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Abstract. Recent developments in lifelong machine learning have demon-
strated that it is possible to learn multiple tasks consecutively, transferring
knowledge between those tasks to accelerate learning and improve perfor-
mance. However, these methods are limited to using linear parametric
base learners, substantially restricting the predictive power of the resulting
models. We present a lifelong learning algorithm that can support non-
parametric models, focusing on Gaussian processes. To enable efficient
online transfer between Gaussian process models, our approach assumes
a factorized formulation of the covariance functions, and incrementally
learns a shared sparse basis for the models’ parameterizations. We show
that this lifelong learning approach is highly computationally efficient,
and outperforms existing methods on a variety of data sets.

Keywords: Lifelong machine learning, Online multi-task learning, Gaus-
sian process

1 Introduction

Recent advances in lifelong machine learning [3,23] have shown that it is now
possible to learn tasks consecutively and obtain equivalent model performance to
batch multi-task learning (MTL) [14,15] with dramatic computational speedups.
Lifelong learning methods have been developed for either classification and
regression [23] or reinforcement learning [3,6] domains, including support for
autonomous cross-domain mapping of the learned knowledge [5]. These multi-task
and lifelong learning methods maintain a repository of learned knowledge that acts
as a basis over the model space, and is shared between the task models to facilitate
transfer between tasks. Although effective, these methods are currently limited to
using linear parametric base learners, substantially limiting the predictive power
of the resulting models.

We present the first lifelong learning algorithm that supports non-parametric
models through Gaussian process (GP) regression. GPs have been used success-
fully in MTL [1,2,4,21,28,29], but lifelong learning with GPs has not yet been
explored. To enable transfer between the GP task models, we assume a factorized
formulation of the models’ parameterizations using a shared sparse basis, and
incrementally learn a repository of shared knowledge that acts as that basis to



underly the covariance functions. This shared knowledge base is updated with
each new task, serving both to accelerate learning of GP models for future tasks
via knowledge transfer and to refine the models of known tasks. This process is
computationally efficient, and we provide theoretical analysis of the convergence
of our approach. We demonstrate the effectiveness of GP lifelong learning on
a variety of data sets, outperforming existing GP MTL methods and lifelong
learning with linear models.

2 Related Work

Gaussian processes (GP) have proven to be effective tools for modeling spatial,
time-varying, or nonlinear data [22], providing substantially more predictive
power than linear models. However, the model complexity of a standard GP
places restrictions on the amount of data that can be processed in a batch multi-
task setting. Typical (albeit naïve) computation requires O(n3) time, where n is
the number of training data instances. In single-task settings, many interesting
approaches such as input sparsification [24], hierarchical GPs with input clustering
[18], and distributed GPs for large-scale regression [9] have been investigated
for reducing computation time while maintaining prediction accuracy. Other
work has focused on scaling the amount of data that GPs can reasonably handle
[7,20]. While these single-task GP learning methods do not consider MTL or
lifelong learning scenarios, their approaches could be used as the base learners in
our framework to 1) further scale the amount of data that can be handled for
individual tasks, and 2) reduce the data storage requirements for previous tasks.

Several works have tackled the MTL setting with GP predictors [1,2,4,21,28,29].
These methods attempt to learn some form of shared knowledge among related
tasks in a batch setting. However, the manner in which these models form con-
nections among tasks increases complexity and, incidentally, computation time.
Consequently, these methods are inappropriate for the lifelong learning setting,
in which tasks arrive consecutively and the models must be repeatedly updated.
Our approach, in contrast, considers the case where tasks are observed online and
utilizes a factorized model that is more computationally efficient. Also, in direct
comparison with batch MTL using GPs [4], we show that our method requires
significantly less computation time while maintaining comparable accuracy.

