right) An example of copycat shortcuts in autonomous driving.
The copycat policy learns to cheat by copying from the previous action during training. Therefore, during online testing, when the traffic
light turns green, the copycat policy ignores the traffic light and copies the previous action, i.e. staying stationary.

classifier above, yields better training and validation losses
on expert data, but fails catastrophically when executed on
a robot or car. Like the classifier mistaking the grass for
the cow, DNN imitators in these situations frequently learn
shortcuts that simply copy the last performed action rather
than respond to new road images or other observations. This
happens because experts usually act smoothly, and adjacent
actions in training data are nearly always identical. This
“copycat” shortcut can cause curious phenomena like the
“inertia problem” (see Figure 2) where cars that once come
to rest never move again!

3. Method: Priming DNNs To Avoid Shortcuts
We now describe the core contribution of this paper: an easy-
to-implement solution to avoid DNN shortcuts in settings
where auxiliary domain knowledge about “key inputs” is
available. Section 3.1 sets up our key idea, 3.2 describes the
algorithm in detail, 3.3 provides theoretical support, and 3.4
discusses two example applications.

3.1. Motivation

Out-of-distribution generalization for supervised learning is
hard, yet humans often manage to generalize far beyond the
training data (Geirhos et al., 2018) by exploiting additional
knowledge beyond the labels. Recall the example from the
introduction of the parent teaching the child to recognize
zebras. Besides “labeling” the scene as containing a “zebra”,
the parent also points to the animal and its stripes. Without
this auxiliary information, it would be a much harder task
for the child to acquire the correct concept of a zebra. How-
ever, in the common supervised machine learning setup, no
such additional information is available; instead, the super-
vision consists only of labeled examples. We propose to
expand this supervision by providing auxiliary knowledge
about pertinent “key inputs” to DNNs, to help them to avoid
shortcuts and learn the right thing.

To use such auxiliary information well, we draw inspiration
from cognitive science. Cognitive scientists have observed
a phenomenon called “priming”: exposing humans to one
stimulus influences their response to a subsequent stimulus,
without conscious guidance or intention (Weingarten et al.,
2016; Bargh & Chartrand, 2014). For example, people
who were recently exposed to words associated with the
elderly (e.g., retirement) begin to walk more slowly than
before (Bargh et al., 1996). We propose to prime DNNs
during training with the known key inputs to coax them
to discover solutions that rely more on that information,
matching our knowledge about the correct solution. Next,
we will describe this approach, PrimeNet, in more detail.

3.2. PrimeNet

As motivated above, PrimeNet exploits domain knowledge
of portions of the full input x that are most likely to contain
task-relevant information. While specifying such knowledge
for each example would be cumbersome and impractical,
we observe that it is often easy to specify this knowledge at
a task level. For example, for image classification tasks, the
foreground objects, identified perhaps by a generic object
detector or salient foreground segmenter, could be specified
to the learner as being the most important. In a partially ob-
served sequential control task like vision-based driving, one
might specify the most recent frame as likely to contain the
most pertinent information. We call these the “key inputs”,
denoted as k(x), where the k(·) is a specified process or
function that extracts them from the full inputs x. The full
task specification for PrimeNet thus augments the standard
training dataset with this function k(.).

As shown in Figure 3, the PrimeNet framework contains two
modules: a priming module gϕ and the main module fθ.
In the forward pass, the priming module gϕ first computes a
coarse estimate ζ of the target label based on the key inputs
k(x), i.e. ζ = gϕ(k(x)). We call this key-input-based
coarse estimate ζ the priming variable. Then, the main
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Figure 3. The PrimeNet framework. From the full input x, the key
input k(x) is extracted using domain knowledge specified through
a function k(.). This is then used to “prime” the main module fθ
towards good solutions during training.

module fθ receives ζ as input alongside the full input x, and
produces the final output ŷ = fθ(x, ζ).

We jointly train the priming module gϕ and main module
fθ end-to-end on the in-distribution training set Din =
(xi, yi)

n
i=1 by minimizing standard loss functions l(·, ·) as

appropriate to the task (e.g., the cross-entropy loss for clas-
sification and MSE loss for regression) computed on the
outputs of both the priming module (i.e., the priming vari-
able, which we train to be a coarse estimate of the output)
and the main module (i.e., the final output).

ϕ∗ = argmin
ϕ

1

n

n∑
i=1

l(gϕ(k(xi)), yi)

θ∗ = argmin
θ

1

n

n∑
i=1

l(fθ(xi, ζi), yi)

In our implementation, we concatenate ζ with intermediate
activations in the DNN fθ and feed them into the following
layers together. In this way, the main module is still free to
learn a solution that relies on information in the full input
that is not available in the key input. This is a necessary prop-
erty: recall that key inputs merely provide good summaries
of task-relevant information, and may not be comprehen-
sive. For example, looking at the background often provides
helpful contextual cues when classifying images (Oliva &
Torralba, 2007), and remembering older observations may
be necessary to account for an occluded pedestrian during
driving (Bansal et al., 2019).

This brings us to the question: given that priming does not
restrict the hypothesis space and the DNN can still represent
the same shortcut solutions as before, how does priming
improve DNN training at all, as our results will suggest
in Sec 4? We argue that since ζ itself is a coarse solution
for the task, it introduces a simple and desirable shortcut
towards low training losses which sets the optimization

process for fθ “on the right track”, away from any catas-
trophically wrong shortcut solutions. Section 3.3 formalizes
this intuition.

3.3. Theoretical Justification

To explain why PrimeNet takes the shortcut from the prim-
ing variable ζ rather than the undesired shortcuts, we derive
a property of the neural networks that different inputs guide
the optimization to different solutions.

Proposition 3.1. Consider two functions h and s within
the hypothesis space of a neural net, where h is linear with
respect to the input. Further, suppose that:

[A1] In the training region, functions h and s are both
close to the ground truth.

[A2] In the out-of-distribution testing region, functions h
and s are far apart.

Then there exists a training iterate, such that for a neural
tangent kernel fNTK trained at such iterate, the following
statements (C1-C2) hold with high probability under some
mild conditions:

[C1] In the in-distribution region, fNTK reaches small
training error.

[C2] In the out-of-distribution region, fNTK approxi-
mates h well but stays far from s.

We defer the formal statement and proof to Appendix J.
Broadly, this proposition states that neural network training,
approximated by neural tangent kernels (Jacot et al., 2018),
is biased towards solutions that are linear functions of the
inputs. In the training region, both the function h which
is linear in the input features, as well as a non-linear func-
tion s approximate ground truth y well (Assumption A1).
Therefore, DNN training may recover either h or s as valid
solutions. However, 3.1 demonstrates that in the O.O.D.
region, neural networks indeed prefer the simple function
h, which is linear in the input features. The proof starts
from Hu et al. (2020b), which shows that neural networks
during early training approximate a linear model, and we
further extend the conclusion to the O.O.D. region, pro-
viding theoretical justification for using priming to solve
shortcut problem (see below).

Remark. What does Proposition 3.1 say about why
PrimeNet works? If the input of the main module fθ is
[x, ζ], then the DNN will prefer simple functions (such as
linear functions) of x and ζ even in the O.O.D. region, and
changes in ζ may significantly change this preference, even
though ζ is computed from the full input x and therefore
cannot introduce any new information. Thus, setting ζ to
represent coarse output estimates based on key input domain
knowledge encourages the DNN to find solutions that also
rely on the key input.
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3.4. Applying PrimeNet

Recall the two shortcut issue examples from Section 2. For
the image classification problem, shortcuts are caused by
background distractions, and we consequently set the key
input function k(.) to be an image patch crop from unsuper-
vised saliency detection (Qin et al., 2019). This provides a
background-free image patch for priming without the risk of
introducing shortcuts into the extraction of the priming vari-
able ζ itself. In the imitation setting, shortcuts are caused
by the implicit previous action in the historical observations.
To remove this shortcut, we propose to use the most recent
frame as the priming input, i.e. k(x) = xt. Once again,
this might lose some information, but it can serve as the
basis for a coarse action estimate that is free from shortcuts.
See Section 4 and Appendix G and Appendix H for more
details.

4. Experiments
We conduct experiments on three sets of tasks: a toy re-
gression experiment, an image classification task and two
behavioral cloning tasks on autonomous driving and robotic
control to verify our arguments and the proposed method.
The toy experiment is to validate the Proposition 3.1. The
realistic image classification and behavioral cloning tasks
are designed to verify that our method can resolve shortcut
issues and evaluate it against previous state-of-art methods.
Finally, we conduct ablation and analysis studies on these
two tasks to study our method more closely.

Table 1. RMSEs for the 1-D regression experiment.
I.I.D. O.O.D.

ζ VALUE f1 f2 f1 f2

0 0.101 0.121 18.126 8.838
x4 0.100 0.122 9.062 0.258
x5 0.100 0.122 0.243 9.075

4.1. One-Dimensional Regression

We design a toy 1-D regression experiment on synthetic
data to empirically validate Proposition 3.1. To construct a
scenario with multiple local optimal solutions on the train-
ing set and with the challenge of O.O.D. generalization,
we design two functions: f1(x) = 1.5x5 + 2x + ϵ and
f2(x) = 1.5x4 + 2x + ϵ, where ϵ ∼ N(0, 0.1) is an addi-
tive Gaussian noise. These two functions are close to each
other in the training region [0, 1], and significantly different
in the testing region [1, 2]. We uniformly sample 1000 train-
ing pairs (xi, f1(xi)) in the training region xi ∈ U(0, 1).
We train a two-layer MLP to fit the training data with the
input [x, ζ], where [·, ·] means concatenation operation and
ζ is the priming variable. We train three models with ζ equal
to 0, x4 or x5 respectively. We test each trained model on

two testing regions, i.e. the in-distribution region [0, 1] and
O.O.D. region [1, 2], and with two reference functions as
priming variables ζ, i.e. f1 and f2. We want to study which
solution the MLP will converge to, when given different
ζ. The accuracy on the O.O.D. region will indicate what
function the neural network has learned during training.

