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Abstract— Standardized evaluation measures have aided in
the progress of machine learning approaches in disciplines such
as computer vision and machine translation. In this paper,
we make the case that robotic learning would also benefit
from benchmarking, and present a template for a vision-
based manipulation benchmark. Our benchmark is built on
“REPLAB,” a reproducible and self-contained hardware stack
(robot arm, camera, and workspace) that costs about 2000 USD
and occupies a cuboid of size 70x40x60 cm. Each REPLAB cell
may be assembled within a few hours. Through this low-cost,
compact design, REPLAB aims to drive wide participation by
lowering the barrier to entry into robotics and to enable easy
scaling to many robots. We envision REPLAB as a framework
for reproducible research across manipulation tasks, and as
a step in this direction, we define a grasping benchmark
consisting of a task definition, evaluation protocol, performance
measures, and a dataset of over 50,000 grasp attempts. We
implement, evaluate, and analyze several previously proposed
grasping approaches to establish baselines for this benchmark.
Project page with assembly instructions, additional details, and
videos: https://goo.gl/5F9dP4.

I. INTRODUCTION

Since the 90’s, the study of artificial intelligence has been
transformed by data-driven machine learning approaches.
This has been accompanied and enabled by increased em-
phasis on reproducible performance measures in fields like
computer vision and natural language processing. While
benchmark-driven research has its pitfalls [1], [2], well-
designed benchmarks and datasets [3], [4], [5] drive in-
creased research focus on important problems, provide a way
to chart the progress of a research community, and help to
quickly identify, disseminate, and improve upon ideas that
work well.

In robotic manipulation, establishing effective benchmarks
has proven exceedingly challenging, especially for robotic
learning, where the principal concern is with the general-
ization of learned models to new objects and situations,
rather than raw proficiency on a single narrow task. An
important reason for this is that progress in robotics comes
not only through improvements in control algorithms, but
also through improvements in hardware (such as sensing
and actuation). Traditional approaches to robotic control
are closely intertwined with the specifics of the robotic
hardware—for instance, grasping with a parallel-jawed grip-
per, a five-fingered hand, and a suction cup would all be
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Fig. 1. (Left) One REPLAB cell with annotated dimensions (Right) Two
REPLAB cells stacked on top of each other on a desk.

treated as different tasks, each requiring their own different
control algorithms. In this view, the large space of hardware
choices and tasks makes it futile to attempt to meaningfully
measure progress through a few focused benchmarks.

However, in the light of relatively recent changes in the
research landscape, we contend that it may now be time
to reconsider the idea of manipulation benchmarks. First,
research in machine learning-based manipulation [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16] aims to develop
data-driven approaches that are, at least to some degree, ag-
nostic to the particular choice of hardware—although models
trained on one platform are unlikely to work on another,
the same learning algorithms can in principle be deployed
on new platforms with minimal additional engineering. The
performance of such an approach on one hardware platform
is generally expected to be predictive of its performance on
other platforms too. Given this, we might hope that progress
in learning-based control may be treated as orthogonal to
hardware improvements. Thus it may now be possible to
meaningfully consolidate the space of task definitions and
hardware configurations to a small representative set, which
is a prerequisite for defining a benchmark.

Next, today’s robotics hardware is already mature enough
to permit the human-teleoperated performance of tasks that
are substantially harder than those that can be done with
automated control methods [17]. It is therefore reasonable
to conclude that control, not hardware, is now the primary
bottleneck for progress in robotics, and manipulation in
particular. This means that a robotic learning benchmark is
not merely possible as discussed above, it could potentially
serve a very important purpose to the research community.

What would a manipulation benchmark accomplish?
Recent reinforcement learning (RL) benchmarks such as
ALE [18] and Open AI Gym [19] are useful reference points
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to answer this question. They serve three key functions for
the RL community: enabling apples-to-apples comparison of
RL algorithms by standardizing environments and tasks, en-
abling fast and easy replication and improvement of research
ideas, and driving increased research by lowering the barrier
to entry into RL.

In this paper, we propose a robotic learning benchmark
by developing reproducible evaluation procedures with stan-
dardized hardware. In particular, we focus on arguably the
most widely studied robotic manipulation task: grasping.
We describe a reproducible “REPLAB” work cell design
based on a low-cost commercially available robotic arm and
an RGBD camera, and present a dataset that can be used
together with this standardized hardware setup to evaluate
learning algorithms for robotic grasping. We implement and
evaluate prior grasping approaches on this cell platform to
set up a grasping benchmark.

