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the matrix equation Ax= 8. Even though T and A are conceptually
different, we sometimes refer to the nullspace of T as the nullspace of A.

Similarly, we define range(A)  b range(T).
Suppose A is square (m = n) and invertible; then the equation TX = Ax

= y has a unique solution x = A- ‘y for each y in W x ‘. But T- ’ is defined
as precisely that transformation which associates with each y in W x ’ the
unique solution to the equation TX= y. Therefore, T is invertible, and T- ’ :

is given by T- ‘y 2 A- ‘y.
The properties of matrix multiplication (Appendix 1) are such that

A(ax, + bx,) = aAx,  + bAx,. That is, matrix multiplication preserves linear
combinations. This property of matrix multiplication allows superposition
of solutions to a matrix equation: if x1 solves Ax= y, and x2 solves Ax =y2,
then the solution to Ax= y, +y2 is x, +x2.  From one or two input-output
relationships we can infer others. Many other familiar transformations
preserve linear combinations and allow superposition of solutions.

Definition. The transformation T: V+G2l(j  is linear if

T(ax, + bx2) = aTx, + bTx, (2.32)

for all vectors x1 and x2 in II‘ and all scalars a and b.

Example 1. Integration. Define T: C?(O, l)+(?(O, 1) by

(Tf)(t)  A i*f(s)ds (2.33)

for all f in e(O, 1) and all t in [0, I]. The linearity of this indefinite integration
operation is a fundamental fact of integral calculus; that is,

The operator (2.33) is a special case of the linear integral operator T: C? (a, b)-+
(? (c, d) defined by

(2.34)

for all f in e(a,b) and all t in [c,d]. We can substitute for the domain e(a,b) any
other space of functions for which the integral exists. We can use any range of
definition which includes the integrals (2.34) of all functions in the domain. The
function k is called the kernel of the integral transformation. Another special case
of (2.34) is T: h( - 00, oo)+ h( - co, cc) defined by
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for some g in I.Q - co, oo), all f in C,( - cc,  co),  and all t in (- co, 00).  This T is
known as the convolution of f with the function g. It arises in connection with the
solution of linear constant-coefficient differential equations (Appendix 2).

The integral transformation (2.34) is the analogue for function spaces
of the matrix multiplication (2.31). That matrix transformation can be ex-
pressed

(Tx)~~  i Ati6 i = l,...,m
j- 1

(2.35)

for all vectors x in wx i. The symbol .$ represents the jth element of x;
the symbol (TX)i  means the ith element of TX. In (2.35) the matrix is
treated as a function of two discrete variables, the row variable i and the
column variable j. In analogy with the integral transformation, we call the
matrix multiplication [as viewed in the form of (2.35)] a summation
transformation; we refer to the function A (with values A& as the kernel of
the summation transformation.

Example 2. Differentiation Define D: @(a, b)+e (a, b) by

(Df)(t) i f’(t) i lim
f(t+At)-f(t)

At+0
dt (2.36)

for all f in @(a,b)  and all t in [a,b]; f’(t) is the slope of the graph of f at t; f’ (or
Df) is the whole “slope” function. We also use the symbols i and r<‘) in place of Df.
We can substitute for the above domain and range of definition any pair of
function spaces for which the derivatives of all functions in the domain lie in the
range of definition. Thus we could define D on E!(a, b) if we picked a range of
definition which contains the appropriate discontinuous functions. The nullspace
of D is span{ l}, where 1 is the function defined by l(t)= 1 for all t in [a,b].  It is
well known that differentiation is linear; D(clf,  + czfi) = clDf, + c2Df2.

We can define more general differential operators in terms of (2.36). The general
linear constant-coefficient differential operator L: c3” (a, b)-+ C? (a, b) is defined, for
real scalars { ai}, by

LiDn+aJY-‘+ -.a +a,1 (2.37)

where we have used (2.27) and (2.28) to combine transformations. A variable-
coefficient (or “time-varying”) extension of (2.37) is the operator L: E? (a, b)
+e(a,b)  defined by*

(Lf)(t)  : g&)fyt)+g~(t)f(“-‘)(t)+  ” l +g,(t)f(t) (2.37)

*Note that we use boldface print for some of the functions in (2.38) but not for others. As
indicated in the Preface, we use boldface print only to emphasize the vector or transformation
interpretation of an object. We sometimes describe the same function both ways, f and J
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for all f in C?” (a, b) and all t in [a,b]. (We have denoted the kth derivative Dkf by
fck).) If the interval [a, b] is finite, if the functions gi are continuous, and if go(t)# 0
on [a,b], we refer to (2.38) as a regular n th-order differential operator. [With
go(t)  +O, we would lose no generality by letting go(t)  = 1 in (2.38).] We can apply
the differential operators (2.37) and (2.38) to other function spaces than (?” (a, 6).