Lifelong machine learning [8] has similarly seen much interest and develop-
ment over the past several years in the aforementioned settings of classification,
regression, and reinforcement learning [3,6,10,19,23,27], with applications to
robotics [12,25], user modeling [13], and learning of structured information [16].
A popular choice for the foundation of these algorithms is linear parametric
models. While linear models are simple and computationally efficient, they lack
the predictive power of GPs. As a natural yet non-trivial extension of this prior
work, we have devised a novel approach to lifelong learning using GPs as the
base learning algorithm to merge, in some sense, the best of both worlds—our
approach combines the predictive power of GPs in the multi-task setting while
utilizing the computational efficiency and longevity of lifelong learning.



3 Background on Gaussian Processes

A Gaussian process (GP) is a distribution over functions g(x), where the distri-
bution is determined solely by mean and covariance functions [22]:

g(x) ∼ GP(m(x),K) , (1)

with mean m(·) and covariance matrix K. GPs can be used for modeling la-
beled data by assuming that the data are samples drawn from a multivariate
Gaussian distribution. Given a set of labeled training instances {(xi, yi)}ni=1 with
xi ∈ X ⊆ Rd and yi ∈ R, GP regression models the likelihood as a Gaussian with
P(y | X, g) = N (g, σ2I), where g : X 7→ R maps from instances to their corre-
sponding labels. The prior on g is then defined as P(g(xi) | θ) = GP(m(xi),K),
where m(xi) is the mean function on the input datum xi, K is a covariance
matrix [K]i,j = κ(xi,xj) between all pairs of data instances xi,xj ∈ X based on
a chosen covariance function, and θ is a set of parameters of the chosen covariance
function. Given a new input datum x∗, the GP predicts the distribution of the
corresponding label value y∗ as P(y∗ | x∗,X,y) = N (µ∗, σ∗), where

µ∗ = m(x∗) + kT
∗
[
K+ σ2I

]−1(
y −m(x∗)

)
,

σ∗ = κ(x∗,x∗) + σ2 − kT
∗
[
K+ σ2I

]−1
k∗ ,

and k∗ is a vector of covariance values [k∗]i = κ(x∗,xi) for all xi ∈ X. In other
words, GP regression models:[

y
y∗

]
∼ N

([
m(X)
m(x∗)

]
,

[
K kT

∗
k∗ k∗∗

])
. (2)

4 Lifelong Learning with Gaussian Processes

After first summarizing the lifelong learning problem, we extend GP regression to
the multi-task setting and derive our approach for lifelong GP learning. To ensure
consistency with the existing literature, we adopt the notational conventions of
Ruvolo and Eaton [23].

4.1 The Lifelong Learning Problem

The lifelong learning agent (Figure 1) faces a series of consecutive learning tasks
Z(1),Z(2), . . . ,Z(Tmax). In our setting, each task is a supervised or semi-supervised
learning problem Z(t) =

(
id (t), f̂ (t),X(t),y(t)

)
, where id (t) is a unique task

identifier, f̂ (t) : X (t) 7→ Y(t) defines an unknown mapping from an instance space
X (t) ⊆ Rd to the label space Y(t). Typically, Y(t) = {−1,+1} for classification
tasks and Y(t) = R for regression tasks. Each task t has nt training instances
X(t) ∈ Rd×nt with corresponding labels y(t) ∈ Y(t)nt given by f̂ (t). A priori,
the lifelong learner does not know the total number of tasks Tmax, the task
distribution, or their order.
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Fig. 1: The lifelong learning process with GPs (adapted from [23]).

Each time step, the agent receives a batch of labeled training data for some
task t, either a new task or as additional data for a previously learned task. Let T
denote the number of unique tasks the agent has encountered so far (0≤T ≤Tmax).
At any time, the agent may be asked to make predictions on instances from
any previously learned task. Its goal is to construct task models f (1), . . . , f (T )

where each f (t) : Rd 7→ Y(t) will approximate f̂ (t). Each f (t) must be able to be
rapidly updated as the agent encounters additional training data for known tasks,
and new f (t)’s must be added efficiently as the agent encounters new tasks. We
assume that the total number of tasks Tmax will be large, and so the algorithm
must have a computational complexity to update the task models that scales
favorably to numerous tasks.