Table 1 reports the RMSE value of the trained models
against f1 and f2 on in-distribution and out-of-distribution
testing sets. All models fit the training data perfectly regard-
less of the choice of priming variable ζ, and the RMSEs
on f1 and f2 are close in the in-distribution region [0, 1] be-
cause the two functions are very similar in this range. When
testing the models in the O.O.D. region [1, 2], the model fits
f2 better when primed on x4, and fits f1 better if primed
on x5. This is true even though the labels in the training
data were generated by f1. This shows that the priming
variable ζ can significantly influence DNN training towards
simpler functions of [ζ, x], consistent with Proposition 3.1.
We visualize the learned functions in Appendix A.

4.2. Image Classification

O.O.D. image classification is a challenging task that has
attracted attention in computer vision in recent years (Ar-
jovsky et al., 2019; Krueger et al., 2021b; Xu et al., 2021;
Wang et al., 2021b). We evaluate PrimeNet on an O.O.D.
image classification benchmark.

NICO (He et al., 2021) is an image classification dataset
designed for O.O.D. settings. In total, it contains 19 classes,
188 contexts and nearly 25,000 images. Besides the ob-
ject label (cat, dog, cow, etc.), each of the images is also
labeled with a context label (at home, on beach, on grass,
etc.). Thus, it is convenient to design the distribution of
data by adjusting the proportions of specific contexts for
training and testing images. We use the animal subset of
NICO with 10 categories, and each class has 10 contexts.
Following Wang et al. (2021b), we construct a challenging
O.O.D. setting: 1) the training dataset has only 7 contexts
for each object category and the testing dataset has all the 10
contexts to evaluate the zero-shot generalization capability
of the models (see the examples in Figure 2 (left)); 2) the
context labels in the training set are in long-tailed distri-
bution, which makes it more difficult to train an unbiased
classifier. We employ ResNet-18 (He et al., 2016) as the
backbone network for all the methods. For our method, we
use a weight shared ResNet-18 as gϕ and fθ, and utilize the
unsupervised saliency detection model BASNet (Qin et al.,
2019) to crop the salient areas of the full images as k(x).
See Appendix G for the architecture, implementation and
training details.
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4.2.1. BASELINES

For image classification, we extensively compare PrimeNet
with four classes of methods: a set of vanilla baselines
designed by us, and three sets of methods to improve gener-
alization using debias, image augmentation and intervention
techniques.

Vanilla baselines. We design three vanilla baselines with
the ResNet18 model: 1) Vanilla ResNet18 (He et al., 2016):
directly adopting the ResNet18 model to classify the images;
2) Key-Input-Only baseline: using the key input k(x) as the
input of ResNet18; 3) Average-Ensemble baseline: training
ResNet18 on an expanded dataset containing the original
images x as well as the extracted key input regions k(x),
and then averaging the output logits for x and k(x) for
classification during testing.

Debias methods. We compare our method with two
SOTA debias methods: RUBi (Cadene et al., 2019), Re-
Bias (Bahng et al., 2020) and StableNet (Zhang et al.,
2021b). RUBi learns a biased model with the biased dataset
and then trains an unbiased model by re-weighting accord-
ing to the predicted logits of the biased model. ReBias firstly
train a small biased model with the biased dataset and regu-
larizes the main model to be statistically independent from
it. StableNet removes spurious correlations by reweighting
training samples to get rid of feature dependencies.

Data augmentation methods. We adopt two commonly
used data augmentation methods, Mixup (Zhang et al.,
2017) and Cutout (DeVries & Taylor, 2017). Mixup lin-
early interpolates the inputs and labels of two random train-
ing samples, thus extending the training distribution. Cutout
randomly masks out a square patch on the full image to
avoid overfitting to the contexts.

Causal inference methods. We also compare to two
SOTA causal methods: IRM (Arjovsky et al., 2019) and
Caam (Wang et al., 2021b). IRM proposes to learn an
invariant representation which gets optimal classification
performance across different environments (contexts) to re-
move the effect of the spurious shortcut correlations. It
requires the environment labels. Caam improves IRM by au-
tomatically getting the environment partitions in the training
set and utilizes IRM to boost the performance.

4.2.2. RESULTS

Table 2 shows the classification accuracy on test sets of all
the methods. PrimeNet achieves significantly better perfor-
mance than the baselines across all the settings. PrimeNet
(ours) and CAAM significantly improve the in-domain ac-
curacy (as well as OOD), and ours is better than CAAM on
both. We believe this happens because NICO has relatively
small training datasets with incomplete coverage of the
training distribution, so even in-domain generalization can

Table 2. Image classification accuracies on the NICO dataset. Base-
line scores from Wang et al. (2021b). “-” means the value is neither
reported in Wang et al. (2021b) nor reproduced by us because we
do not have the source codes. 3

METHOD IN-DOMAIN TEST OOD TEST

VANILLA RESNET18 66.11 42.61
KEY-INPUT-ONLY 62.78 47.54

AVERAGE-ENSEMBLE 63.33 47.69
RUBI (CADENE ET AL., 2019) - 44.37

REBIAS (BAHNG ET AL., 2020) - 45.23
CUTOUT (DEVRIES & TAYLOR, 2017) - 43.77

MIXUP (ZHANG ET AL., 2017) 62.78 41.46
IRM (ARJOVSKY ET AL., 2019) - 41.46

STABLENET (ZHANG ET AL., 2021B) 63.33 43.62
CAAM (WANG ET AL., 2021B) 70.00 46.62

PRIMENET (OURS) 71.11 49.00

sometimes benefit from removing shortcuts. Other methods
(e.g. Average-Ensemble and StableNet) improve the OOD
generalization while harming the in-domain performance.

As for OOD performance, compared to vanilla ResNet18,
PrimeNet improves accuracy by more than 6%, illustrating
that our method successfully alleviates the shortcuts from
the background contexts, and thus gets better generaliza-
tion performance. We note that although the Key-Input-
Only method already performs better than previous meth-
ods, our PrimeNet further improves on top of it, showing
that PrimeNet manages to effectively integrate information
from non-key areas, unlike Key-Input-Only. Compared with
the SOTAs of debias (Rubi, ReBias and StableNet), data
augmentation (Cutout and Mixup) and intervention (IRM
and Caam) methods, our method introduces an alternative
inductive bias, i.e. key input from unsupervised saliency
detection. This does not require any additional supervision,
relying only on the domain knowledge that foreground ob-
jects contain the most pertinent information for this task.
This validates that saliency-based key input priming is an
effective and practical inductive bias for resolving image
classification shortcuts.

4.3. Behavioral Cloning For Imitation

The O.O.D. generalization problem is the main bottleneck of
behavioral cloning, which is widely recognized over many
decades (Muller et al., 2006; Ross et al., 2011; Bansal et al.,
2019; Wen et al., 2020; Spencer et al., 2021). We evaluate
PrimeNet on two imitation learning tasks.

CARLA. CARLA is a photorealistic urban autonomous
driving simulator (Dosovitskiy et al., 2017), and it is a com-
monly adopted testbed for imitation learning (Codevilla

3Note that the test accuracy of StableNet (Zhang et al., 2021b)
is lower than that in the original paper because we follow Wang
et al. (2021b) to construct a more difficult dataset based on NICO
with long-tailed and zeroshot properties.
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et al., 2018; 2019; Chen et al., 2020; Wen et al., 2021;
Prakash et al., 2021). We use the CARLA100 dataset to
train all methods and evaluate them in the Nocrash bench-
mark (Codevilla et al., 2019). Following Wen et al. (2021),
the POMDP observations don’t include the vehicle speed,
and imitation learners can instead use past video frames to
prescribe driving actions. We train all the methods three
times from different random initializations to account for
variance (Codevilla et al., 2019). We use CILRS (Codevilla
et al., 2019) as the backbone, set the length of input obser-
vation history to 7, and stack the sequential frames along
the channel dimension as the model input as in Bansal et al.
(2019); Wen et al. (2021). We report the mean and standard
deviation of two metrics: %success and #timeout. %success
is the number of episodes that are fully completed out of 100
pre-designed evaluation routes. #timeout counts the times
that the agent fails to reach the destination despite no col-
lision within the specified time. Timeout is usually caused
by unsuccessful starts, wrong routes or traffic jams. We
report more evaluation metrics, and implementation details
in Appendices C and H.

MuJoCo. We evaluate our method in three standard Ope-
nAI Gym MuJoCo continuous control environments: Hop-
per, Ant and HalfCheetah. We generate expert data from a
PPO (Schulman et al., 2017) policy (10k samples for Ant
and Walker2D, and 20k for Hopper). To simulate partial ob-
servations, we add Gaussian noise N(0, σ2) with σ = 0.2 to
joint velocities. We stack 2 frames to form the observation
history, and use 2-layer MLPs as policy network backbones.
We train all methods with 3 random initializations and report
mean and standard deviation of rewards. See Appendix I
for network architecture and training details.