REPLAB’s design is motivated by the following goals, in
order of priority: (i) to provide a consistent and reproducible
progress metric for robotic learning, (ii) to lower the barrier
to entry into robotics for researchers in related disciplines
like machine learning so that robotic learning research is not
restricted only to a small number of well-established labs,
(iii) to encourage and enable plug-and-play reproducible
software implementations of robotic learning algorithms, by
promoting a standardized and exhaustively specified plat-
form, (iv) to allow easily scaling up and parallelizing robotic
learning algorithms across multiple robots, potentially ex-
ploiting data from REPLAB cells across multiple research
labs, and promote testing for generalization to new robots,
and (v) to be able to afford to evolve through iterative
community-driven improvement of the REPLAB platform
itself, a luxury that would not be available with a more
expensive design.

II. RELATED WORK

Robotic approaches today are largely tested in custom
settings: environments, hardware, task definitions, and per-
formance measures may all vary from paper to paper. While
the problem this raises for measuring the effectiveness of
different approaches is widely acknowledged in the robotics
community [20], [21], [22], [1], solutions have been elusive.

The majority of prior approaches to benchmarking in
robotics have taken the form of a live competition between
approaches, e.g., the DARPA Grand Challenge, Amazon
Picking Challenge, and RoboCup. Each competing approach,
consisting of specific hardware setups as well as control
algorithms, is tested in the same physical location. This
provides valuable performance measures of complete robotic
systems, but it is logistically difficult to provide more than
sparse point estimates of performance for each approach on
a yearly basis.

Beyond such live competitions, for grasping in particular,
there have been other previous efforts to standardize various
aspects of the task. The YCB dataset [23] is a standardized
diverse object set for evaluating all grasping approaches. The
ACRV benchmark [24] goes one step further and proposes

not only a standard object set, but also a standard test
setting with a specified shelf design and specified object
configurations within the shelf. The authors of DexNet [11]
share a dataset of synthetic grasps to train grasp quality
convolutional networks, and offer to perform on-robot eval-
uation of models with high accuracy on held-out grasps.
OpenGRASP[25] proposes fully standardized task, hardware,
and performance metrics are for grasping, but in a simulated
environment. To our knowledge, ours is the first effort to
propose a standardized complete stack for real-world grasp-
ing, including the full hardware configuration (such as robot,
sensors, and work cell design) and performance measures.

REPLAB is also built with collective robotics in mind.
Prior efforts in this direction include [7], [26], where data
collection for grasping was parallelized across many phys-
ically collocated robots. Rather than a such a collocated
group, the Million Object Challenge (MOC) [27] aims
to crowdsource grasping data collection from 300 Baxter
robots all over the world. REPLAB cells are designed to
fit both these cases, since they are low-cost, low-volume,
reproducible, and stackable: 20 REPLAB cells stacked to
about 2m elevation occupy about the same floor space and
cost less than two times as much as a single Baxter arm.
The closest effort to this trains grasping policies for low-
cost mobile manipulators [16] by collecting data from several
such manipulators under varying lighting conditions.

Finally, previous efforts have also provided standard-
ized and easily accessible full hardware stacks such as
Duckietown for navigation [28] and Robotarium for swarm
robotics [29]. We share their motivation of democratizing
robotics and driving increased participation, and our focus is
on manipulation tasks.

III. REPLAB DESIGN OVERVIEW

We now describe various key aspects of the design of
the REPLAB platform and grasping benchmark. Exhaustive
documentation for constructing a complete REPLAB cell are
hosted at: https://goo.gl/5F9dP4.

A. Cell Design

A REPLAB cell, shown in Fig 1, is a portable, self-
contained complete hardware stack (arm, sensor, workspace,
and cage) for manipulation tasks. It occupies a cuboid of
size 70x40x60 cm (length, width, height). The outer cage
is constructed with easily composable lightweight aluminum
rods manufactured to our specifications. A low-cost WidowX
arm from Interbotix Labs is suspended upside down and its
base is mounted to the ceiling of the cell to maximize its
reachable effective workspace. The arm has six degrees of
freedom: a 1-DOF rotating base, three 1-DOF joints, and a 1-
DOF rotating wrist, and a 1-DOF parallel-jawed gripper with
minimum width 1 cm and maximum width 3 cm. A Creative
Blasterx Senz3D SR 300 RGB-Depth camera is mounted to
a specified standard position on the ceiling near the front of
the cell so that the entire workspace is comfortably within
its optimal field of view and operating distance. Mounts
for the robot, the camera, and a 35x40 cm workspace are
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manufactured through laser cutting. A full list of parts, laser
cutting templates, and all design parameters are exhaustively
recorded shared on the project page for reproducibility.
We verified that an undergraduate student with little prior
robotics experience was able to build a REPLAB cell using
our instructions within three hours, (given a pre-assembled
arm and all other required components).

