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Morphology-Agnostic Visual Robotic Control
Brian Yang∗1, Dinesh Jayaraman∗1,2, Glen Berseth1, Alexei Efros1, and Sergey Levine1

Abstract—Existing approaches for visuomotor robotic control
typically require characterizing the robot in advance by cal-
ibrating the camera or performing system identification. We
propose MAVRIC, an approach that works with minimal prior
knowledge of the robot’s morphology, and requires only a camera
view containing the robot and its environment and an unknown
control interface. MAVRIC revolves around a mutual information-
based method for self-recognition, which discovers visual “control
points” on the robot body within a few seconds of exploratory
interaction, and these control points in turn are then used
for visual servoing. MAVRIC can control robots with imprecise
actuation, no proprioceptive feedback, unknown morphologies
including novel tools, unknown camera poses, and even unsteady
handheld cameras. We demonstrate our method on visually-
guided 3D point reaching, trajectory following, and robot-to-
robot imitation.

Index Terms—Visual Learning, Visual Servoing, Visual Track-
ing

I. INTRODUCTION

AChild playing an arcade “claw crane” game must first
visually locate and recognize the claw robot they are

controlling, and learn how it responds to various control
commands—something they typically accomplish within a few
seconds of twiddling the joystick controller. Infants and some
animals also exhibit mirror self-recognition, the ability to
recognize one’s reflection in the mirror as tied to oneself [1],
[2]. In this paper, we ask: how might a robot perform efficient
self-recognition and how might this ability improve robotic
control?

Current robotic control methods typically require precise
knowledge of the robot’s configuration and kinematics, ob-
tained from accurate geometric models of its body, and joint-
level proprioceptive encoders. As an example, the degrees of
freedom of a standard robot arm are fully specified by its joint
angles, available through servomotor encoders. Given a target
pose, a controller can quite easily plan a trajectory of poses,
and servo to sequentially reach those poses.

Unfortunately, such proprioception-driven control methods
do not generalize to many important settings. What if the robot
were made of soft or deformable material, so that its degrees
of freedom are not easily enumerated, let alone measured?
Even for the rigid robot arm above, introduce, say, a pen into
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its gripper, and the position of its tip is now unknown and
therefore not possible to control.

Humans easily handle such control tasks by relying on rich
sensory feedback, such as from vision, rather than purely on
precise proprioception. This makes us less reliant on precisely
modeling our bodies and tools, and the richer visual space also
enables specifying and performing a larger class of tasks, such
as writing with an unfamiliar chalk piece, or catching a ball.

Existing image-based visual servoing (IBVS) approaches
attempt to bridge this gap by relying on visual feedback to
plan towards visual goals, but they require the robot to be
pre-specified in some way. For example, they may assume
that there exists a reliable detector for a point of interest such
as the end-effector of a robot arm, so that its position in the
camera view is known. To control a new robot, or the pen in
the gripper above, a new detector would have to be provided
by a human engineer, either by applying visual markers or by
training a visual detector with machine learning.

We propose MAVRIC, a self-recognition-enabled approach
to IBVS that works “out of the box” on arbitrary new or
altered robots with no manual specification of any points of
interest. In a self-recognition phase, the robot locates and
characterizes itself through exploratory actions, much like
the claw crane game player twiddling their joystick. We use
simple techniques to accomplish this: a mutual information
measure [3] evaluates the responsiveness of various points
in the environment, tracked using Lucas-Kanade optical flow
computation [4], to the robot control commands. The most
responsive points are then exploited in the control phase.
MAVRIC is lightweight, flexible, and fast to adapt, producing
responsive “control points” for a new robot within a few
seconds of interaction.

As we will show, MAVRIC handles settings that are chal-
lenging for today’s state-of-the-art robotic control approaches:
imprecise actuation, unknown robot morphologies, unknown
camera poses, novel unmodeled tools, and unsteady handheld
cameras.

II. RELATED WORK

Image-based visual servoing. Visual servoing methods [5],
[6], [7], [8], [9] perform feedback control to reduce an
error that is measured through camera observations. Specif-
ically, uncalibrated image-based visual servoing (IBVS) ap-
proaches [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23] typically estimate the differential re-
lationships between control inputs and changes in some visual
feature of interest, such as the pixel coordinates of the robot’s
end-effector in an uncalibrated camera view. Reinforcement
learning approaches have also been proposed for the IBVS
setting [24], [25], [26], [27], [28], [29].
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Fig. 1. MAVRIC first collects random exploration video for a few seconds, then computes scores for various tracked points corresponding
to their responsiveness to control inputs (shown in blue here). The top-few such points are then averaged (shown as the green point) treated
as the end-effector for visual servoing in control tasks.