4.3.1. BASELINES

For BC, we compare against three groups of methods:

Vanilla baselines. We retain the vanilla baselines from
image classification, training them for BC. Note that vanilla-
BC and key-input-only corresponds to behavioral cloning
from observation histories and single observation (BC-OH
and BC-SO respectively) as studied in prior works (Wen
et al., 2020; 2021). We use CILRS (Codevilla et al., 2019)
and two-layer MLPs as the policy network backbone in
place of ResNet18 for CARLA and MuJoCo respectively.

Previous methods tackling BC shortcuts. We compare
PrimeNet with three previous solutions to the shortcuts in
BC: fighting copycat agents (FCA) (Wen et al., 2020),
KeyFrame (Wen et al., 2021) and History-Dropout (Bansal
et al., 2019). FCA proposes to resolve the shortcut issue
with adversarial training, which removes information about
the previous action at−1. KeyFrame tackles the shortcut
in BC from an optimization perspective: it up-weights the
datapoints at action change-points, which is defined as an ac-

tion prediction module’s failure timesteps. History-Dropout
introduced a dropout on the observation history to randomly
erase the channels of historical frames.

Online “upper bound” solution. We also compare with
an online imitation learning method, DAGGER (Ross et al.,
2011). DAGGER is a widely used method to mitigate do-
main shift issues in imitation learning, but requires online
environmental interaction with a queryable expert. We note
that our method does not require the online expert, and thus
DAGGER is an “upper bound”, rather than a baseline. In our
experiments, DAGGER uses 150k supervised interaction
steps for CARLA and 8k for MuJoCo.

4.3.2. RESULTS

CARLA. Table 3 shows results on the hardest benchmark
with the densest traffic, Nocrash-Dense. Key-input-only
performs poorly, and is even worse than vanilla BC on
%success. It sees only the last frame and has no way to judge
its own speed, so it most commonly fails by accelerating
at all times on straight roads, resulting in speeding and
collisions. Vanilla BC has access to past frames, but suffers
from very high #timeout rates due to starting problems: once
the car stops, say, at a traffic light, vanilla BC often remains
stationary until timeout. This high #timeout is known to be
a typical copycat shortcut symptom (Wen et al., 2020; 2021;
Bansal et al., 2019) for BC from observation histories.

It is thus especially interesting that PrimeNet reduces the
#timeout to 12.0, very close to key-input-only. PrimeNet
also outperforms all baselines on %success, remarkably
even including the “upper bound” DAGGER. Appendix C
shows results on Nocrash-Empty and Nocrash-Regular.

MuJoCo. Table 3 also shows results on Hopper, Ant, and
HalfCheetah. Here, vanilla BC only performs slightly bet-
ter than key-input-only on Hopper and HalfCheetah, and
does worse than key-input-only on Ant, due to the copycat
shortcut. PrimeNet beats out all baselines, including prior
approaches addressing BC shortcuts (FCA, KeyFrame and
History-Dropout), in all 3 environments. The upper bound
DAGGER approach does significantly better than all meth-
ods on Hopper and Half-Cheetah, but Key-Input-Only and
PrimeNet beat it on Ant.

4.4. Ablation Study

We now study PrimeNet in more detail through ablations.

Priming variable selection. Should the priming variable
be the output of priming module gϕ, as we have been using,
or should it rather be an intermediate representation of the
key input from gϕ? We evaluate an early/shallow (layer2)
and a late/deep feature (last layer) from gϕ (in place of the
output) as the priming variable to be fed to the main module.
Table 4 shows a clear trend: shallower priming variables are
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Table 3. Behavioral cloning results on CARLA and MuJoCo.
CARLA RESULTS MUJOCO REWARDS

METHOD %SUCCESS #TIMEOUT HOPPER ANT HALFCHEETAH

VANILLA BC 34.1 ± 7.5 36.1 ± 14.5 628 ± 99 2922 ± 1266 639 ± 121
KEY-INPUT-ONLY 13.1 ± 1.8 11.1 ± 2.9 589 ± 94 4198 ± 433 489 ± 77

AVERAGE-ENSEMBLE 41.7 ± 3.1 15.0 ± 0.8 504 ± 47 4659 ± 396 729 ± 50
PRIMENET (OURS) 49.3 ± 3.6 12.0 ± 1.9 1124 ± 135 4798 ± 304 1448 ± 74

FCA (WEN ET AL., 2020) 31.2 ± 5.2 35.3 ± 9.6 831 ± 108 3727 ± 926 1148 ± 81
KEYFRAME (WEN ET AL., 2021) 41.9 ± 6.2 24.8 ± 7.9 696 ± 28 2930 ± 1321 1062 ± 127

HISTORY-DROPOUT (BANSAL ET AL., 2019) 35.6 ± 3.5 20.3 ± 5.6 539 ± 33 4069 ± 517 1215 ± 70

DAGGER (ROSS ET AL., 2011) 42.7 ± 5.7 23.0 ± 7.1 2383 ± 294 4097± 418 1842 ± 10

Table 4. The ablation study results on NICO and CARLA.

NICO CARLA

METHOD TEST ACC. %SUCCESS #TIMEOUT

PRIMENET (OURS) 49.00 49.3 12.0

RESNET-EARLY-FEATURE AS ζ 45.00 39.8 28.1
RESNET-LATE-FEATURE AS ζ 48.62 44.8 15.9

NO-KEY-INPUT 43.92 37.1 28.9
k(x)-FOR-BOTH-MODULES 47.92 13.8 11.9

always worse, and the output from gϕ performs best. This
suggests that shallower features do not as effectively create
good priming shortcuts to prevent bad shortcut learning.

Role of key inputs. In Table 4, we report the results of
using our architecture with no key input (with x as the input
to both trunks), and an architecture with key input k(x) for
both modules. Under both conditions, the performance on
both NICO and CARLA becomes worse, with no-key-input
even close to the vanilla baseline. This indicates that the
specific design choices of PrimeNet are important to help
avoid shortcuts. Appendix D shows more ablations.

4.5. Analysis

We use the activation map (Muhammad & Yeasin, 2020) of
ResNet Layer3 on CARLA to illustrate the visual cues that
are attended to by different models. As shown in Figure 4,
key-input-only model and our PrimeNet correctly notice
the red traffic light and the pedestrian. In contrast, vanilla
BC shows symptoms of the shortcut problem, paying little
attention to the pedestrian and ignoring the traffic light, even-
tually causing traffic light violation and collision. PrimeNet
thus learns to attend to the correct cues in the observations,
rather than rely on shortcuts. The activation maps of NICO
experiment can be found in Appendx B. Appendix E has
more analyses.

5. Related Work
Shortcut Issues in Machine Learning O.O.D. generaliza-
tion (Krueger et al., 2021a; Hendrycks et al., 2020) has a

long history of research in machine learning under names
including “learning under covariate shift” (Bickel et al.,
2009; Cao et al., 2011), “simplicity bias” (Shah et al.,
2020; Xu et al., 2019; Hu et al., 2020c), “anti-causal learn-
ing” (Schölkopf et al., 2012), and “shortcuts” (Geirhos et al.,
2020). Unlike prior solutions requiring collecting more
data (de Haan et al., 2019), utilizing the biased model (Clark
et al., 2019; He et al., 2019), obtaining extra labels (Ar-
jovsky et al., 2019; Ahuja et al., 2020; Krueger et al.,
2021a), or making assumptions on the distribution (Duchi
& Namkoong, 2021; Delage & Ye, 2010; Sagawa et al.,
2019), we guide the optimization with additional domain
knowledge about key inputs, and show that this helps reduce
shortcut issues.

Shortcuts in Image Classification. Specific to image clas-
sification, many researchers have observed O.O.D. prob-
lems (Bahng et al., 2020; He et al., 2021; Arjovsky et al.,
2019), and proposed to alleviate them by de-biasing (Ca-
dene et al., 2019; Bahng et al., 2020; Zhang et al., 2021b),
data augmentation (Zhang et al., 2017; DeVries & Taylor,
2017; Xu et al., 2021) and causal intervention (Arjovsky
et al., 2019; Ahuja et al., 2020; Krueger et al., 2021b; Wang
et al., 2021b) methods. In contrast, we propose to obtain
the most task-relevant region in the image by unsupervised
models to distract the optimization away from undesired
shortcuts and show O.O.D. generalization.

Shortcuts in Behavior Cloning Behavior cloning (BC)
suffers from O.O.D. issues because of the mismatch be-
tween the offline training distribution and online testing
distribution (Muller et al., 2006; Ross et al., 2011; Bansal
et al., 2019). In our experiments, we focus on resolving a
specific aspect of distributional shift in BC from observa-
tion histories – the “copycat” shortcut (Wen et al., 2020).
Prior attempts to solve this include removing historical
frames (Muller et al., 2006), causal discovery (de Haan
et al., 2019), history dropout (Bansal et al., 2019), speed
prediction regularization (Codevilla et al., 2019), data re-
weighting (Wen et al., 2021), and causal intervention (Or-
tega et al., 2021). Instead, we focus on resolving the copycat
shortcut by priming the policy with information from the
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Key-input-onlyVanilla BC PrimeNetInput Image

Figure 4. The activation maps are extracted from the Layer3 in the ResNet34 of the perception module of the backbone CILRS (Codevilla
et al., 2019). There are two scenarios of slowing down in front of a red traffic light (top) and a pedestrian (bottom). The red areas in the
red boxes are where the policies should pay attention to. We can see that the key-input-only model and our PrimeNet correctly focus on
the traffic light and the pedestrian while the vanilla BC pays much less attention to the pedestrian and even ignores the traffic light.

most recent observation alone, achieving state-of-the-art
performance.