4.2 Gaussian Process Regression for Multi-Task Learning

To extend the GP framework (Section 3) to the multi-task and lifelong learning
setting, we assume that each task t corresponds to training an individual GP
model f (t) from training data D(t) =

{
(x

(t)
i , y

(t)
i )
}nt

i=1
with its own mean mt(·)

and covariance function Kt. Given T tasks, the goal is to learn each task model



f (t) such that

P(y(t) | X(t), g(t)) ∼ N (g(t), σ2
t I)

g(t) ∼ GP(mt,Kt) ∀t ∈ {1, . . . , T} .

To share knowledge between task models, we assume a factorized form of
the covariance kernels, such that the covariance kernel parameters θ(t) ∈ Rd
can be represented as θ(t) = Ls(t). The matrix L ∈ Rd×k is shared between all
tasks and forms a basis over the space of covariance kernels, capturing reusable
chunks of knowledge. Individual tasks’ covariance kernels are then defined in
this shared basis via the sparse coefficient vectors {s(1), . . . , s(T )}, with s(t) ∈ Rk.
This factorized sparse representation has shown success for transfer between
linear parameterized models in previous MTL and lifelong learning methods
[3,14,15,23], and here we adapt it to the non-parametric GP setting. In this
manner, our approach is similar to these other methods in that we employ a
parametric formulation in which the prediction function f (t)(x) = f(x;θ(t)) for
each task t is determined in part by the covariance parameter vector θ(t) ∈ Rd,
but the model itself is non-parametric. This factorized sparse representation
is also somewhat related to techniques for fast GP training using factorized
covariance matrices [11,21], but with a different factorization designed to share
latent knowledge between task models.

We assume that the tasks are drawn i.i.d., allowing us to define the following
MTL objective function for GPs:

min
L

1

T

T∑
t=1

min
s(t)

{
L
(
f
(
X(t);Ls(t)

)
,y(t)

)
+ µ‖s(t)‖1

}
+ λ‖L‖2F , (3)

where (x
(t)
i , y

(t)
i ) is the ith labeled training instance for task t, the L1 norm ‖ · ‖1

is used as a convex approximation to the true vector sparsity of the s(t) vectors,
‖ · ‖F is the Frobenius norm to control the complexity of L, and µ and λ are
regularization coefficients. The loss function L optimizes the fit of each task
model to the training data. For GP models, we define this loss function as the
negative log-marginal likelihood of a standard Gaussian process, which must be
minimized to fit the GP:

L
(
f
(
X(t);Ls(t)

)
,y(t)

)
= y(t)T

[
Kt(Ls

(t)) + σ2
t I
]−1

y(t)

+ log
∣∣Kt(Ls

(t)) + σ2
t I
∣∣+ nt log (2π) .

(4)

Note that Equation 3 is not jointly convex in L and the s(t) vectors, so most
MTL methods [14,15] solve related forms of this objective using alternating opti-
mization, repeatedly solving for L while holding s(t)’s fixed and then optimizing
the s(t)’s while holding L fixed. While effective in determining a locally optimal
solution, these MTL approaches are computationally expensive and would require
re-optimization as tasks were added incrementally, making them unsuitable for
the lifelong learning setting.



Our approach to optimizing Equation 3 is based upon the Efficient Lifelong
Learning Algorithm (ELLA) [23], which provides a computationally efficient
method for learning the s(t)’s and L online over multiple consecutive tasks.
Although ELLA can support a variety of parametric linear models, it cannot
natively support non-parametric models, limiting its predictive power. In the
next section, we develop a lifelong learning approach for the (non-parametric) GP
framework, and show that the resulting algorithm provides an efficient method
for learning consecutive GP task models.