All these IBVS methods produce controllers that are tied
to a single robot morphology in some way—for example,
they may require visual markers on the robot [20], [21], [22],
[23] or a large dataset of interactions specific to the current
robot morphology and environment [24], [26], [28], [29], [30],
[31], [25], [27]. In contrast, MAVRIC performs automatic self-
recognition to produce a controller that adapts to new or
altered robots within a few seconds.
Robotic self-recognition. Prior methods have been proposed
that learn to recognize the robot’s body. Michel et al [32]
use learned characteristic response delays between actions and
observed motion, and Natale et al [33] also exploit simple
temporal correspondences, relying on periodicity. Robot and
object keypoints may be discovered by training a keypoint
encoder for image reconstruction on a large image dataset [24],
or by weakly supervised multiple-instance learning from a few
minutes of video with and without an object of interest [34].
Byravan et al [35] demonstrate rigid robot link discovery by
training a dynamics model with appropriate inductive biases on
hundreds of thousands of depth frames annotated with ground
truth correspondences. Closest to MAVRIC, [36] use a mutual
information-based approach to recognize individual links, but
different from MAVRIC, they assume known aspects of the
robot’s morphology, such as the number of its links and the vi-
sual appearance of its body, and the correspondences between
action dimensions and the various servos on the robot, and also
rely on manually demonstrated robot poses during exploration.
Despite these advantages, they report requiring four minutes
of exploration, compared to about 20s for MAVRIC. They also
propose a different approach to tracking, which we empirically
compare against.

III. MORPHOLOGY-AGNOSTIC VISUAL CONTROL

We operate in the following setting: at each time step t, a
controller has access to raw RGBD image observations from
a camera, and the ability to set a d-dimensional control input
A(t) for the robot. The images contain the robot’s body as
well as other portions of its environment. We are interested
in performing visually guided control tasks, such as reaching
and trajectory-following.

To maximize generality, we make very few assumptions
about factors that are commonly treated as fully known in
robotic control: (i) We do not know the nature of the robot’s
embodiment, such as the degrees of freedom, rigidity, or

the number and lengths of links in a robot arm. (ii) For
the control interface, aside from the standard assumptions
made in uncalibrated visual servoing, we make one additional
assumption that the displacements of points on the robot are a
probabilistic function of the control commands. We make no
further assumptions about how the controls affect the robot.
We will revisit this point in Sec III-A. (iii) We do not assume
camera calibration.

Our approach, MAVRIC, works in two phases. In a self-
recognition phase (Sec III-A), it identifies the robot’s body
and represents it as trackable and characterizable “control
points,” through unsupervised interaction. In the control phase
(Sec III-B), it performs visual servoing to move these control
points along desired target trajectories.

A. Self-Recognition: Robot as Responsive Particles

In the self-recognition phase, we aim to resolve the question:
what is the body of the robot? In standard robotic control
settings, the body is a predefined, physically connected object
with rigid links. Since we do not assume a pre-specified body
in our setting, we first define the body in terms of a new notion
of “responsiveness.”

We start by decomposing the observable environment con-
taining the robot into “particles”— points in 3D space that
may or may not be part of its body. Each particle Pi has an
associated position Si(t) in RGBD camera coordinates (x, y,
depth) from our uncalibrated camera. The task of identifying
the body now reduces to assigning a binary label (body / not
body) to each such particle.

Responsiveness. We define the responsiveness of a particle as
the mutual information (MI) [3], [37] between its motions and
the control inputs. Specifically, we execute a random sequence
of exploratory control commands A(t) assign a non-negative
responsiveness score to each particle Pi:

Ri , I(∆Si;A), (1)

where ∆Si(t) = Si(t + 1) − Si(t) is the change in position
of Pi in response to A(t), and I(·; ·) is the MI between
two random variables. Ri is zero for points whose motion
is completely independent of A.