6. Conclusion and Discussion
Summary: In this paper, we propose PrimeNet, a simple
and effective approach to resolve the shortcut issue in set-
tings that permit domain knowledge of important inputs.
PrimeNet is supported by recent theories on DNN training.
On image classification and behavioral cloning tasks, our
method outperforms the existing methods and significantly
alleviates the shortcut issue to generalize beyond the training
distribution.

Limitation: PrimeNet’s gains come from the extra super-
vision in the form of correct/useful key input information.
Though such domain knowledge is often easy to provide,
it is indeed possible for poorly defined key inputs to hurt
performance, which is a limitation of our method. Future
work to address this, such as by automatically discovering
key inputs from data, may make our method robust to such
mis-specification.
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A. The learned function in the toy experiment
To verify how the priming variable ζ affects the final solution of the neural network in the toy regression experiment, we
plot the curves of ŷ vs. x when providing different values of ζ, 0 (no priming input) or x4 or x5. We plot the learned curves
in different training epochs. As shown in Figure 5, we can see that in the left subfigure, the model without priming input
cannot learn an accurate solution and performs poorly in the out-of-distribution region. The middle and right subfigures
show that if provided different priming variables, the neural networks will converge to different solutions. Furthermore, the
final solution is close to ζ , i.e. the priming variable guides the training of the NNs, which provides an empirical evidence for
Proposition 3.1.

in-distribution out-of-distribution in-distribution out-of-distribution in-distribution out-of-distribution

𝑓!

𝑓"

𝑓!

𝑓"

𝑓!

𝑓"

input: [𝑥, 0] input: [𝑥, 𝑥!] input: [𝑥, 𝑥"]

Figure 5. The curve of learned function of the neural network during training. The two solid lines are the ground truth curves of
f1 = 1.5x5 + 2x and f2 = 1.5x4 + 2x respectively (we remove the additive Gaussian noise ϵ when plotting). The dashed lines are the
functions learned by the MLP in different training epochs. We can see that if given different values of priming variable ζ, the solution of
the neural network will converge to different regions which are close to ζ.

B. Visualization results of NICO
Similar to Figure 4 for CARLA driving, Figure 6 shows activation maps for NICO. Vanilla ResNet18 learns a background
shortcut and makes the wrong prediction, while PrimeNet correctly focuses on the discriminative foreground objects of the
images.

C. The detailed imitation results on CARLA Nocrash
The full results on Nocrash-Empty, Nocrash-Regular and Nocrash-Dense are shown in Table 5, Table 6 and Table 7. We
can see that our method performs significantly better than vanilla BC, key-input-only and other baselines. Our method
gets highest %success and lowest #timeout, indicating that the shortcut in driving scenario, i.e. copycat problem, has been
significantly alleviated.

Table 5. CARLA Nocrash-Empty results.
METHOD %SUCCESS (↑) %PROGRESS (↑) #COLLISION (↓) #TIMEOUT (↓)

VANILLA BC 78.4 ± 11.6 83.2 ± 12.0 1.6 ± 1.8 20.0 ± 12.7
KEY-INPUT-ONLY 44.9 ± 6.7 68.1 ± 5.3 39.7 ± 11.2 15.4 ± 5.4

AVERAGE-ENSEMBLE 84.1 ± 5.0 88.8 ± 2.8 1.0 ± 0.8 14.9 ± 5.3
OURS 89.8 ± 1.4 92.6 ± 0.8 1.6 ± 1.3 8.6 ± 1.3

FCA 70.4 ± 7.6 86.1 ± 6.4 3.6 ± 1.8 26.0 ± 7.3
KEYFRAME 90.1 ± 5.7 92.9 ± 2.3 0.6 ± 0.7 9.3 ± 5.4

HISTORY-DROPOUT 85.1 ± 3.7 93.6 ± 2.6 2.2 ± 1.3 12.7 ± 4.2
DAGGER 150K 83.2 ± 9.4 90.4 ± 6.0 1.8 ± 0.9 15.0 ± 9.4
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Figure 6. The activation maps of NICO classification model.

Table 6. CARLA Nocrash-Regular results.
METHOD %SUCCESS (↑) %PROGRESS (↑) #COLLISION (↓) #TIMEOUT (↓)

VANILLA BC 67.1 ± 10.8 76.5 ± 10.2 11.1 ± 3.1 21.9 ± 12.7
KEY-INPUT-ONLY 37.6 ± 6.1 61.2 ± 4.3 53.0 ± 7.9 10.2 ± 3.1

AVERAGE-ENSEMBLE 75.8 ± 3.6 84.4 ± 2.0 12.1 ± 3.0 12.4 ± 4.5
OURS 81.1 ± 4.0 88.1 ± 2.6 11.9 ± 3.3 7.2 ± 2.8

FCA 58.0 ± 8.0 78.5 ± 7.1 14.7 ± 3.3 27.3 ± 8.8
KEYFRAME 74.4 ± 7.3 83.2 ± 3.4 13.8 ± 2.7 11.9 ± 5.8

HISTORY-DROPOUT 70.1 ± 4.0 82.1 ± 2.2 18.3 ± 5.2 12.2 ± 4.4
DAGGER 150K 69.7 ± 8.4 80.6 ± 6.0 14.8 ± 2.9 15.9 ± 8.5

D. More ablation studies
We conduct more ablation studies on CARLA and the detailed results are shown in Table 8.

Different fusion stages. We can see that given the priming variable ζ, it makes no difference where to inject it into fθ
(%success ranges from 49.3 to 51.4 and other metrics are similar too), indicating that ζ provides a simpler shortcut than
inferring and copying the previous action from the observation history. Wherever we inject ζ, the neural network prefers to
adopt it directly as the decision rather than expending greater effort to take the copycat shortcut.

Stop-gradient. Moreover, we find that the agent performs worse if we remove stop-gradient (%success drops from 49.3
to 44.4), which is mainly due to timeout (increasing from 12.0 to 17.1). The increasing #timeout shows that our method
without stop-gradient still suffers from the shortcuts due to redundant information leakage during back-propagation.

Two-stage training. And training gϕ and fθ stage-by-stage, the performance also deteriorates (%success drops from 49.3 to
47.3). We can see that its #timeout is even fewer than ours but it gets a significantly higher #collision (#collision increases
from 39.4 to 43.4), indicating that the agent trained stage-by-stage behaves more like key-input-only model, i.e. suffering
from less copycat but failing to brake in time. We hypothesize that if we use a pretrained priming module gϕ at the beginning
of fθ training, fθ will prefer to just copy the ζ as its output rather than learn from scratch to take accurate actions according
to both the priming variable and observation history, which can also be viewed as overly relying on the ”simpler” solution.
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Table 7. CARLA Nocrash-Dense results.
METHOD %SUCCESS (↑) %PROGRESS (↑) #COLLISION (↓) #TIMEOUT (↓)

VANILLA BC 34.1 ± 7.5 62.2 ± 9.4 30.2 ± 7.9 36.1 ± 14.5
KEY-INPUT-ONLY 13.1 ± 1.8 40.8 ± 3.0 76.4 ± 3.5 11.1 ± 2.9

AVERAGE-ENSEMBLE 41.7 ± 3.1 71.5 ± 3.2 43.7 ± 4.0 15.0 ± 0.8
PRIMENET (OURS) 49.3 ± 3.6 75.0 ± 1.6 39.4 ± 5.0 12.0 ± 1.9

FCA (WEN ET AL., 2020) 31.2 ± 5.2 66.5 ± 4.1 34.4 ± 8.1 35.3 ± 9.6
KEYFRAME (WEN ET AL., 2021) 41.9 ± 6.2 70.2 ± 4.0 33.9 ± 6.6 24.8 ± 7.9

HISTORY-DROPOUT (BANSAL ET AL., 2019) 35.6 ± 3.5 67.0 ± 2.7 45.3 ± 3.5 20.3 ± 5.6
DAGGER 150K (ROSS ET AL., 2011) 42.7 ± 5.7 71.3 ± 1.9 35.0 ± 3.6 23.0 ± 7.1

Table 8. CARLA ablation study results.
METHOD %SUCCESS (↑) %PROGRESS (↑) #COLLISION (↓) #TIMEOUT (↓)

PRIMENET (OURS) 49.3 ± 3.6 75.0 ± 1.6 39.4 ± 5.0 12.0 ± 1.9

EARLY-FUSION 51.4 ± 4.0 75.9 ± 2.1 37.4 ± 5.1 12.7 ± 2.6
MIDDLE-FUSION 49.6 ± 1.7 74.8 ± 1.9 37.3 ± 4.0 13.3 ± 3.0

RESNET LAYER2 AS ζ 39.8 ± 4.0 69.4 ± 1.5 32.6 ± 1.5 28.1 ± 4.4
RESNET AVG-POOL AS ζ 44.8 ± 5.2 71.9 ± 4.7 40.0 ± 5.7 15.9 ± 3.4

gϕ(x) AND fθ(x, ζ) 37.1 ± 3.4 66.9 ± 2.8 34.1 ± 3.4 28.9 ± 6.0
gϕ(x) AND fθ(k(x), ζ) 31.7 ± 5.7 62.2 ± 6.1 28.3 ± 9.0 40.0 ± 14.7

gϕ(k(x)) AND fθ(k(x), ζ) 13.8 ± 2.4 41.8 ± 4.5 74.9 ± 3.2 11.9 ± 2.6

W/O STOP-GRADIENT 44.4 ± 5.5 71.4 ± 3.0 39.2 ± 4.7 17.1 ± 2.1
W/O END-TO-END 47.3 ± 3.8 71.2 ± 1.2 43.4 ± 5.5 9.8 ± 3.1

E. More Analysis Experiments
Then, because there are two inputs of main module fθ, we investigate the effect of the priming variable ζ and the input
observation history x on fθ.