The physical cell dimensions are designed to allow stack-
ing of multiple cells on top of one another, as shown in Fig 1.
With our current design, we expect that it will be feasible for
up to 20 arm cells, stacked to 2.2 metres in height (four cell
heights), to occupy the same floor space as a typical setup
for a single Baxter arm, for instance.

A single REPLAB cell costs about 2000 USD, and can
be assembled in a few hours. Together with one spare servo
for each of six servos on the arm, the cost is under 3000
USD. This is comparable to the cost of a single workstation.
During experiments for this paper, REPLAB cells proved
to be quite robust. With software constraints in place to
avoid arm collisions with the boundaries of the REPLAB
cell, we encountered no major breakages over more than
100,000 grasp attempts. No servos needed to be replaced.
Repair maintenance work was largely limited to occasional
tightening of screws and replacing frayed cables.

B. Camera-Arm Calibration

We perform camera-robot calibration on a single RE-
PLAB cell by using a checkerboard and registering robot
coordinate points to 3D image pixels from the camera. Since
the cell design is exhaustively specified, our construction
protocol ensures that the same calibration matrix may be
reused for other cells.

In particular, for each cell after the first, we propose to
finely adjust the camera position so that its view of its
workspace and robot are aligned to those from the first cell
camera. Fig 3 shows this calibration protocol in action. While
calibration from scratch is frequently time-consuming, this
protocol enables simple calibration for all cells, and also
helps ensure that all cells are near-identical in construction.
We have applied this protocol in constructing our second
REPLAB cell, and verified that it works in practice. Sec IV-
B presents quantitative evidence for this.

C. Control Noise Compensation

For all arm motions, we use ROS for inverse kinematics
and planning with the MoveIt package and execution through
PID position control. While calibration noise is minimal,
control noise is more difficult to avoid given that we use
low-cost arms [15], [16].

In our setting, we found that control noise is primarily
along the horizontal coordinates (x, y). We tackle this using
a simple approach. Since most desired grasping targets are
near the cell floor, we first command the arm to move
its end effector over a 5x5 grid on the floor and record
the actual achieved positions of the end effector using the
planner and controller described above. Comparing the target
positions pi and achieved positions qi, we fit a linear model

q = αp+ β, where parameters α and β are learned for each
cell separately.

Having calibrated the control noise, we can compensate
for it by setting the target position to p′ = (p − β)/α.
For our two cells, we set β to 0 and α to 0.87 and 0.95.
We find that this simple approach works well to eliminate
most control noise. Combining camera calibration noise and
residual control noise after compensation, the end-effector
positions are within 2 cm of the target over the 35 x 40
cm workspace floor, and usually smaller near the center.
Qualitatively, this error falls within the tolerance that the
grasping task (defined below) naturally permits.

D. Grasping Task Definition

REPLAB is intended to serve as a common platform for
benchmarking robotic manipulation tasks. In our first bench-
mark, we focus on arguably the longest studied manipulation
task: grasping. Multiple objects are randomly scattered over
the cell floor. Each grasp attempt may target any object in the
workspace. All algorithms have access to a standard input-
output interface. The RGBD image and raw point cloud from
the camera are available as inputs. The RGB image, depth
image, and point cloud are shown for a sample grasp attempt
in Fig 4. The algorithm output is required to be a fixed target
grasp configuration.

We restrict the gripper to be oriented vertically. This
restriction is used in a number of prior works [7], [8], [13],
[12] and significantly simplifies inverse kinematics and plan-
ning, since the arm is unlikely to collide with clutter during
motion towards a grasp point. A grasp is specified fully by
a robot coordinate 3D point (x, y, z), and a wrist angle θ
for the parallel-jawed gripper. The arm is moved first to a
position directly above the intended grasp, and then lowered
to the correct grasp position. Once the target coordinates are
achieved, the parallel-jaw gripper is closed, and the arm is
moved into a preset standard configuration, with the gripper
facing the camera, and held for two seconds. A successful
grasp requires the object to stay in the gripper throughout this
time. This protocol is common to all evaluated approaches.
Grasp success detection is discussed in Sec III-F.