To understand this definition intuitively, note that
Ri = I(∆Si;A) = H(∆Si)−H(∆Si|A), where H(·) is
entropy and H(·|·) is conditional entropy. High responsiveness
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corresponds to low conditional entropy H(∆Si|A), i.e.,
changes in states are predictable given the control inputs.
At the same time, the state changes themselves should also
be sufficiently expressive, i.e., the unconditional entropy
H(∆Si) should be high. A fixed particle in the environment
would have zero H(∆Si|A), but also zero H(∆Si), so it
would have zero responsiveness.

Alternatively, since MI is symmetric, Ri may also be
written as H(A) − H(A|∆Si). Since H(A) is the same
for all particles, high responsiveness corresponds precisely to
low conditional entropy H(A|∆Si): control inputs A should
be easily recoverable given the state changes ∆Si. This is
consistent with the intuition for discovering “contingent image
regions” in Atari games used in Choi et al [38].

Body and control points. We define the “body” Bδ of a
robot as the set of particles whose responsiveness is higher
than some threshold δ: Bδ , {Pi : Ri > δ}. We call the
constituent particles of this set “control points.”

First, does this definition align with our intuitive notion
of a robot’s body? Should all points on a robot body be
“responsive”, i.e., do their displacements ∆S have high MI
with the control inputs A? For this to hold, ∆S must be a
probabilistic function of A, i.e., a fixed control input must
induce a fixed distribution over ∆S. This is true for velocity
control commands as long as the states S explored during the
self-recognition phase lie within a small neighborhood. For
example, consider a single motor controlling a rigid rod, as
in Fig 2 (left). A small angular shift ∆θ in the servomotor
corresponds to a displacement r∆θ for a particle at a distance
r along the rod, in a direction perpendicular to the current
orientation of the rod. With a significantly different orientation
of the rod, the same angular shift would produce a very
different displacement.

To account for this, our experiments employ velocity control
and a small number of small exploration actions, so that all
exploration happens within a small state neighborhood. As we
will show empirically, this yields good performance.

Most responsive control point (MRCP). We now define
the most responsive control point (MRCP) P ∗ as the particle
with the highest responsiveness R∗ = maxiRi. Its position is
henceforth denoted S∗(t). In practice, we average the positions
of the top-k most responsive particles to compute a robust
MRCP. The MRCP is the point that is most responsive to
control, which intuitively corresponds to highest maneuver-
ability or dexterity. For this reason, it may be treated as the
end-effector. Fig 2 shows images of various settings from our
experiments, with manual annotations of the end effector point
and region that we evaluate the MRCP against.

As an example, consider a hammer held firmly in the
gripper of a robotic arm. It is very responsive to the arm’s
control inputs, and may even contain the MRCP. Replacing the
hammer with a loose rope, the rope would be less responsive,
and the MRCP would be in the gripper instead.

Handling rigid objects. Points on a rigid object, such
as a single link of a standard arm, all exhibit the same
motion, modulo an invertible affine transformation. Mutual
information is known to be invariant under such smooth,

invertible mappings, a.k.a. homeomorphisms (see Kraskov et
al [39] for a simple proof). This in turn means that points
on a rigid object all have the same responsiveness score. For
example, for a rigid rod pivoted at one end as in Fig 2, the
midpoint of the rod is just as responsive to any forces applied
to the rod as the end of the rod.

To break such ties, we preferentially select points with
larger motions. We do this by exploiting the fact that, although
mutual information is insensitive to the scale of motion under
infinite precision, any loss of precision leads naturally to a
preference for large motions. We add Gaussian noise to ∆Si
in Eq. 1 to artificially lower the precision and express this
preference for large motions.

Note however that it is not always the case that particles
that are near the periphery or which move the most are MRCP
points. For example, if the last link of a robot arm is broken
so that it moves randomly, it might very well have a lower
responsiveness score than the previous link.

Implementation details. Fig 1 shows a schematic of the
MAVRIC self-recognition phase. For tracking the positions Si(t)
of particles over time, we use the Lucas-Kanade optical flow
estimator [4]. We only consider points that last the full duration
of the exploration actions. We use the mutual information
estimator proposed in [39], as implemented in [40]. In our
experiments, control points on a robot arm are discovered
within 20 seconds of exploration, sufficient to execute about
100 randomly sampled small actions. Finally, since we are
primarily interested in the MRCP for control, we adopt a
coarse-to-fine search strategy: In the coarse stage, we initialize
point tracking with Shi-Tomasi corner points [41], compute
responsiveness scores and select the top-k candidate particles.
In the fine stage, we reinitialize tracking with a grid of 15x15
points around each of the selected candidates, and recompute
responsiveness scores. The only important hyperparameter
in all the above is the noise variance for handling rigid
objects. Our experiments in Sec IV-A study this and other
implementation details such as coarse-to-fine search. Fig 3
shows an example of the various stages of MRCP identification
with a handheld, shaky camera.