4.3 Efficient Updates for Lifelong GP Learning

To solve Equation 3 efficiently in a lifelong learning setting, we first eliminate the
inner recomputation of the loss function by approximating it via a sparse-coded
solution, following Ruvolo and Eaton [23]. We approximate the loss function via a
second-order Taylor expansion around θ = θ(t) of L

(
f
(
X(t);Ls(t)

)
,y(t)

)
, where

θ(t) = arg minθ L
(
f
(
X(t);θ,y(t)

))
. Substituting this expansion into Equation 3,

we obtain

min
L

1

T

T∑
t=1

min
s(t)

{
‖θ(t) − Ls(t)‖2H(t) + µ‖s(t)‖1

}
+ λ‖L‖2F , (5)

where H(t) is the Hessian matrix given by

H(t) =
1

2
∇2
θ,θL

(
f
(
X(t);θ

)
,y(t)

) ∣∣∣∣
θ=θ(t)

, (6)

and ‖v‖2A = v>Av.
The second inefficiency in Equation 3 involves the need to recompute the

s(t)’s whenever we evaluate a new L. This dependency can be simplified by only
recomputing the s(t) for the current task t, leaving all other coefficient vectors
fixed. Essentially we have removed the minimization over all s(t)’s in place of
a minimization over only the current task’s s(t). Later, we provide convergence
guarantees that show that this choice to update s(t) only when training on task t
does not significantly affect the quality of model fit as T grows large. With these
simplifications, we can solve the optimization in Equation 5 incrementally via
the following update equations:

s(t) ← argmin
s(t)

`(Lm, s
(t),θ(t),H(t)) (7)

Lm+1 ← argmin
L
ĝm(L) (8)

ĝm(L) = λ‖L‖2F +
1

T

T∑
t=1

`
(
L, s(t),θ(t),H(t)

)
, (9)

where

` (L, s,θ,H) = µ ‖s‖1 + ‖θ − Ls‖2H (10)



and Lm corresponds to L at the algorithm’s m-th iteration.
To apply these update equations in practice, given a new task t, we first

compute θ(t) via single-task GP learning on D(t). Then, we compute the Hessian
H(t), as described in detail in Appendix A. Next, we compute s(t) and Lm in a
single gradient-descent step. For each iteration of gradient descent, we compute
s(t) using the current Lm by solving an instance of LASSO. Then, we use s(t) to
find ∇L and recompute Lm. This process is repeated until either convergence
or a set maximum number of iterations has taken place; typically, this process
requires only a few iterations to converge in practice. The equation for ∇L is
found by deriving Equation 9 with respect to L, similar to the derivation by Bou
Ammar et al. [5], yielding:

∇L = λL+
1

T

T∑
t=1

(
−H(t)θ(t)s(t)

T
+H(t)Ls(t)s(t)

T
)
. (11)

For computational efficiency, the sum in Equation 11 is computed incrementally
(by updating it for the current task) and stored; it is not necessary to recompute
it via summing over all previous tasks. As a final step, we reinitialize any unused
columns of Lm. Algorithm 1 presents our complete algorithm for lifelong GP
learning, which we refer to as GP-ELLA.

In contrast to linear methods for lifelong learning [3,23], GP-ELLA must ex-
plicitly store training data for each individual task to compute the non-parametric
kernel values for new instances. To further improve its scalability for lifelong
learning with large amounts of data, our approach could also be adapted to
employ sparse GPs [24] as the base learners, which store a reduced number
of instances per task, or use approximations to the kernel matrix. We started
exploring this direction, but found that the adaptation is nontrivial, well beyond
the scope of this paper, and so leave it to future work.

4.4 Details of Label Prediction: Recovering σ2
f and Prediction

Smoothing

In practice, we minimize the negative log-marginal likelihood in training the
task-based GP model over all parameters, including σ2

f . However, our model of
θ(t) does not include a representation of σ2

f , so in the label prediction step, we
hold out a portion of the training data as a verification test set and perform
line search to determine the best possible σ2

f parameter given the generated
θ(t) = Ls(t).