starting
𝒇𝜽 𝒅𝒐 𝜻 = 𝟎.𝟎𝟎 = 𝟎. 𝟎𝟎
𝒇𝜽 𝒅𝒐 𝜻 = 𝟎.𝟕𝟓 = 𝟎. 𝟕𝟑

avoiding pedestrian
𝒇𝜽 𝒅𝒐 𝜻 = 𝟎. 𝟎𝟎 = −𝟎.𝟔𝟖
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Figure 7. Examples of scenarios with high effects of the priming variable ζ. The fθ(do(ζ) = 0.00/0.75) means that we manually
set the value of ζ to 0.00 and 0.75 respectively, fix the input x and then get the output of the fθ . The larger the difference between
fθ(do(ζ) = 0.00) and fθ(do(ζ) = 0.75), the stronger the effect of ζ.

The effect of the priming variable ζ. To study the effect of the priming variable in our model, we set the value of ζ
manually while keeping all other factors the same. This process is similar to the intervention technique in causal inference
literature (Rubin, 1974; 1978; Pearl, 1995), so we borrow the do-calculus do(ζ) from causal inference to denote this
operation. For easier interpretability, we only modify the acceleration dimension, i.e. setting throttle to 0 and 0.75 (the
highest value in expert demonstrations), which can be denoted as do(ζ) = 0/0.75. The effect of ζ can be defined by
Effect = |fθ(do(ζ) = 0)− fθ(do(ζ) = 0.75)|, where we omit another input variable x for simplicity. Through studying
the effect of ζ along the trajectories, we find that ζ tends to have a very high effect at some critical moments such as the
examples in Figure 7, illustrating the important guidance effect of ζ in PrimeNet. Especially, the effect of ζt is high when
the car is starting, but it decreases after the car is started because at this time it is necessary to refine its actions according to
observation history, which is what we expected.

The effect of the input observation history x. Similarly, to study the effect of the input observation history x, we intervene
it by repeating the current frame H times, i.e. do(x) = [ot, ot, · · · ] which creates counterfactual stationary cases, i.e. the
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Figure 8. An example of intervention on the input image sequence x.

previous action is 0. Recall the example in Section 2, to investigate what factors the agents use to determine whether to
move forward or stop, we count the percentage of model outputs that change from accelerating to stop after we intervene on
the input sequence, i.e.

N(speed > 0, fθ(x) > 0, fθ(do(x)) = 0)

N(speed > 0, fθ(x) > 0)

We count this metric for vanilla BC and our model on the same dataset. There are 66.43% samples changing from
accelerating to stop in vanilla BC such as the example in Figure 8, even though there is no signal to stop in the scene, e.g.
vehicles, pedestrians, red lights or other obstacles. This illustrates that surprisingly in more than half of the cases, vanilla
BC is making decisions only according to the previous action and ignores the current scene, which is causally incorrect.
In the meanwhile, there is only 27.89% in our model, indicating that our model learns more correct causal relation and
significantly alleviates the copycat shortcut.

F. Baselines
Vanilla BC&key-input-only. Vanilla BC and key-input-only baselines are naive behavioral cloning methods from observa-
tion history and the current observation respectively, which corresponds to the BC-OH and BC-SO in Wen et al. (2020;
2021).

Fighting-Copycat-Agents (FCA). Wen et al. (2020) proposed to remove the unique information about the previous actions
at−1:t−H from the feature extracted from the observation history to prevent the agent to copy the at−1:t−H , based on
adversarial learning.

KeyFrame. Wen et al. (2021) analyzed the copycat problem in terms of the imbalance data distribution and proposed a
re-weighting method to up-weight the demonstration keyframes corresponding to expert action changepoints.

History-Dropout. To address the copycat issue, Bansal et al. (2019) introduced a dropout on the observation history to
randomly erase the channels of historical frames. We implement it by applying a Dropout layer (Srivastava et al., 2014) on
the historical observations.

Average-Ensemble. Average-Ensemble is a commonly used model combination approach. We implement it by averaging
the outputs of vanilla BC and key-input-only at test time.

DAGGER. DAGGER (Ross et al., 2011) is a widely used technique to address the distributional shift issue in behavioral
cloning and is thought of as the oracle of imitation learning through online query.

G. Additional Details on NICO Experiments
Architectures As shown in Figure 9, there are two branches in our model. We use a share-weight ResNet18 as the feature
extractor in both branches. For priming module, the input is the key input, i.e. an image patch cropped by saliency detection,
and the output is a prediction about the label y. We use the output logits of priming module as priming variable ζ . The logits
are fed into a Relu layer and then concatenated with the feature of ResNet18 of main module. Next, the concatenated feature
is put into the FC layer to make the final prediction.
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Figure 9. The architecture of our model for NICO experiments. We use a shared ResNet18 as the feature extractor. Use the output logits
of priming module as ζ and feed it through a Relu layer to main module.

Training Details We use BASNet (Qin et al., 2019) as the key input extractor k(·), which is an unsupervised saliency
detection model. We use Cross-Entropy loss and SGD optimizer to jointly train our model for 200 epochs. The initial
learning rate is set to 0.05 and decays by 0.2 at 80, 120 and 160 epochs. We set the minibatch size to 128. We select the best
hyper-parameters according to the validation accuracy and then test the models on the test set.

H. Additional Details on CARLA Experiments
In Section 4, we briefly introduce the experiment setup of CARLA. More details are introduced below.

Data Collection. The CARLA100 dataset (Codevilla et al., 2019) is collected by a PID controller. During collecting, 10%
expert actions are perturbed by noise (Laskey et al., 2017). We use three cameras: a forward-facing one and two lateral
cameras facing 30 degrees away towards left or right (Bojarski et al., 2016). Both noise injection and multiple cameras are
common data augmentation techniques to alleviate distributional shift in autonomous driving.

Resnet34

speed prediction 
module

conditional 
module

perception 
module

predicted speed
𝑣!

action
𝑎"

command
𝑐

image input
vanilla BC: 𝑜%"

key-input-only: 𝑜"

Figure 10. The conditional imitation learning architecture we used as our backbone. The input of vanilla BC is the observation history,
denoted as õt for simplicity, and the input of key-input-only is the current observation ot.

Architectures. We use the backbone in conditional imitation learning framework CILRS (Codevilla et al., 2019) as our
backbone. The only difference is that our model does not have the input speed (to create a pure POMDP (Wen et al., 2021)).
As shown in Figure 10, vanilla BC and key-input-only use the same architecture with different inputs, õt and ot. Illustrated
in Figure 11, our method integrates them together by concatenating the output of priming module with the features of the
penultimate FC layer of main module. Moreover, the architectures of early fusion model and middle fusion model mentioned
in Section4.4 are shown in Figure 12. In particular, early fusion means we concatenate the priming variable ζ with the input
images, and middle fusion means that we concatenate it with the output feature of Resnet.
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Figure 11. The architecture of our method. For simplicity, we omit the speed prediction module and the input command when drawing the
figures, and sg means stop-gradient.
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Figure 12. The architectures of the early fusion model and middle fusion we study in Section 4.4.

Training Details. We use the L1 loss to train all the models. We use Adam optimizer, set the initial learning rate to 2× 10−4

and decay the learning rate by 0.1 whenever the loss value no longer decreases for 5000 gradient steps. We set the minibatch
size to 160 and train all the models until convergence (the learning rate equal to 1× 10−7). Furthermore, we apply several
commonly used techniques to our training process. We utilize the noise injection (Laskey et al., 2017) and multi-camera data
augmentation (Bojarski et al., 2016; Giusti et al., 2015) to alleviate the distribution shift in offline imitation learning. All the
models use the speed regularization (Codevilla et al., 2019) to address the copycat problem (also called inertia problem in
their paper) to some extent. And we use ImageNet pretrained ResNet34 (Deng et al., 2009; He et al., 2016) as the perception
module to get a better initialization (Codevilla et al., 2019) and the weighted control loss to balance the models’ attention to
each action dimension. Furthermore, different from the previous works (Codevilla et al., 2018; 2019; Wen et al., 2021), we
use two-dimensional action space a ∈ [−1, 1]

2 for steering and acceleration, where the positive acceleration value means
applying throttle and the negative one means braking. We empirically find that using acceleration as output modality is
better than predicting throttle and brake separately among all baselines (except FCA) and our method.

I. Additional Details on Mujoco Experiments
Data Collection. We first train an RL expert with PPO (Schulman et al., 2017) and use it to generate expert demonstration
by rolling out in the environment. Specifically, we collect 10k samples for Ant and Walker2D, and 20k for Hopper based on
imitation difficulty.

Architectures. We follow a simple design for network architectures, shown in Figure 13. For both the priming module and
main module, we use a three-layer MLP network. We concatenate the output action from the priming module to the output
of main module, and input that to another fully-connected layer for the final output action.