Finally, the Lucas-Kanade tracker often drops particles over
time, especially under occlusions. Since MAVRIC is able to
work with very short exploration phases in our experiments,
the effect of dropped particles is mitigated. However, improved
tracking, such as through articulated motion segmentation
approaches [42], or by using multiple cameras, may improve
robustness.

B. Visual Servoing in MRCP Coordinates

Once the MRCP is identified, MAVRIC performs visual
servoing for control to transport the MRCP point S∗ to a
specified goal point G. This is appropriate for tasks like
reaching and pushing, which are normally performed by hand-
specified end-effectors in standard control settings.

We use online regression to fit (A,∆S∗) tuples to es-
timate local Jacobian matrices “on the fly,” using Broyden
updates [12]: Ĵt = Ĵt−1 + (∆St − Jt−1At)ATt /‖At‖2.
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Fig. 2. Manual annotations to illustrate the end-effector point (green point) and region (red outline) in different settings: a schematic single
link robot (leftmost), followed by our experimental setups with various tools held in a robot arm.

exploration video sparse responsiveness new track seeds dense responsiveness final MRCP (top-15)

Fig. 3. [Best seen in pdf] Self-recognition for MRCP search illustrated on data from a handheld, shaky camera. Frame 1 shows the camera
view of the robot during exploration. Frame 2 shows the results of coarse tracking on the exploration video, where the track points overlaid
on the image are colored more green if they are more responsive. Frame 3 shows how fine tracking is initialized on the same video around
most responsive tracks from the coarse stage, and Frame 4 shows surviving tracks after the fine stage of MRCP search. Frame 5 shows the
final result, with the top-15 control points in green and their average position in red. Video in Supp.

The new control input At for the current step is then
computed quickly and cheaply using the pseudoinverse of
the Jacobian, as At = ηĴ†t (G − S∗(t)), where η is a rate
hyperparameter. Once At is executed and the new position
S∗ is measured, the Jacobian matrix is updated as above,
and the process repeats until S∗ ≈ G. The Broyden update
above is susceptible to noise, since it only uses a single ∆St
measurement, hence we apply a batched update comprising
the last T tuples of (Aτ , ∆Sτ ) as proposed in [13]. In our
experiments, we set T = 10.

The Jacobian matrix initialization J0 is computed as fol-
lows: we start at a random arm position, sequentially set the
control inputs Ai to scaled unit vectors εei along each control
dimension, and set the i-th column of J0 to the response
∆Si/ε. In our experiments, we repeat this initialization pro-
cedure whenever servoing has failed to get closer to the target
in the last 20 steps.

Handling tracking failures. The above discussion of
visual servoing depends on reliably continuing to track the
MRCP throughout the servoing process. In practice, tracking
is imperfect, and the control points are often dropped midway
through the task due to occlusions, lighting changes etc. For
robustness to such errors, we take the MRCP to be the average
of the K = 15 most responsive control points. If any one point
is dropped by the tracker during servoing, the MRCP is set
to the average of the remaining points. The larger K is, the
greater is the robustness to dropped points, and the lower is
the precision in end effector localization since those K points
would be spatially more scattered. In our studies, K = 15
sufficed for robust MRCP detection, so we study lower K in
experiments.

IV. EXPERIMENTS

We perform experiments using the REPLAB standardized
hardware platform [43], [44] with an imprecise low-cost

manipulator (Trossen WidowX) and an RGB-D camera (Intel
Realsense SR300). We evaluate how well MAVRIC’s self-
recognition phase works under varied conditions, and also the
overall effectiveness of MAVRIC for visuomotor servoing tasks.
We will release REPLAB-compatible code upon acceptance
for reproducibility.

A. Self-Recognition: Discovering End Effectors, Tools, and
Robot Morphology

First, we evaluate MAVRIC’s self-recognition phase, de-
scribed in Sec III-A. Specifically, we measure its accuracy
at locating the robot’s end-effector or the tool held in its
gripper, with four different tools – pliers, wrench, marker,
pencil, shown in Fig 2.