Example 3. Evaluation of a Function. Define T: e(a, b)+ 3’ by

Tf 9 f(t,) (2.39)

for all f in the function space C? (a, b). In this example, f is a dummy variable, but
is not. The transformation is a linear functional called “evaluation at t,.” The range
of T is %,‘;  T is onto. The nullspace of T is the set of continuous functions which
pass through zero at t,. Because many functions have the same value at tl, T is not
one-to-one. This functional can also be defined using some other function space for
its domain.

Example 4. A One-Sided Laplace Transform, t?. Suppose % is the space of
complex-valued functions defined on the positive-real half of the complex plane.
(See Example 10, Section 2.1.) Let Ir be the space of functions which are defined
and continuous on [0, co] and for which e -“‘If(t)1 is bounded for some constant c
and all values of t greater than some finite number. We define the one-sided
Laplace transform I?: Y+% by

(ef)(s)  i ime-sf f(t)dt (2.40)

for all complex s with real(s) > 0. The functions in Y are such that (2.40) converges
for real(s)>O.  We sometimes denote the transformed function Bf by F. This
integral transform, like that of (2.34), is linear. The Laplace transform is used to
convert linear constant-coefficient differential equations into linear algebraic equa-
tions. l

Exercise 1. Suppose the transformations T, U, and G of (2.27) and (2.28)
are linear and T is invertible. Show that the transformations aT+ bU, GT,
and T-l are also linear.

Exercise 2.  Let Ir be an n-dimensional linear space with basis 5%.
Define T: ‘v-, 9Lnx * by

TX i [xl% (2.41)

Show that T, the process of taking coordinates, is a linear, invertible
transformation.

*It can be shown that [ Ii!(D#Y)(s)-f(O’),  where f(O+) is the limit of f(t) as t+O
from the positive side of 0.
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The vector space V of Exercise 2 is equivalent to %Yx ’ in every sense
we might wish. The linear, invertible transformation is the key. We say two
vector spaces Ir and % are isomorphic (or equivalent) if there exists an
invertible linear transformation from Y into G2K. Each real n-dimensional
vector space is isomorphic to each other real n-dimensional space and,
in particular, to the real space w” ‘. A similar statement can be made
using complex scalars for each space. Infinite-dimensional spaces also
exhibit isomorphism. In Section 5.3 we show that all well behaved infinite-
dimensional spaces are isomorphic to Zz.

Nullpace and Range—Keys to Invertibility

Even linear transformations may have troublesome properties. In point of
fact, the example in which we demonstrate noncommutability and
noncancellation of products of transformations uses linear transformations
(matrix multiplications). Most difficulties with a linear transformation can
be understood through investigation of the range and nullspace of the
transformation.*

Let T: ?f+% be linear. Suppose x,, is a vector in the nullspace of T
(any solution to TX= 0); we call xh a homogeneous solution for the
transformation T. Denote by x. a particular solution to the equation
TX = y. (An xP exists if and only if y is in range(T).)  Then xP + axh is also a
solution to TX= y for any scalar (II. One of the most familiar uses of the
principle of superposition is in obtaining the general solution to a linear
differential equation by combining particular and homogeneous solutions.
The general solution to any linear operator equation can be obtained in
this manner.