For our label predictions, we also utilize an idea from Nguyen-Tuong et al. [17],
where the training data are partitioned into subsets and the final predictions
are smoothed using a weighted average of the local model predictions. In our
predictions for a task t, we first generate predictions with respect to θ(t) = Ls(t).
For all other known tasks t′, we also generate θ(t

′) = Ls(t
′) and its corresponding

predictions for the current task t. Then, we compute a weighted average of all



Algorithm 1 GP-ELLA(d, k, λ, µ, γ)
T ← 0, L ∼ N (0, 1)d,k
while isMoreTrainingDataAvailable() do

(Xnew,ynew, t)← getNextTrainingData()
if isNewTask(t) then
T ← T + 1, X(t) ← Xnew, y(t) ← ynew

else
X(t) ←

[
X(t) Xnew

]
, y(t) ←

[
y(t);ynew

]
end if(
θ(t),H(t)

)
← GPLearner(X(t),y(t))

while s(t) and L have not converged do
s(t) ← Equation 7
∇L← Equation 11
L← L− γ∇L

end while
L← reinitializeAllZeroColumns(L)

end while

predictions based on similarities in the θ vectors, using an exponentially decaying
L2-norm weight function. This additional label generation step can be thought
of as further smoothing predictions among similar known tasks, as measured
by the similarity of their θ(t)’s. In the case where the tasks are different, this
additional smoothing step will not detrimentally affect the predictions, since their
corresponding θ(t)’s will have low similarity.

4.5 Theoretical Guarantees

This section provides theoretical results that show that GP-ELLA converges
and that the simplifications to enable efficient updates have an asymptotically
negligible effect on model performance. First, recall that ĝT (L) (as defined by
Equation 9 with m = T ) represents the cost of L under the current choice of
the s(t)’s after GP-ELLA observes T tasks. Let eT (LT ) be the MTL objective
function as defined by Equation 3, but for the given specific choice of L (instead
of the optimization over all L). Ruvolo and Eaton [23] showed that:
Proposition 1: The latent basis becomes more stable over time at a rate of
LT+1 −LT = O

(
1
T

)
.

Proposition 2: (a) ĝT (LT ) converges almost surely (a.s.); and
(b) ĝT (LT )− eT (LT ) converges a.s. to 0.

Proposition 1 shows that L becomes increasingly stable as T increases. Propo-
sition 2 shows that the algorithm converges to a fixed per-task loss on the
approximate objective function ĝT , and that the approximate objective function
converges to the same value as the MTL objective.

In order for these propositions to apply to GP-ELLA, we must show that it
satisfies the following assumptions:



1. The tuples
(
H(t),θ(t)

)
are drawn i.i.d. from a distribution with compact

support.
2. For all L, H(t), and θ(t), the smallest eigenvalue of L>γH(t)Lγ is at least
κ (with κ > 0), where γ is the subset of non-zero indices of the vector
s(t) = argmins ‖θ(t)−Ls‖2H(t) . In this case the non-zero elements of the unique
minimizing s(t) are given by: s(t)γ =

(
L>γH

(t)Lγ
)−1(

L>γH
(t)θ(t) − µεγ

)
,

where the vector εγ contains the signs of the non-zero entries of s(t).

To verify the first assumption, we must show that the entries of H(t) and θ(t) are
bounded with compact support. We can show easily that the Hessian and θ(t)
are contained within a compact region by examining their form, thus verifying
the first assumption. The second assumption is a condition upon the sparse
coding solution being unique, which holds true under the standard sparse coding
assumptions. Therefore, the propositions above apply to GP-ELLA. In particular,
since Proposition 2 holds, this verifies that the simplifications made in the
optimization process (Section 4.3) do not cause GP-ELLA to incur any penalty
in terms of the average per-task loss.

Computational Complexity: Each GP-ELLA update requires running a
single-task GP on nt d-dimensional data instances; letM(d, nt) be the complexity
of this operation. Then, the algorithm iteratively optimizes s(t) and L at a cost
of O(k2d3) per iteration [23]. This process typically requires very few iterations i,
or we can limit the number of iterations i, which works well in practice. Together,
this gives GP-ELLA a per-task cost of O(M(d, nt) + ik2d3).

5 Evaluation

To evaluate GP-ELLA, we analyze its prediction accuracy and computation
time in comparison to four alternatives: task-independent GP learners (“Indiv.
GPs”), a single GP trained over the entire data set (“Shared GP”), Bonilla et al.’s
[4] batch MTL GP algorithm (“Batch MTGP”), and Ruvolo and Eaton’s [23]
ELLA with linear base learners. We also considered comparing to the more recent
MTL GP method by Rakitsch et al. [21], but their approach cannot handle our
problem setting since it requires that each instance be represented in all tasks
(with varying labels).