Simulation. In simulation, we evaluate MAVRIC with perfect
actuation and tracking, as a sanity check. We use a simulated
Baxter robot, and perform 100 small exploratory control com-
mands during the self-recognition phase. In our experiments,
we precisely identified the end-effector with zero error every
single time in this setting.

Real-world experiments. Next, we evaluate our approach on
real-world REPLAB cells with noisy tracking and actuation.
In each run, a sequence of 100 random exploratory control
commands are executed, which requires about 20 seconds.
Fig 5 shows some example results of detected control points
and MRCP points in each setting.

We quantitatively evaluate how closely MAVRIC’s MRCP
matches the manually annotated “true end-effector” of the
robot. We annotate an end-effector region as well as a single
end effector point in each setting. Example annotations are
shown in Fig 2: the end-effector region includes the entire tool
or the entire last link of the robot, and the end-effector point
is more subjectively chosen for each tool based on how it is
typically used, e.g., for the pencil and the marker, we annotate
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its tip. We evaluate several design decisions in MAVRIC: 1-
stage vs 2-stage (coarse-to-fine) MRCP search, values of K
for top-K control point selection, and values of noise variance
added to point tracks before responsiveness computation. No
prior work studies self-recognition in as general settings as
ours, and the closest approaches [36], [33], [32] do not have
public implementations. In lieu of prior work, we introduce a
simple baseline that selects the points that move the largest
distance over exploration (“Max-motion”). We compare later
against our implementation of Edsinger et al [36]’s tracking
approach.

Fig 4 shows these quantitative results. Max-motion peforms
very poorly in nearly all settings, while most variants of
MAVRIC get close to perfect end-effector region identification
success rate. Max-motion has a number of conceptual weak-
enesses, since it cannot distinguish between intentional and
accidental motion, and is vulnerable to moving distractors.
However, even in experiments without such distractors, we
find that Max-motion often fails due to sensitivity to noisy
sensing and tracking (examples in Supp).

The end-effector point identification error plot (Fig 4, bot-
tom) provides a clearer comparison of the MAVRIC ablations,
labeled A through H in the legend. Comparing A and C
(1-stage vs. 2-stage search), it is clear that coarse-to-fine
MRCP search has a big impact on self-recognition success.
Comparing B, C, D, E, and F (increasing noise variance), it
is clear that a small amount of noise improves outcomes, but
performance deteriorates when the noise is too high. Finally,
comparing G, H, and C (top 1 vs top 5 vs top 15 control
points), top 15 performs best in most cases. For all remaining
experiments, we use variant E (2-stage, noise variance 1.6, and
top 15 control point selection). Fig 5 shows examples of the
detected MRCP from various runs under various settings. Fig 6
shows examples of the effect of noise on MRCP detection
with the marker tool, clearly illustrating how higher noise
variance biases towards selecting points closer to the tip of the
marker. In our experiments, MAVRIC performed qualitatively
well across all these settings, consistently identifying point
close to the tooltips. The end-effector error is also a function
of the geometry of the end-effector. For example, in the no-
tool case, the parallel jaw gripper has two fingers with a gap
in the middle, which is where we annotate the end effector
point (see Fig 2). However, only points on the physical robot
can be control points, so this is an additional source of error.

We also quantitatively evaluate self-recognition in two ad-
ditional settings: an amputated version of the robot arm, with
the last two links removed, and a shaky handheld camera.
Fig 7 shows the errors. Once again, 2-stage MAVRIC works
best. Fig 3 shows various steps during self-recognition with the
handheld camera. Fig 5 includes an example in the amputated
arm setting.

Moving distractors. Next, we evaluate self-recognition with
moving distractors by evaluating it on videos with two robots,
where one of the robots is controlled by our method, while
the other arm, a decoy moves independently, thereby creating a
moving distractor. We create such videos by spatially concate-
nating two separate exploration videos, so that both arms are

moving using the same random motion scheme. Fig 8 shows
an example result. MAVRIC correctly selects the end-effector of
the correct arm, based on which arm’s control commands it
receives as input. See Supp for example videos. Max-motion
does not have any control inputs, so it produces the same
prediction in both cases.