Training Details. We use MSE loss and Adam optimizer to train all models. We use a learning rate of 1e-4 for both
HalfCheetah and Ant, and 1e-5 for Hopper and use linear learning rate decay. For each environment, we train it for 1000
epochs until convergence. We set the minibatch size to 64. We train each method three times, and report the mean and
standard deviation of evaluation rewards for the last three evaluation steps.
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Figure 13. The architecture of our method for MuJoCo experiments, where sg means stop-gradient.

J. Theorem Version for Proposition 3.1
We next formally state our theorem, starting from the basic definitions and assumptions.

J.1. Theorem Statement

Data Distribution. Let (x, y) ∼ Pin ⊂ Rd × R, (z, y) ∼ Pout ⊂ Rd × R denote the input and the corresponding label in
the training region and test region, respectively. Without loss of generality, we assume that Ex = Ez = 0, and |y| ≤ O(1) is
bounded almost surely. For simplicity, we assume the data covariance satisfies Σ = Σx = Σz , and assume that Tr(Σ) = d,
σmin(Σ) = O(1), and σmax(Σ) = O(1). We assume that the re-scaled input Σ−1/2x and Σ−1/2z has independent and
O(1)-subGaussian coordinates.

Denote the optimal linear estimator as β∗, which satisfies EPin
(y − x⊤β∗)2 = minβ EPin

(y − x⊤β)2, and ∥β∗∥ = O(1).
We assume that the residual ϵ = y − x⊤β∗ is mean zero, independent, O(1)-subgaussian conditional on x with Eϵ2|x =
O(1). Given the dataset with n pairs independently sampled from Pin and Pout, we denote the empirical distribution
by P̂n1 and P̂n2 . We assume that the sample size satisfies n ≫ d and n = dO(1), and the corresponding design matrix is
diagonalizable.

Model. We consider a two-layer fully-connected neural network with m hidden neurons: f(x;w, v) :=
1√
m

∑m
r=1 vrσ(w

⊤
r x/

√
d) with symmetric initialization, where the activation σ is smooth or piece-wise linear. In this

paper, Neural Tangent Kernels (NTK) are applied to approximate the neural networks4, where {wr} is trainable and {vr} is
fixed following the regime in Arora et al. (2019). For the training process with constant step size (sufficiently small) and ℓ2
loss, we derive the following Theorem J.1 for the function fNTK(·) trained at time t

For the neural networks, we consider a two-layer fully connect one and use the matrix formulation (W ,v) as follows:

f(x;W ,v) =
1√
m

m∑
r=1

vrσ(w
⊤
r x/

√
d) =

1√
m
v⊤σ(Wx/

√
d).

Linear Kernels. Follong Hu et al. (2020b), when considering linear models, we consider the linear feature On the other
hand, we consider the linear feature

ϕLIN (X) =
1√
d

[
ζx
ν

]
,

where ζ = E[σ′(g)] and ν = E[gσ′(g)] ·
√

Tr[Σ2]/d. We denote the function trained using linear kernels at time t as f (t)
LIN ,

and define the corresponding predictions on X and Z as ŶLIN (X) and ŶLIN (Z).

Neural Tangent Kernels. We consider a neural tangent kernel using the following feature

ϕNTK(X) = Vec

(
∂f(x;W ,v)

∂W

)
.

4The neural tangent kernel regime is widely considered in theoretical analysis as a surrogate to neural networks, since neural networks
converge to the neuron tangent kernel as its width goes to infinity.
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We denote the function trained using neural tangent kernels at time t as f (t)
NTK , and define the corresponding predictions on

X and Z as ŶNTK(X) and ŶNTK(Z).

Symmetric Initialization In this paper, we apply the symmetric initialization, wi ∼ N (0, Id) and vi ∼ Unif({1,−1}),
w(i+m/2) = wi, v(i+m/2) = −vi, i = 1 . . . ,m/2. This type of symmetric initializationfollowing (Chizat et al., 2019;
Zhang et al., 2020; Hu et al., 2020a; Bai & Lee, 2020; Hu et al., 2020b) guarantees that f(x;W ,v) = 0 at initialization.
Therefore, we can regard the corresponding NTK is trained by starting with initialization 0.

J.2. The Main Theorem

We now provide the main theorem in Theorem J.1
Theorem J.1. Let α ∈ (0, 1/4) be a fixed constant. Let h(x) = x⊤β∗ : Rd → R denote a linear model, and s : Rd → R
denote another model. We assume the following (A1-A3) assumptions5:

A1 In the training region Pin, function f and s are both close to the ground truth, ∥y−h(x)∥Pin ≤ ϵ, and ∥y−s(x)∥Pin ≤
ϵ.

A2 In the test region Pout, function f and s are separable, ∥s(z)− h(z)∥Pout
≥ O(1).

A3 The width of the neural network satisfies m = Ω(d1+α)

Then for the model f tNTK(·) trained by neural tangent kernel at time t = Θ(d1+
1
3α), satisfies the following statements

(C1-C2) hold with high probability6:

C1 In training region Pin, the trained model reaches small training error, ∥fNTK(x)− y∥P̂n
1
− ϵ ≲ d−

1
3α +

√
d
n .

C2 In test region Pout, the trained model is closer to f instead of s, ∥fNTK(z)−h∥P̂n
2
≲ d−

1
3α+

√
d
n and ∥fNTK(z)−

s∥P̂n
2
= Ω(1).

J.3. Proof

In this section, We provide the whole proof of Theorem J.1.

J.4. Proof

Proof. We combine the following Three Lemmas to reach the final conclusion of Theorem J.1. We first show in Lemma J.2
that the model trained by NTK is indeed close to the model trained by linear predictions in the train region Pin. We then
show in Lemma J.3 that the trained model is also close to the model trained by linear predictions in the test region Pout. We
finally show in Lemma J.4 that linear models can approximate the ground truth function for a proper time t.

Lemma J.2 (Bounding difference between NTK and linear predictions (train region)). Under the settings in Theorem J.1,
the prediction of the NTK models (ŶNTK(X)) is close to the prediction of linear models (ŶLIN (X)), namely,

1√
n

∥∥∥ŶNTK(X)− ŶLIN (X)
∥∥∥ ≲ d−

1
3α.

Proof of Lemma J.2. Note that NKT regimes is overparameterized while linear regime is underparameterized. We derive
from Proposition J.5 that the prediction (on training set) from neural tangent kernel and the linear kernel is

ŶNTK(X) =

[
I −

[
I − λ

n
ϕNTK(X)ϕ⊤

NTK(X)

]t]
Y,

ŶLIN (X) =

[
I −

[
I − λ

n
ϕLIN (X)ϕ⊤

LIN (X)

]t]
Y.

5We denote ∥x1 − x2∥µ = (Eµ(x1 − x2)
2)1/2

6The probability is taken over the random initialization, the training samples, and the test samples
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Note that function (1− λx)t is λt-Lipschitz, we have

1√
n

∥∥∥ŶNTK(X)− ŶLIN (X)
∥∥∥

=
1√
n

∥∥∥∥∥
[[

I − λ

n
ϕLIN (X)ϕ⊤

LIN (X)

]t
−

[
I − λ

n
ϕNTK(X)ϕ⊤

NTK(X)

]t]
Y

∥∥∥∥∥ ,
≤ 1√

n

∥∥∥∥∥
[[

I − λ

n
ϕLIN (X)ϕ⊤

LIN (X)

]t
−

[
I − λ

n
ϕNTK(X)ϕ⊤

NTK(X)

]t]∥∥∥∥∥ ∥Y ∥

(i)

≤ 1√
n
λt

1

n
log(n)

∥∥ϕLIN (X)ϕ⊤
LIN (X)− ϕNTK(X)ϕ⊤

NTK(X)
∥∥ ∥Y ∥

(ii)
=

1√
n
λt

1

n
log(n) ·O

( n

d1+α

)
·O(

√
n)

=O

(
λt log(n)

1

d1+α

)
,

where we apply Proposition J.7 in (i) and apply Proposition J.6 in (ii). And we use the fact that y is bounded almost surely
to get ∥Y ∥ ≤ O(

√
n). Due to the fact that n = dO(1) and t = Θ

(
d1+

1
3α

)
, we have

1√
n

∥∥∥ŶNTK(X)− ŶLIN (X)
∥∥∥ ≲ d−

1
3α.

Lemma J.3 (Bounding difference between NTK and linear predictions (test region)). Denote Z ∈ Rn×p the test samples
independent sampled from distribution Pout. Under the settings in Theorem J.1, the prediction of the NTK models
(ŶNTK(Z)) is close to the prediction of linear models (ŶLIN (Z)) at test region with high probability, namely,

1√
n

∥∥∥ŶNTK(Z)− ŶLIN (Z)
∥∥∥ ≲ d−

1
3α.

Proof of Lemma J.3. Similar to the proof in Lemma J.2, the predictions are

ŶNTK(Z)

=ϕNTK(Z)ϕ⊤
NTK(X)

[
I −

[
I − λ

n
ϕNTK(X)ϕ⊤

NTK(X)

]t] [
ϕNTK(X)ϕ⊤

NTK(X)
]−1

Y,

ŶLIN (Z)

=ϕLIN (Z)ϕ⊤
LIN (X)

[
I −

[
I − λ

n
ϕLIN (X)ϕ⊤

LIN (X)

]t]
ϕLIN (X)

[
ϕLIN (X)ϕ⊤

LIN (X)
]−2

ϕ⊤
LIN (X)Y.