5.1 Data Sets

We used four data sets in our evaluation:
Synthetic Regression Tasks: This set of 100 synthetic tasks was used

previously to evaluate lifelong learning [23]. Each task has nt = 100 instances
with d = 13 features, with labels that were generated via a linear factorized
model on six latent basis vectors with added Gaussian noise.

London Schools: The London schools data set has been used extensively
for MTL evaluation. It consists of examination scores from 15,362 students in 139
schools from the Inner London Education Authority. The goal is to predict the



exam score for each student, treating each school as a separate task. We employ
the same feature encoding as previous studies [14], yielding d = 27 features.

Robot Arm Kinematics: We generated this data set by simulating the
forward kinematics of synthetic 8-DOF robot arms of various link lengths and
configurations. The lengths of each arm link were kept consistent for each task,
while the joint angles (all DOFs being revolute joints) varied in each data instance.
Each task’s goal is to predict the distance of the arm’s end-effector from the R3

point [0.1, 0.1, 0.1]. We generated 113 tasks, each with a minimum of 50 joint
configurations.

Parkinson’s Vocal Tests: This data set consists of vocal signal tests
recorded from patients with Parkinson’s disease [26]. We split the data set
into tasks based on the 42 unique patient IDs and trained on the 16 vocal signal
features. The data set had two labels applied to each instance: the linearly inter-
polated clinician’s motor score (“Parkinson’s Motor”) and the total UPDRS score
(“Parkinson’s UPDRS”), which we evaluated in separate experiments.

5.2 Methodology

Each data set was evaluated separately. Results were averaged over 10 runs for
all data sets. For each trial, the data features and labels were mean-centered,
and the data randomly divided into equal-sized training and testing sets. In the
parameter verification step, described below, the training set was further divided
into a sub-training set and a validation set. The tasks were presented in a random
order to the lifelong learners and in batch to the other learners.

The covariance matrix self-noise parameter σ2 was set to 1.0e−6 for all data
sets except London schools, where it was set to 1.0. The variance used in the
weight function for comparing θ(t) values in the prediction step was set to 100
for all data sets. Also, the number of iterations of gradient descent used to learn
the covariance function hyperparameters, across all algorithms, was set to 50.

The parameters k, µ, and λ for GP-ELLA and ELLA were tuned on a 50%
subset of the training data for the first five tasks, evaluating those parameter
values on the validation portion of the training data for those tasks. Then, those
tuned parameter values were used for retraining the models for the first five tasks
with all available training data, and for learning the remaining tasks. Values
of k used in this tuning step were all even numbers from 2 to 2d, and µ and λ
were both set to values in {e−12, e−8, e−4, e0}. Performance was measured on the
held-out test sets after all tasks had been learned.

For Batch MTGP, we use the rank-1 matrix approximation to achieve a
training time that is competitive with the other algorithms. However, using this
approximation, instead of the more accurate but significantly more computation-
ally intense rank-2 approximation or full-rank matrix (as reported by [4]), caused
Batch MTGP to perform worse in some cases than individual GPs.

All experiments were performed on a Mac Pro with dual 6-core Xeon 2.67GHz
processors with 24 threads total; computation for each experiment was limited
to four threads. Our algorithm was implemented in MATLAB and makes use
of two external packages: MTIMESX, for fast MEX-based computation of the
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(e) Parkinson’s UPDRS

Fig. 2: Prediction accuracy reported in root mean squared error (rMSE), where
lower scores are better. The whiskers are standard error bars. Our approach
achieves consistently superior performance across all data sets, with the sole
exception of the synthetic data. On the synthetic data, ELLA is slightly superior
since the data was generated using a linear task model.

Hessian matrix, and SPAMS, for running LASSO. We also use GPML [22] for
GP computations, including minimizing the log-marginal likelihood/fitting the
covariance function hyperparameters for a given training data set.