Tracking. We now compare against an alternative tracking
scheme. Edsinger et al [36] track moving objects for self-
recognition by finding image patches that match the expected
appearance of the robot and clustering them based on appear-
ance. We implement their tracking scheme for self-recognition,
so that the output is an image patch tracked through the video,
representing the end-effector. On the same “no-tool” videos
where MAVRIC correctly identifies the end-effector 10 out of
10 times, this method produces an output image patch that is
centered on the end-effector only 2 out of 10 times. Further,
since this clustering scheme relies on appearance similarities,
it completely breaks down in the moving distractors setting
above, where multiple identical-looking robots are present
— the same appearance cluster teleports across the different
robots, making responsiveness computation extremely noisy.

Self-recognition phase duration. While the above results are
based on a 100-time step self-recognition phase (approx. 20 s),
how much faster could this phase be? We evaluate end-effector
identification with even fewer exploration steps in Fig 7, which
shows that performance deteriorates gracefully under shorter
exploration sequences.

Evaluating control points. While the above results evaluate
end-effector identification alone, MAVRIC finds control points
all along the robot body. We now annotate the full robot body
to evaluate whether these discovered control points are indeed
on the robot body. Treating points on the robot body as ground
truth positives, and those outside as negatives, Fig 7 (d) shows
the precision-recall plot as the threshold δ on the responsive-
ness scores are varied (“MAVRIC w/o outlier removal”): while
the precision is very high at low recall, it drops off quickly.
This is intuitive: the lower the true responsiveness, the more
noisy the measurements are. We expect that less responsive
control points would benefit from a longer self-recognition
phase. However, even with 20 seconds, it is possible to filter
the points to improve the precision-recall performance. We
perform simple outlier removal as follows: we measure the
2D position variance of each candidate track over the length
of self-recognition, and set a heuristic threshold on this value,
below which points are discarded. This simple outlier removal
scheme proves sufficient to significantly improve precision-
recall, as shown in Fig 7 (d). These control points may then be
clustered based on spatial coherence to discover various links
of a rigid robot, and their associated responsiveness scores.
Fig 7 (c) shows an example. We use K-means clustering
(K = 10) on position history features.

Please see Supp for videos demonstrating self-recognition
in still more varied settings, including different robot config-
urations, lighting conditions, and more tools.
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Fig. 4. [Best seen in pdf] (Top) End-effector region identification success rate (higher is better), and (Bottom) End-effector identification
error (in cm, lower is better) in various settings for the maximum-motion baseline, and various ablations of our method. Note that max-motion
performs very poorly in most situations (average error 8.8 cm): the error axis is clipped at 6 cm here. Among ablations of MAVRIC, we
study three hyperparameters: number of stages of end-effector ID (default: 2), noise variance (in squared pixel units) before responsiveness
computation (default: 1.6), number of top points averaged to compute the MRCP (default: 15).

no tool pencil pliers wrench amputated

Fig. 5. [Best seen in pdf] MRCP identification in various settings. In each setting, the red point is the MRCP, computed as the average of
the 15 most responsive points, shown in green. Please see videos in Supp. Fig 2 presents the ground truth end effector annotations used to
evaluate these settings.

variance 0.0 variance 0.4 variance 0.8 variance 1.6

Fig. 6. [Best seen in pdf] (Left to right) Original image of the arm with a marker tool, followed by MRCP identification with various values
of noise variance. As noise increases, the MRCP points move closer towards the marker tip.

(a) (b) (c) (d)

Fig. 7. [Best seen in pdf] (a) Self-recognition performance with shorter exploration phases, (b) Self-recognition with an amputated arm
and a handheld camera, (c) Discovery of robot arm links from self-recognition phase data: tracks assigned to different clusters are colored
differently. (d) Precision-Recall plot for control points.
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video 1, left arm control inputs video 1, right arm control inputs

Fig. 8. The moving distractors test: given the same video of two arms operating side by side (produced by concatenating individual frames
side-by-side from two exploration videos), MAVRIC correctly ignores the decoy arm and selects the arm that is being controlled based on
which control input sequence it receives as input. (left) MAVRIC is fed the left arm’s controls, and it selects the MRCP (red point) on the
left arm’s end effector. (right) With right arm’s control inputs, MAVRIC selects the right arm’s end effector.