E. Objects

As pointed out in Sec II, standard object sets for grasping
have previously been proposed in [23], [24]. However, since
these object sets were designed for much larger arms, we
design new object sets for REPLAB — a training set with
over 100 objects of varying shapes and sizes, a “seen object”
test set of 20 toys among the training objects, and an “unseen
object” test set of 20 toys. Our objects are of varying shapes
and sizes, with about 50% hard plastic toys and 50% soft
toys. We will specify shopping lists for reproducibility. Toys
are picked so that there is at least one feasible stable grasp
with the gripper. Some sample objects are shown in Fig 2.

F. Dataset and Data Collection

We have collected a dataset of over 50,000 randomly
sampled grasps together with grasp success labels collected
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"seen" test objects

"unseen" test objects

Fig. 2. We train learning-based grasping approaches on over 50k grasp attempts with over 100 objects, and evaluate them on two sets of objects: 20 seen
objects (sampled from the training objects), and 20 unseen objects from a different distribution with more complicated shapes. Here, we show a subset of
seen (top) and unseen (bottom) test objects used in our benchmark evaluations.

uncalibrated calibrated

Fig. 3. To calibrate REPLAB cells, we propose a protocol of finely
adjusting the camera position until its camera image aligns nearly perfectly
with that from the first REPLAB cell. Here, images from our two REPLAB
cells are shown overlaid on top of each other before (left) and after (right)
alignment.

using two REPLAB cells in parallel, at the rate of about
2,500 grasps per day per cell. For each grasp attempt, the
3D point cloud returned by the camera is clustered using
DBSCAN [30] to find objects, and a random cluster is
selected. A grasp is sampled as follows: grasp coordinates
(x, y, z) are sampled with a small random perturbation from
the center of the selected cluster. The grasp angle θ is
sampled uniformly at random.

We have implemented an automatic data collection pro-
cedure that is able to collect over 2500 grasp attempts on
a single cell in 24 hours, with minimal manual interven-
tion (on average, fewer than two interventions per cell per
day). Roughly 21% of grasp attempts during random data
collection result in successful grasps. Success/failure label
for grasps is semi-automatic: we first manually labeled 5k
grasps by looking at the image of the held-up object, then
trained a classifier to predict grasp success given the RGBD
image and the gripper width as inputs. This model yields
99.6% classification accuracy on held-out data from both
cells, and is used to aid in labeling the rest of the data without
exhaustive manual labeling.

G. Evaluation and Performance Metric

Evaluation is done on an episodic bin-clearing task. At
the start of an episode, 20 objects are scattered over the
workspace floor using a fixed protocol: a box is filled with the
objects, shaken, and inverted over the center of floor, similar
to [31]. Each episode consists of 60 grasp attempts. For
each grasp attempt, 500 grasp candidates are evaluated from

the neighborhood of each cluster returned by DBSCAN. In
particular, we sample (x, y, z) from points in the cluster and
sample θ uniformly at random. Each successfully grasped
object is automatically discarded to a clearing area outside
the workspace, and one of the remaining objects must
be picked at the next attempt. In rare cases when either
clustering fails (number of objects is too low or too high),
or there has been no successful grasp in 10 attempts, we
sweep the arm over the workspace floor to perturb objects.
We report cumulative success rate (CSR) plots of the number
of successfully grasped objects vs. the number of grasp
attempts. See Fig 5 for an example.

H. Plug-and-Play Software

We aim to lower the barrier to entry into manipulation
research not just by keeping REPLAB costs low, but also by
emphasizing ease of use and reproducible algorithm imple-
mentations. In particular, we will release all code in a Docker
image that runs out of the box on Ubuntu machines, for quick
reproducibility. Our image contains scripts for automatic
data collection, grasp success annotation through the trained
classifier, camera calibration, noisy control compensation,
and benchmark evaluation. Further, it includes REPLAB-
specific implementations of several baselines for grasping,
described in the next section. With this image, setting up
an Ubuntu laptop to start collecting data on a REPLAB cell
takes about five minutes.

The importance of such plug-and-play implementations
in accelerating research progress cannot be overstated, and
we believe that this is one of the key advantages of a
fully reproducible and standardized hardware platform. Go-
ing forward, we will invite and encourage authors of the
leading approaches on the REPLAB benchmark to contribute
implementations to include in future iterations of the Docker
image. Any researcher with access to a REPLAB cell would
be able to run the best-performing grasping approaches out
of the box, and modify and build upon them.