5.3 Results

As shown in Figure 2 and Table 1, our approach compares favorably to competing
methods, including multi-task GP. In terms of prediction accuracy, our method
is superior to all competing methods over all data sets, with one exception. The
one exception is on the synthetic data that was generated according to a linear
task model (the same as used by ELLA), for which ELLA slightly outperforms
our approach. On all other data sets, GP-ELLA significantly outperforms ELLA,
which learns linear models, demonstrating the increased predictive power of
non-parametric lifelong learning with GPs.

In terms of computation time, our method is slower than the Individual
GPs or ELLA, as expected. Since task-independent GPs are a subroutine of the
GP-ELLA algorithm, GP-ELLA will undoubtedly have a higher computation
time than the independent GPs, but our results show less than an order of
magnitude increase in computation time. Additionally, these results show that



Table 1: Computation time in seconds. GP-ELLA shows less than an order of
magnitude increase in time over individual GPs, while the Shared GP and MTGP
methods show approximately 2–3 orders of magnitude increase in time. Due to
its use a linear model, ELLA is the fastest by far, as expected. The standard
error of each value is given after the ±.

Parkinson’s Parkinson’s
Synthetic London schools Robot arm Motor UPDRS

Indiv. GPs 25.4 ± 0.7 56.9 ± 0.5 10.5 ± 0.2 12.7 ± 0.5 13.1 ± 0.2
ELLA 0.14 ± 0.016 0.22 ± 0.029 0.11 ± 0.002 0.05 ± 0.002 0.05 ± 0.004
GP-ELLA 63.8 ± 1.1 489.8 ± 18.7 38.3 ± 0.2 113.6 ± 4.6 109.4 ± 4.2
Shared GP 3,474.9 ± 313.7 13,070.5 ± 1,784.9 2,023.3 ± 85.5 1,972.7 ± 871.0 1,150.5 ± 113.9
MTGP 21,603.8 ± 756.5 72,338.6 ± 7,361.6 20,124.1 ± 507.3 4,449.3 ± 79.2 4,538.7 ± 63.9

GP-ELLA is significantly faster than the competing GP methods, while obtaining
lower prediction error. These competing multi-task GP methods are slower than
individual GPs by approximately 2–3 orders of magnitude. Please note that the
reported computation times do not include parameter tuning for any algorithm,
but only the training and evaluation. Our results are consistent across all data
sets and clearly demonstrate the benefits of GP-ELLA.

6 Conclusion

Given the recent advances in lifelong learning and batch GP multi-task learning, it
is natural to combine the advantages of both paradigms to enable non-parametric
lifelong learning. Our algorithm, GP-ELLA, constitutes the first non-parametric
lifelong learning method, providing substantially improved predictive power over
existing lifelong learning methods that rely on linear parametric models. GP-
ELLA also has favorable performance in terms of both prediction accuracy and
computation time when compared to multi-task GP methods, with guarantees
on convergence in a lifelong learning setting.

Appendix A: Computing the Hessian H(t)

To compute the Hessian H(t) for the GP loss function, we combine Equations 4
and 6. Letting Kσ = Kt(θ

(t)) + σ2
t I,

[H(t)]ab =
1

2
y(t)T

(
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−1 ∂Kσ

∂θa
Kσ
−1 ∂Kσ

∂θb
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(12)



As an example, consider the squared exponential (SE) covariance kernel
function, defined as

kSE

(
x
(t)
i ,x

(t)
j

)
= σ2

f exp

(
− 1

2

(
x
(t)
i − x

(t)
j

)T
M
(
x
(t)
i − x

(t)
j

))
.

If we let M = diag (l−21 , l−22 , . . . , l−2d ), we now have the ARD variant of kSE .
Additionally, if we set σ2

f = 1 and θ(t) , {θ−21 = l−21 , θ−22 = l−22 , . . . , θ−2d = l−2d },
we have a kernel with θ(t) ∈ Rd. Sample values of the first- and second-order
derivatives of Kσ are[
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