Example 5. The General Solution to a Matrix Equation. Define the linear opera-
tor T. 9R,2xx+31t2x1 b. Y

Then the equation

Tx=(;  :,(;;)=(;)& (2.42)

has as its general solution x = ( ). A particular solution is xP = (1 0)T. The2 -2
nullspace of T consists in the vector x,, = (-1 2)T and all its multiples. The general
solution can be expressed as x=xP  + ax,, where a is arbitrary. Figure 2.7 shows an

of*See Sections 4.4 and 4.6 for further insight into noncancellation and noncommutability
linear operators.
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Figure 2.7. Solutions to the linear equation of Example 5.

arrow-space equivalent of these vectors. The nullspace of T is a subspace of 9R,2x *.
The general solution (the set of all solutions to TX = y) consists of a line in ‘5X2”  ‘;
specifically, it is the nullspace of T shifted by the addition of any particular
solution.

The nullspace of a linear transformation is always a subspace of the
domain V. The freedom in the general solution to TX= y lies only in
nullspace(  the subspace of homogeneous solutions. For if 4 is another
particular solution to TX= y, then

T@p -$)=Tx,-T$,=y-y=8

The d i f fe rence  be tween  xP and  $ i s  a  vec to r  in  nullspace(  If
nullspace = 8, there is no freedom in the solution to TX = y; it is unique.

Definition. A transformation G: v+ % is nonsingular if .nullspace(G)  =
8.

Exercise 3. Show that a linear transformation is one-to-one if and only if
it is nonsingular.

Because  a  l inear  t r ans format ion  T: V+ % prese rves  l i nea r
combinations, it necessarily transforms 8, into 8,. Furthermore, T acts
on the vectors in Y by subspaces—whatever T does to x it does also to cx,
where c is any scalar. The set of vectors in ‘Y which are taken to zero, for
example, is the subspace which we call nullspace( Other subspaces of Ir
are “rotated” or “stretched” by T. This fact becomes more clear during our
discussion of spectral decomposition in Chapter 4.
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Example 6. The Action of a Linear Transformation on Subspaces. Define T:

CR3+9L2  by T([,,c2,[3)  i (t3,0). The set {xi = (l,O,O), x2=(0,  1,O)) forms a basis for
nullspace( By adding a third independent vector, say, x3 = (1, 1, 1), we obtain a
basis for the domain 913. The subspace spanned by {xi,x2} is annihilated by T.
The subspace spanned by {x3}  is transformed by T into a subspace of —the
range of T. The vector x3 itself is transformed into a basis for range(T).  Because T
acts on the vectors in a3 by subspaces, the dimension of nullspace is a measure
of the degree to which T acts like zero; the dimension of range(T) indicates the
degree to which T acts invertible. Specifically, of the three dimensions in a3, T
takes two to zero. The third dimension of $R3 is taken into the one-dimensional
range(T).

The characteristics exhibited by Example 6 extend to any linear trans-
formation on a finite-dimensional space, Let T: V+% be linear with
dim(V)  = n. We call the dimension of nullspace  the nullity of T. The
rank of T is the dimension of rangem.  Let {xi,. . . ,xk} be a basis for
nullspace(  Pick vectors {xk+ r, . . . ,xn} which extend the basis for
nullspace  to a basis for ‘?f (P&C 2.9).  We show that  T takes
{JQ+p..., x,,}  into a basis for range(T).  Suppose x= ctx, + l . . + cnxn is an
arbitrary vector in ‘v. The linear transformation T annihilates the first k
components of x. Only the remaining n-k components are taken into
range(T).  Thus the vectors {TX,, ,, . . . ,Tx,} must span range(T).  To show
that these vectors are independent, we use the test (2.11):

Since T is linear,

T(&+~JQ+~+.-  +5,x,)=@,

Then &+1xk+1+  l . . + 5;1x,,  is in nullspace(  and

sk+l%+l +**a +&Xn=dlXl+- +dkXk

for some { di}.  The independence of {x1,.  . . , xn} implies d, = . . . = dk = &+ 1
= . . . =&=O;  thus {Txk+t,..., TX,}  is an independent set and is a basis

for range(T).
We have shown that a linear transformation T acting on a finite-

dimensional space V obeys a “conservation of dimension” law:

dim{ v) = rank(T)  + nullity(T) (2.43)

Nullity(T)  is the “dimension” annihilated by T. Rank(T)  is the “dim-
ension” T retains. If nullspace  = { 8 }, then nullity(T) = 0 and rank(T)
= dim(V).  If, in addition, dim( %) = dim(V),  then rank(T)  = dim( ‘?$) (T is
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onto), and T is invertible. A linear T: V+ % cannot be invertible unless
dim(w) = dim( Ir).