TABLE I
3D POINT-REACHING ERROR AND EARLY TERMINATION RATE (ETR) DURING VISUAL SERVOING FOR POINT REACHING

Method no-tool wrench pliers pencil marker average
error (cm) ETR (%) error (cm) ETR (%) error (cm) ETR (%) error (cm) ETR (%) error (cm) ETR (%) error (cm) ETR (%)

ROS MoveIt 4.4 - - - - - - - - - - -
Oracle VS 1.2 100 2.3 90 2.2 100 2.2 30 3.6 80 2.3 80
MAVRIC 4.4 60 3.5 70 5.7 90 6.8 60 5.9 60 5.2 68

B. Visually Guided Servoing

We now demonstrate controllability using two basic control
tasks involving our automatically localized end-effectors: 3D
point reaching, and trajectory following. Then, we show how
MAVRIC enables robot-to-robot imitation.
3D point reaching. We now evaluate MAVRIC (self-
recognition + servoing) on 3D-point reaching tasks. We set 9
goal positions in the RGBD camera view at varying elevations
and azimuths centered at the end effector’s initial position at a
distance of about 15 cm. We compare MAVRIC to two methods
that have access to additional manually specified information:
“Oracle VS,” which servos a manually annotated end effector
using the same visual servoing approach (based on [12], [13])
as our method, and “ROS MoveIt” [45] which has knowledge
of the full robot morphology and kinematics models, camera
calibration matrices, and proprioception. We allow a maximum
of 150 steps.

Tab I reports (i) median 3D distance error of the man-
ually annotated end effector point from the goal, and (ii)
early termination rate (ETR). Early termination is triggered
whenever the MRCP has reached within a 5 px radius of the
goal — in our experiments, this is a good proxy for servoing
success. ROS MoveIt cannot control unmodeled tools, so we
report its performance only in the no-tool setting. Its error is
higher than Oracle VS; this may be due to WidowX robot
model inaccuracy, servo encoder position errors, and camera
calibration error. Oracle VS does well in most settings, and
MAVRIC takes slightly longer (lower ETR), but its error is
within 3 cm of Oracle VS — in our experiments, this is largely
explained by the end-effector point identification error (Fig 4)
from the self-recognition stage. We use standard techniques
for visual servoing (Sec III-B), and Oracle VS and MAVRIC

both inherit common problems of these methods, such as
local minima and singularites during Jacobian estimation. This
sometimes results in failures with unbounded errors — we
report the median error to discard these.

Trajectory following. Aside from single point reaching,
we may also servo to follow a trajectory. In Supp, we show

Fig. 9. [Best seen in pdf] Robot-to-robot imitation with MAVRIC.
In both video frames, cyan represents the next target, white points
are future targets, and black points are previously reached targets.
(left) A video frame of a source robot draws the letter C — in this
case, we used MAVRIC to perform this task with visual servoing
for trajectory-following. (right) A video frame of the target robot
imitating the motions of the source robot. Full video in Supp.

videos demonstrating MAVRIC writing the letter “C” onto the
projected view of the camera through 2D trajectory following,
with different robots. Fig 9 (left) shows one such video frame.

Robot-to-robot imitation. Consider a source robot with
unknown morphology and kinematics that is performing a
writing task — perhaps it has been trained for days using
an RL approach [27]. How might a target robot, also with
unknown morphology and kinematics, perform the same task?
This requires visually mapping the embodiment across these
two robots, with very little data — we know of no prior
approach that might accomplish this. Using MAVRIC, we map
the automatically discovered MRCP of the source robot to
that of the target, and perform imitation by servoing the target
MRCP along the observed trajectory of the source MRCP.
Fig 9 shows frames from the result videos (full videos in
Supp). Here, the source and target robots are both WidowX
arms, with different robot and camera poses, and different
illumination.

V. DISCUSSION

We have presented MAVRIC, an approach that performs
fast robot body recognition and uses this to accom-
plish morphology-agnostic visuomotor control. Reinforcement
learning-based approaches operating in the same setting typ-
ically require days of robot data [24], [26], [27], [29], [27],
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[25], compared to 20s for MAVRIC — we know of no other
methods that can perform visuomotor control without knowl-
edge of kinematics or morphology on similar timescales to
MAVRIC. We have demonstrated MAVRIC across diverse settings,
with various tools, shaky camera views etc. However, our val-
idation of MAVRIC has been limited to coarse control for basic
tasks due to various limitations: end-effector self-recognition
error (average 2 cm), point tracking failures under occlusions,
noisy depth sensing causing poor Jacobian estimates, and well-
known issues with visual servoing [46], [6], [47], [48]. We
hope to address these in future work by moving to multi-
camera setups, using longer exploration phases, using better
tracking algorithms, and better depth sensors. MAVRIC may also
be extended to handle settings with multiple end-effectors such
as a multi-fingered hand.
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