IV. EXPERIMENTS

We now present experiments that aim to answer the
following questions: (i) Is manipulation feasible on the low-
cost REPLAB platform despite noisy control? (ii) How
suitable are REPLAB cells to serve as foundations for a
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RGB image depth image

full images point cloud clustering

raw point cloud clusters

cropped images

RGB image depth image

Fig. 4. Raw and preprocessed RGB images, depth maps (blue is close, red is far), and pointclouds used in various grasping approaches. full-image
operates directly on the raw RGB and depth images. random-xyzθ, random-θ, and principal-axis rely only on discovering clusters in the
point cloud. Point cloud clustering is shown in the middle, where background points are removed from the point cloud before running DBSCAN. In this
example, DBSCAN successfully gets the isolated objects and fails on the objects clumped together in the top left, detecting them as a single cluster.
pinto2016 uses input images cropped to the neighborhood of the candidate grasp (shown here to the right).

manipulation benchmark? In particular, does our grasping
benchmark evaluation protocol produce consistent, repro-
ducible evaluations across multiple REPLAB cells? (iii)
What are the best-performing baseline approaches on the
REPLAB evaluation protocol, and what can we learn by
analyzing their performance?

A. Grasping Approaches

We implement and evaluate five grasping approaches in
all. The first three are based on sampling near clusters
detected in the point cloud: (i) random-xyzθ: grasp angle
θ is sampled uniformly at random, and grasp coordinates
(x, y, z) are perturbed with random uniform noise in a 4x4x2
cm region from each cluster center, (ii) random-θ: Only θ
is random, where (x, y, z) is set to a cluster center, and (iii)
principal-axis: we find the major axis of a cluster by
computing the largest eigenvector of the correlation matrix
of (x, y) coordinates of points in the cluster. A grasp is
attempted along the perpendicular bisector of this axis. z
is fixed to the cluster center.

We evaluate two approaches based on training convolu-
tional neural networks to predict the quality of a grasp in
a given scene: (i) full-image [7], [12] takes two inputs:
the full image of the workspace and the full (x, y, z, θ)
parameterization of a candidate grasp, (ii) pinto2016 [8]
instead crops the input image around the (x, y, z) position
of the candidate grasp and predicts success or failure for
each of 18 quantized θ bins. The inputs are schematically
shown in Fig 4. These are both trained on the same set of
50k random grasps described in Sec III-F.

For testing on the robot, each baseline approach is pro-
vided with grasp candidates from which it picks one to
execute. full-image and pinto2016 evaluate the grasp
quality of 512 grasp candidates per detected cluster, each
parameterized by (x, y, z, θ) as described in Sec III-G,
before executing the highest quality grasp. random-θ and
random-xyzθ select one cluster at random before selecting
grasps near that cluster center. For principal-axis, we
assign a confidence score to each cluster based on the ratio
of the largest eigenvalue to the smallest, and select the cluster
with the highest confidence.

In practice, selecting only the highest confidence grasp
tends to lead to the arm getting stuck in a loop attempting

the same unsuccessful grasp over and over. To prevent this,
we sample from top-5 grasp candidates for the learning
approaches and the top 5 clusters for principal-axis.

B. Reproducibility of Evaluation

We have taken care in the design of REPLAB cells to make
it possible to construct near-identical replicas. A reproducible
hardware platform is key to establishing reproducible eval-
uation procedures, which is the primary aim of REPLAB.
Evaluations of control algorithms should produce similar
results on all REPLAB cells.

With this in mind, we have proposed a calibration protocol
in Sec III-B so that two REPLAB cells should in theory
share the exact same calibration matrix C mapping camera
coordinates to robot coordinates. We have constructed two
REPLAB cells using this procedure—the second cell inherits
the calibration matrix computed for the first cell. To evaluate
whether the cells are indeed constructed near-identically,
we collect a small dataset of 25 corresponding camera
and robot coordinate points pcam and parm in each cell
using a checkerboard (similar to correspondences used in
calibration). We then measure the average calibration errors
‖Cpcam − parm‖2 for each arm—if the cells are indeed
identical, calibration errors should be similar for both cells.
For the first and second cell respectively, the errors are
0.87 cm and 1.52 cm. Given a gripper of width 3 cm, this
difference is tolerable and in practice leads to the same
grasping behavior, as we show below.