We sometimes refer to the vectors xk+ ,, . . . ,x, as progenitors of the range
of T. Although the nullspace and range of T are unique, the space spanned
by the progenitors is not; we can add any vector in nullspace to any
progenitor without changing the basis for the range (see Example 6).

The Near Nullpace

In contrast to mathematical analysis, mathematical computation is not
clear-cut. For example, a set of equations which is mathematically
invertible can be so “nearly singular” that the inverse cannot be computed
to an acceptable degree of precision. On the other hand, because of the
finite number of significant digits used in the computer, a mathematically
singular system will be indistinguishable from a “nearly singular” system.
The phenomenon merits serious consideration.

The matrix operator of Example 5 is singular. Suppose we modify the
matrix slightly to obtain the nonsingular, but “nearly singular” matrix
equation

(2.44)

where c is small. Then the arrow space diagram of Figure 2.7 must also be
modified to show a pair of almost parallel lines. (Figure 1.7 of Section 1.5
is the arrow space diagram of essentially this pair of equations.) Although
the solution (the intersection of the nearly parallel lines) is unique, it is
difficult to compute accurately; the nearly singular equations are very ill
conditioned. Slight errors in the data and roundoff during computing lead
to significant uncertainty in the computed solution, even if the computa-
tion is handled carefully (Section 1.5). The uncertain component of the
solution lies essentially in the nullspace of the operator; that is, it is almost
parallel to the nearly parallel lines in the arrow-space diagram. The above
pair of nearly singular algebraic equations might represent a nearly singu-
lar system. On the other hand, the underlying system might be precisely
singular; the equations in the model of a singular system may be only
nearly singular because of inaccuracies in the data. Regardless of which of
these interpretations is correct, determining the “near nullspace” of the
matrix is an important part of the analysis of the system. If the underlying
system is singular, a description of the near nullspace is a description of
the freedom in the solutions for the system. If the underlying system is just
nearly singular, a description of the near nullspace is a description of the
uncertainty in the solution.
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Definition. Suppose T is a nearly singular linear operator on a vector
space v. We use the term near nullspace of T to mean those vectors that
are taken nearly to zero by T; that is, those vectors which T drastically
reduces in “size.“*

In the two-dimensional example described above, the near nullspace
consists in vectors which are nearly parallel to the vector x = (-1 2)T. The
near nullspace of T is not a subspace of ‘v. Rather, it consists in a set of
vectors which are nearly in a subspace of ‘v. We can think of the near
nullspace as a “fuzzy” subspace of ?r.

We now present a method, referred to as inverse iteration, for describing
the near nullspace of a nearly singular operator T acting on a vector space
V. Let ~0 be an arbitrary vector in Ir. Assume xa contains a component
which is in the near nullspace of T. (If it does not, such a component will
be introduced by roundoff during the ensuing computation.) Since T
reduces such components drastically, compared to its effect on the other
components of ~0, T-’ must drastically emphasize such components.
Therefore, if we solve TX, = xa (in effect determining x1 =T- ‘xJ, the
computed solution xi contains a significant component in the near
nullspace of T. (This component is the error vector which appears during
the solution of the nearly singular equation.) The inverse iteration method
consists in iteratively solving Txk+ i =xk.  After a few iterations, xk is
dominated by its near-nullspace component; we use xk as a partial basis
for the near nullspace of T. (The number of iterations required is at the
discretion of the analyst. We are not looking for a precisely defined
subspace, but rather, a subspace that is fuzzy.) By repeating the above
process for several different starting vectors ~0, we usually obtain a set of
vectors which spans the near nullspace of T.

Example 7. Describing a Near Nullspace. Define a linear operator T on X2” ’
by means of the nearly singular matrix multiplication described above:

TX&(: I:r)~

For this simple example we can invert T explicitly

We apply the inverse iteration method
no roundoff in our computations:

to the vector x()=(1 l)=; o f course, we have

x,=( ;), x2= A( yy), x3= -&( “‘;;;;y2),...

*In Section 4.2 we describe the near nullspace more precisely as the eigenspace for the
smallest eigenvalue of T.