We calculate that

ŶNTK(Z)− ŶLIN (Z)

=ϕNTK(Z)ϕ⊤
NTK(X)

[
I −

[
I − λ

n
ϕNTK(X)ϕ⊤

NTK(X)

]t] [
ϕNTK(X)ϕ⊤

NTK(X)
]−1

Y

− ϕLIN (Z)ϕ⊤
LIN (X)

[
I −

[
I − λ

n
ϕLIN (X)ϕ⊤

LIN (X)

]t]
ϕLIN (X)

[
ϕLIN (X)ϕ⊤

LIN (X)
]−2

ϕ⊤
LIN (X)Y

=
λ

n

[
ϕNTK(Z)ϕ⊤

NTK(X)− ϕLIN (Z)ϕ⊤
LIN (X)

]
A1Y +

λ

n
ϕLIN (Z)ϕ⊤

LIN (X)[A1 −A2]Y

≜ 1⃝+ 2⃝,
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where A1 =
[
I −

[
I − λ

nϕNTK(X)ϕ⊤
NTK(X)

]t] [λ
nϕNTK(X)ϕ⊤

NTK(X)
]−1

, and

A2 =
[
I −

[
I − λ

nϕLIN (X)ϕ⊤
LIN (X)

]t]
ϕLIN (X)

[
ϕLIN (X)ϕ⊤

LIN (X)
]−2

ϕ⊤
LIN (X).

Bounding 1⃝. We derive from Proposition J.8 that∥∥ϕNTK(Z)ϕ⊤
NTK(X)− ϕLIN (Z)ϕ⊤

LIN (X)
∥∥ ≲

n

d1+α
.

We then calculate that the eigenvalues of the matrix A1 can be bounded by

1− (1− λσti)

λσi
≤ t,

where σi denotes the eigenvalues of matrix ϕNTK(Z)ϕ⊤
NTK(X). Note that ∥Y ∥ = O(

√
n) due to the bounded assumption.

Therefore, we have

1⃝

≤λ

n

∥∥ϕNTK(Z)ϕ⊤
NTK(X)− ϕLIN (Z)ϕ⊤

LIN (X)
∥∥ · ∥A1∥ · ∥Y ∥

≲
λ

n
· n

d1+α
· t ·

√
n

≲

(
t
√
n

d1+α

)
.

(1)

Bounding 2⃝. We first use Proposition J.7 to bound ∥A1 − A2∥. The eigenvalues of A1 and A2 has the form of
(1−(1−λσi)

t)/λσi where σi are the eigenvalues of ϕNTK(X)ϕ⊤
NTK(X) and phiLIN (X)ϕ⊤

LIN (X). From Proposition J.9,
we see that the Lipschitz constant Le for function e(x) = (1− (1− x)t)/x satisfies Le ≲ t2. Therefore,

∥A1 −A2∥ ≲ t2 log(n)∥λ
n
ϕNTK(X)ϕ⊤

NTK(X)− λ

n
ϕLIN (X)ϕ⊤

LIN (X)∥

≲ t2 · λ
n
· n

d1+α

≲ t2
λ

d1+α

Besides, we have that ϕLIN (Z)ϕ⊤
LIN (X) ≤ ∥ϕLIN (Z)ϕ⊤

LIN (X)− ϕNTK(Z)ϕ⊤
NTK(X)∥+ ∥ϕNTK(Z)ϕ⊤

NTK(X)∥ ≲
n/d, and therefore,

2⃝

=
λ

n
ϕLIN (Z)ϕ⊤

LIN (X)[A1 −A2]Y

≤λ

n
∥ϕLIN (Z)ϕ⊤

LIN (X)∥ · ∥A1 −A2∥ · ∥Y ∥

≤λ

n
·O

(n
d

)
·O

(
t2

λ

d1+α

)
·O(

√
n)

≲
t2
√
n

d2+α
.

(2)

Therefore, we have that

1√
n
∥ŶNTK(Z)− ŶLIN (Z)∥ ≲

t

d1+α
+

t2

d2+α

≲ d−
1
3α.

where the last equation is due to t = Θ(d1+
1
3α).
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Lemma J.4 (Linear Training). Denote ŶLIN as the predictions of the linear predictors, Y (X) as the true label, and Ŷ ∗
LIN

as the best linear predictor. Under the settings in Theorem J.1, the predictions of fLIN is close to the ground truth in both
Pin and Pout. That is to say: with high probability

1√
n
∥ŶLIN (X)− Y (X)∥2 ≲

√
d

n
+ ϵ,

1√
n
∥ŶLIN (Z)− Ŷ ∗

LIN (Z)∥2 ≲

√
d

n
.

Proof of Lemma J.4. It suffices to bound the parameters trained by ϕLIN (X) with the optimal parameter β̄∗. Note that β∗
LIN

is a re-scaled version of β∗, since ϕLIN (X) has a 1/
√
d scale. Therefore, informally, ϕ⊤

LIN (X)ϕLIN (X) ≈ 1
dX

⊤X and
β∗
LIN ≈

√
dβ∗.

We bound the difference of Y from the parameter perspective. Note that by gradient descent starting from initialization
starting from initialization 0, by Proposition J.5, we have

β
(t)
LIN =

[
I −

[
I − λ

n
ϕ⊤
LIN (X1)ϕLIN (X1)

]t] [
ϕ⊤
LIN (X1)ϕLIN (X1)

]−1
ϕ⊤
LIN (X1)Y .

By plugging into Y = X⊤β∗ + ϵ = ϕLIN (X)β∗
LIN + ϵ where ϵ = Y −X⊤β, it holds that

β
(t)
LIN =[I − [I − λ

n
ϕ⊤
LIN (X1)ϕLIN (X1)]

t]β∗
LIN

+ [I − [I − λ

n
ϕ⊤
LIN (X1)ϕLIN (X1)]

t][ϕ⊤
LIN (X1)ϕLIN (X1)]

−1ϕ⊤
LIN (X1)ϵ.

Therefore,

∥β(t)
LIN − β∗

LIN∥

≤∥β∗
LIN∥

∥∥∥∥[I − λ

n
X⊤

1 Xi]
t

∥∥∥∥
+

∥∥∥∥∥
[
I −

[
I − λ

n
ϕ⊤
LIN (X1)ϕLIN (X1)

]t] [
ϕ⊤
LIN (X1)ϕLIN (X1)

]−1
ϕ⊤
LIN (X1)ϵ

∥∥∥∥∥ .
Provided that log(1/δ1) ≤ n/c, we know from Lemma J.10 that with probability at least 1− δ1,

1

d
≲

1

n
σmin

(
ϕ⊤
LIN (X1)ϕLIN (X1)

)
≤ 1

n
σmax

(
ϕ⊤
LIN (X1)ϕLIN (X1)

)
≲

1

d
,

Therefore, given that λ < 1/σn(X
⊤X) and t ≫ d,∥∥∥∥[I − λ

n
ϕ⊤
LIN (X1)ϕLIN (X1)]

t

∥∥∥∥ ≤ c
t/d
2 ≲ O(1/

√
n),

where 0 < c2 < 1 is a given constant.

On the other hand, since ϵi is mean zero, independent, and σy-subGaussian with variance σ2. Therefore, following
Theorem 6.3.1 in Vershynin (2018), with probability at least 1− δ2 (the probability is over ϵ given X1),

∥Hϵ∥/σ ≤ ∥H∥F + c3σ
2
x∥H∥

√
log(1/δ3),

where H =
[
I −

[
I − λ

nϕ
⊤
LIN (X1)ϕLIN (X1)

]t] [
ϕ⊤
LIN (X1)ϕLIN (X1)

]−1
ϕ⊤
LIN (X1). Note that since H ⪯[

ϕ⊤
LIN (X1)ϕLIN (X1)

]−1
ϕ⊤
LIN (X1), the eigenvalues of H satisfies

∥H∥2F =

d∑
i=1

σi(H)2 ≤
d∑
i=1

σi(
[
ϕ⊤
LIN (X1)ϕLIN (X1)

]−1
ϕ⊤
LIN (X1))

2 ≤ d2

n
,

∥H∥22 = max
i

σi(H)2 ≤ max
i

σi(
[
ϕ⊤
LIN (X1)ϕLIN (X1)

]−1
ϕ⊤
LIN (X1))

2 ≤ d

n
.
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Therefore, with probability at least 1− δ2 with log(1/δ3) ≲
√
d,

∥Hϵ∥ ≲
√
d

√
d+ σ2

x

√
log(1/δ3)√
n

≲
d√
n
.

In summary, we have that with high probability

∥β(t)
LIN − β∗

LIN∥ ≲ ∥β∗
LIN∥2ct/d2 +

d√
n
≲

d√
n
.

Therefore, due to the fact that ∥X∥ = O(
√
n/

√
d) and ∥Z∥ = O(

√
n/

√
d), we have that with high probability,

1√
n
∥ŶLIN (X)− Y (X)∥2

≤ 1√
n
∥ŶLIN (X)− Ŷ ∗

LIN (X)∥2 + ∥Ŷ ∗
LIN (X)− Y (X)∥2

≲

√
d

n
+ ϵ,

1√
n
∥ŶLIN (Z)− Ŷ ∗

LIN (Z)∥2 ≲

√
d

n

.
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Proposition J.5 (Trajectory Analysis). For overparameterized linear regression (n < p) with gradient descent starting from
θ(0) = 0, we have

θ(t) = X⊤
[
I −

[
I −XX⊤]t] [XX⊤]−1

Y.