To measure reproducibility in the context of grasping
evaluation, we evaluate the principal-axis grasping base-
line over three runs on each cell separately. Fig 5 shows
cumulative success rate (CSR) plots. As seen here, the
population of CSR curves is evenly matched across the two
cells.

C. Benchmark Baseline Performance

We now evaluate all five baselines on our grasping bench-
mark. First, our learning-based baselines pinto2016 and
full-image, trained on our dataset of random grasps,
yield 57.7% and 58.9% accuracy respectively on a balanced,
held-out validation dataset of sampled grasps.

Moving to on-robot evaluation, Fig 5 (middle) shows
the cumulative success rate (CSR) curve on seen objects.
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Fig. 5. (Left) Cumulative Success Rate (CSR) plots from three runs on each REPLAB cell for the principal-axis baseline. Quantitatively and
qualitatively, we observe very similar behavior on both cells with the same model, verifying the reproducibility of the REPLAB platform. (Middle)
Cumulative Success Rate (CSR) plots for all baselines on seen objects. The mean over three runs is plotted in the thick curves, while the faded lines show
individual runs for each method. (Right) Cumulative Success Rate (CSR) plots for all baselines on unseen objects. The mean over three runs is plotted in
thick curves, while the faded lines show individual runs for each method.

pinto2016 clears all 20 test objects each time, emerging as
the leading approach, followed by principal-axis, and
full-image. We believe that the advantage of pinto2016
over full-image comes from preprocessing the image
inputs to focus on the region of interest. In contrast,
full-image must learn this association between grasp pa-
rameters and image locations with only grasp success/failure
as supervision. full-image also requires a larger net-
work to process its larger inputs, making it more prone to
overfitting. We expect that this gap in performance will fall
as the size of the grasping dataset increases. Both learning
approaches pinto2016 and full-image also produce low-
variance CSR curves compared to principal-axis, which
is the third best approach. principal-axis relies heavily
on discovering objects through clustering, and has high vari-
ance early in evaluation runs when objects clump together.

Fig 5 (right) shows the CSR curves for unseen objects
that were not encountered during training. By design, our
unseen objects are significantly more complex shapes than
were seen at training time, as shown in Fig 2. Unsurprisingly,
all methods perform worse on this set. principal-axis
explicitly relies on objects having simple ellipsoidal geome-
tries, and struggles to handle these more complex shapes. The
learning-based approaches pinto2016 and full-image

fare marginally better during early grasp attempts, but their
ability to generalize to these objects is limited by the fact
that training data was collected using only objects with
relatively simple geometries—we found that a training set
of simple objects was important to ensure sufficient success
rate (about 20%) at data collection time so that there were
enough successful grasps in training data. We expect that
learning-based methods will benefit from a curriculum-based
approach for collecting a larger dataset, where the current
best policy may be deployed (with some exploration) to
collect data on increasingly more difficult objects.

Note that over all approaches and all trials reported in
Fig 5, the fastest clearance still takes over 40 attempts
to clear 20 objects. Together with the performance on the
unseen object set, this is a good sign for REPLAB as a
benchmark; reasonable baselines still have plenty of room

for improvement.
Finally, we perform a data ablation study on pinto2016,

evaluating only held-out validation accuracy on the seen
object grasps. With 5k, 10k, 15k, 25k, and 45k grasps,
accuracies are 55.1%, 55.2%, 58.3%, 59%, and 57.7% re-
spectively. The diminishing returns suggest that our dataset
is large enough to train this model for the seen objects.
However, we expect that more data would benefit larger
models, as well as the ability to generalize to unseen objects.
Our entire dataset will be available on the project webpage.

V. FUTURE WORK

We have proposed a fully standardized hardware stack on
which to develop reproducible evaluation procedures for ma-
nipulation tasks. To illustrate the use of such a platform, we
have described a grasping benchmark. One immediate short-
coming with the current platform in terms of its widespread
adoptability is the reliance on a specific robot arm supplier.
We plan to address this in future versions of the REPLAB
platform through a 3D-printable arm design. We also plan
to build upon this foundation by (i) inviting participation
through an open challenge, where leading methods on held-
out data validation accuracy would be evaluated on our
REPLAB cells, (ii) releasing full simulators for REPLAB
cells, and (iii) implementing more grasping approaches on
REPLAB.

We also plan to develop a larger challenge dataset for
grasping, and release open-source code for robotic control
approaches such as visual servoing, video prediction-based
model predictive control, and reinforcement learning on the
REPLAB platform. We invite other dataset and software
contributions from the robotics research community.
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