For underparameterized linear regression (n > p) with gradient descent starting from θ(0) = 0, we have

θ(t) = X⊤
[
I −

[
I −XX⊤]t]X [

X⊤X
]−2

X⊤Y.

Proposition J.6 (Bounding the kernels, from Hu et al. (2020b), Proposition D.2). Under the settings in Theorem J.1, the
following inequality holds with high probability∥∥ϕNTK(X)ϕ⊤

NTK(X)− ϕLIN (X)ϕ⊤
LIN (X)

∥∥ ≲
n

d1+α
,

where the probability is taken over random initialization W (0) and the training data X .

Proposition J.7 (Bounding difference from matrix function, from Theorem 11.4 in Aleksandrov & Peller (2011)). For
matrix function (function over eigenvalues) with Lipschitz constant L, we have that for any matrix A,B ∈ Rn×n, there
exists a constant C such that

∥f(A)− f(B)∥ ≤ CL log(n)∥A−B∥.

Proposition J.8 (Bounding the cross kernels). Under the settings in Theorem J.1, the following inequality holds with high
probability ∥∥ϕNTK(Z)ϕ⊤

NTK(X)− ϕLIN (Z)ϕ⊤
LIN (X)

∥∥ ≲
n

d1+α
,

where the probability is taken over random initialization W (0) and the training data X .

Proof. The proof is inspired by Hu et al. (2020b). We generalize the results of Theorem J.6 to the cross regimes. The proof
is divided into three steps.

Step One. We firstly show that∥∥ϕNTK(Z)ϕ⊤
NTK(X)− EWϕNTK(Z)ϕ⊤

NTK(X)
∥∥ ≲

n

d1+α
,

This is due to Bernstein inequality. Due to the symmetric initialization, we first consider half number of the neurons which
are guaranteed to be independent. For the r-th neuron, we denote

B(r) =
(
σ′

(
Zwr/

√
d
)
σ′

(
Xwr/

√
d
))

⊙
(
ZX⊤/

√
d
)
.

Therefore, ϕNTK(Z)ϕ⊤
NTK(X) = 1

m

∑m
r=1 B

(r), and all neurons {B(r)}, r = 1, . . . ,m/2 are independent. Besides, we
show that B(r) is bounded with high probability.

∥∥∥B(r)
∥∥∥ =

∥∥∥∥diag (σ′
(
Zwr/

√
d
))

· ZX⊤

d
· diag

(
σ′

(
Xwr/

√
d
))∥∥∥∥

≤
∥∥∥diag (σ′

(
Zwr/

√
d
))∥∥∥∥∥∥∥ X√

d

∥∥∥∥∥∥∥∥ Z√
d

∥∥∥∥∥∥∥diag (σ′
(
Xwr/

√
d
))∥∥∥

≤ O(1) ·O
(√

n

d

)
·O

(√
n

d

)
·O(1)

= O
(n
d

)
,

where we use the fact that ∥Z∥ ≲ n and ∥X∥ ≲ n using the assumption that X and Z are diagonalizable. Therefore, we
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derive that ∥∥∥B(r)
∥∥∥ ≤ O(n/d)∥∥∥EB(r)
∥∥∥ ≤ O(n/d)∥∥∥B(r) − EB(r)

∥∥∥ ≤ O(n/d)∥∥∥∥∥∥
m/2∑
r=1

E[(B(r) − EB(r))2]

∥∥∥∥∥∥ ≤
m/2∑
r=1

∥∥∥E(B(r) − EB(r))2
∥∥∥ ≤ O(mn2/d2)

By Matrix Bernstein inequality, we have that

P

∥∥∥∥∥∥
m/2∑
i=1

B(r) − EB(r)

∥∥∥∥∥∥ ≥ m

2

n

d1+α

 ≪ 1,

where we use m = Ω(d1+α) and n = dO(1).

Since ϕNTK(Z)ϕ⊤
NTK(X) = 1

m

∑m
r=1 B

(r) We rewrite the above inequality as follows: with high probability,∥∥ϕNTK(Z)ϕ⊤
NTK(X)− EWϕNTK(Z)ϕ⊤

NTK(X)
∥∥

=

∥∥∥∥∥ 1

m

m∑
r=1

[B(r) − EB(r)]

∥∥∥∥∥
≤2

∥∥∥∥∥∥ 1

m/2

m/2∑
r=1

[B(r) − EB(r)]

∥∥∥∥∥∥
≤ 1

m
O(mn/d1+α)

≲
n

d1+α
.

Step Two. We secondly show that∥∥EWϕNTK(Z)ϕ⊤
NTK(X)− ϕLIN (Z)ϕ⊤

LIN (X)
∥∥ ≲

n

d1+α
.

By defining Φ(a, b, c) = E(u1,u2)∼N (0,Λ)[σ
′(u1)σ

′(u2)], where Λ =

(
a c
c b

)
, we rewrite that,

[
EWϕNTK(Z)ϕ⊤

NTK(X)
]
ij
=

1

d
z⊤i xj · Ew∼N (0,I)

[
σ′(w⊤zi/

√
d)σ′(w⊤xi/

√
d)⊤

]
=

1

d
z⊤i xjΦ

(
∥zi∥2

d
,
∥xi∥2

d
,
z⊤i xj
d

)
.

Due to the assumptions on the data distribution and n ≫ d, we have that ∥xi∥2

d = 1± Õ( 1√
d
), ∥zj∥2

d = 1± Õ( 1√
d
), and

z⊤j xi

d = ±Õ( 1√
d
). We apply Taylor expansion of Φ around (1, 1, 0), that is

Φ

(
∥zi∥2

d
,
∥xi∥2

d
,
z⊤i xj
d

)
=Φ(1, 1, 0) + c1

(
∥zi∥2

d
− 1

)
+ c2

(
∥xi∥2

d
− 1

)
+ c3

(
z⊤i xj
d

)
± Õ

(
1

d

)
;
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Similar to the proof in Hu et al. (2020b), we have∥∥∥∥EWϕNTK(Z)ϕ⊤
NTK(X)− ζ2

ZX⊤

d
− c3

Tr[Σ2]

d2
11⊤

∥∥∥∥ ≤ Õ(
n

d1.25
).

which is equivalent to ∥∥EWϕNTK(Z)ϕ⊤
NTK(X)− ϕLIN (Z)ϕ⊤

LIN (X)
∥∥ ≲

n

d1+α
,

where 0 < α < 1/4.

Combining the two steps, we have that∥∥ϕNTK(Z)ϕ⊤
NTK(X)− ϕLIN (Z)ϕ⊤

LIN (X)
∥∥ ≲

n

d1+α
.

Proposition J.9. Denote function e(x) = 1−(1−x)t
x , its Lipschitz constant satisfies Le ≲ t2.

Proof of Proposition J.9. Note that

e′(x) =
tx(1− x)t−1 + (1− x)t − 1

x2

=
t(1− x)t−1

x
+

(1− x)t − 1

x2

is decreasing with x, where x ∈ (0, 1) and t ≫ 3. Therefore,

e′(x) ≤ e′(0) = − t(t− 1)

2
< 0.

Therefore, we consider |e′(x)| = −e′(x). Note that by inequality (1− x)t ≥ 1− tx, we have

|e′(x)| = −e′(x)

=
−tx(1− x)t−1 − (1− x)t + 1

x2

≤ −tx(1− (t− 1)x)− (1− tx) + 1

x2

= t(t− 1)

≲ t2.

Therefore, Le ≲ t2.

Proposition J.10. Assume that Σ−1/2
x xi is mean zero, independent, and σx-subGaussian (∥ · ∥ψ2

≤ σx), under the
assumption n ≫ d, then the maximal and minimal eigenvalue of X⊤X satisfy: with probability at least 1− δ:

∥Σx∥min(n− C1σ
2
x log(1/δ)) ≲ σn(X

⊤X) ≤ σ1(X
⊤X) ≲ ∥Σx∥max(n+ C1σ

2
x log(1/δ)),

where ∥Σx∥min, ∥Σx∥max represent the minimal and maximal eigenvalues of Σx and C1 is a universal constant independent
of n and d.

Proof. Denote A ≜ XΣ
−1/2
x where X ∈ Rn×d is the corresponding design matrix. Note that each row of matrix A is

Ai = x⊤
i Σ

−1/2
x , which is independent and Σx-subGaussian, and EAi = 0. Therefore, the maximum σ1(A) and minimal

σn(A) eigenvalue of A satisfy the following inequality with probability at least 1− 2 exp(−t2)

√
n− c1Σx(

√
d+ t) ≤ σn(A) ≤ σ1(A) ≤

√
n+ c1Σx(

√
d+ t),
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where c1 is a constant.

Due to the assumption n ≫ d, it holds that with probability at least 1− δ,

√
n− c1Σx

√
log(1/δ) ≲ σn(A) ≤ σ1(A) ≲

√
n+ c1Σx

√
log(1/δ).

Since σi(A
⊤A) = σi(A)2, we have

n− c21Σ
2
x log(1/δ) ≲ σn(A

⊤A) ≤ σ1(A
⊤A) ≲ n+ c21Σ

2
x log(1/δ).

Note that A⊤A = Σ
−1/2
x X⊤XΣ

−1/2
x , we have

∥Σx∥min(n− c21Σ
2
x log(1/δ)) ≲ σn(X

⊤X) ≤ σ1(X
⊤X) ≲ ∥Σx∥max(n+ c21Σ

2
x log(1/δ)).


