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Abstract

We demonstrate transfer via an ensemble of
classifiers, where each member focuses on one
resolution of data. Lower-resolution ensem-
ble members are shared between tasks, pro-
viding a medium for knowledge transfer.1

1. Introduction

Most related objects are similar when viewed at a low
resolution. For example, low-resolution images of most
four-legged farm animals have the same general shape.
Knowledge learned at a low resolution may apply to
all of these animals (e.g., has four legs, eats grass). At
higher resolutions, details begin to emerge that differ-
entiate between them.

Inspired by this idea, we explore the use of multireso-
lution learning for knowledge transfer between tasks.
We claim that by exploiting the similarities between
objects at low levels of detail, learning at multiple res-
olutions can facilitate transfer between related tasks.

Low-resolution representations are simple and there-
fore easy to learn, but the value of what can be learned
from them is limited. High-resolution representations
have a much higher value of what can be learned from
them, but learning is more difficult due to the added
complexity. Learning from low-resolution data may
yield limited amounts of knowledge, but that knowl-
edge will often transfer to other related objects. This
knowledge provides both a foundation for learning
from the higher-resolution data, and a base of general
knowledge applicable to a class of objects.

Learning at multiple resolutions has been shown to
significantly improve generalization and classification
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time in single-task problems (Liang & Page, 1997; He
et al., 2005; Blayvas & Kimmel, 2003). Multiresolu-
tion representations have also been used successfully in
image retrieval systems (Li & Wang, 2003) and image
classification systems (Zhang & Hebert, 1997).

We provide an ensemble framework for providing the
transfer between learning tasks, with each member fo-
cusing on one resolution level. The low-resolution clas-
sifiers are shared between tasks, allowing knowledge
transfer between these tasks.

2. Multiresolution Representations

Our experiments use feature vectors as input, so we
represent the instance space at multiple resolutions.
To do this, we use two methods: (1) chopping the
space into hypercubes and repeatedly combining them,
and (2) repeatedly merging correlated attributes.

Both methods take as input labeled instance vectors
{xi, yi}N

i=1, where each xi belongs to the instance space
X ⊂ Rd, and each yi belongs to the set of binary
classes Y = {−1, 1}.

The Hypercubes Representation breaks the in-
stance space X into hypercubes at the highest reso-
lution, then repeatedly combines these hypercubes to
generate successively lower resolutions. This represen-
tation was previously used for multiresolution learning
by He et al. (2005); we use their notation.

Let Ω be a hypercube in Rd that contains the instance
space X.2 For each dimension of Ω, we slice that di-
mension into l equal-size segments. By this method,
Ω is broken into ld hypercubes. For Ωk, the kth reso-

lution, we set l = 2k. Therefore, Ωk =
⋃2kd

i=1 oi
k, where

oi
k denotes the ith hypercube in Ωk. The multireso-

lution representation of the instance space X with r
resolution levels is given by {Ωk}r

k=1.

2We define Ω to be six standard deviations larger in
each dimension than the values in the training set.
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For each level of resolution, k = 1 . . . r, we can map
instance x ∈ X to the hypercube oi

k containing x via
the function gk : X → Ωk. Each hypercube oi

k is
represented by the coordinates of its center. There-
fore, each x ∈ X has a multiresolution representation
R(x) = {center(gk(x))}r

k=1.

We estimate the label for hypercube oi
k as the major-

ity label of all instances mapped to it by gk(); ties
are broken by uniform random selection. The label
for x has the multiresolution representation S(x) =
{label(gk(x))}r

k=1. These labels are used solely for
training; the actual labels are used for testing.

The Dimension-Merge Representation repeat-
edly merges correlated dimensions of the instance
space X. It determines the most correlated distinct
dimensions of X and then merges those dimensions
by mapping them onto a linear regression fit of the
correlation. This method is similar to the Hierarchi-
cal Dimensionality Reduction algorithm (Duda et al.,
2001), which takes a set of data clusters and repeatedly
merges the most correlated distinct clusters.

The Dimension-Merge algorithm is given in Figure 1.
Each successive lower resolution contains one less di-
mension than the previous resolution, and the pre-
cision of the values along the merged dimension is
reduced naturally by the merging process. The
Dimension-Merge algorithm determines the sequence
of attribute merges from the set of training instances
{xi}N

i=1. During the testing phase, the resolutions of
the test instances are computed using the sequence of
attribute merges determined during training.

Standard Feature Selection Methods (e.g., prin-
cipal components analysis, information gain) can be
used to repeatedly reduce the dimension of the in-
stance space; however, they typically produce succes-
sive resolutions with significant overlap. Consequently,
using them in our ensemble architecture (Section 3)
produces an ensemble of members with highly corre-
lated errors. The ensemble members are not diverse;
therefore, the ensemble will not be more accurate than
any of its members (Dietterich, 2000), yielding poor re-
sults in our experiments (omitted for space reasons).

3. The Multiresolution Ensemble

Given a set of multiresolution data R with r resolu-
tions and associated class labels S, we create an ensem-
ble of classifiers {ck}r

k=1 where each member focuses
on one resolution of the data. Let Rk(X) represent the
instance space X viewed at resolution k, for k = 1 . . . r.
The kth ensemble member, ck, is trained on and out-
puts class predictions for instances from Rk(X).

Given: X = {xi}N
i=1, xi ∈ Rd

Set the array of resolutions R = {}.
Set R[d] = X.
for k from d− 1 downto 1 do

Set R[k] = R[k + 1].
Compute the correlation matrix for all pairs of

distinct dimensions of R[k].
Determine the most correlated distinct attributes

of R[k], say d1 and d2.
Determine the linear regression line l for dimen-

sions d1 and d2 of R[k].
for i = 1 . . . N do

Let ri be the ith element of R[k].
Project the point (ri[d1], ri[d2]) onto l.
Let v be the Euclidean distance between (0, 0)

and the projection of (ri[d1], ri[d2]) onto l.
Set ri[d1] = v.

end for
Delete the dimension d2 of R[k].

end for
return R

Figure 1. The Dimension-Merge algorithm.

The ensemble’s prediction is a weighted majority vote
of the member classifiers’ predictions. We use the Ada-
boost weighting scheme (Schapire, 1999) to determine
the weight of each member classifier. The weight αk

of classifier ck is inversely proportional to its error εk

on the training data at resolution k:

αk =
1
2

ln
(

1− εk

εk

)
. (1)

3.1. Knowledge Transfer with the Ensemble

In this paper, we assume that transfer occurs between
two tasks, A and B. To allow knowledge transfer be-
tween the tasks, we combine the A and B ensembles,
EA and EB , into a tree. Each task has a unique mul-
tiresolution ensemble, but the lower-resolution ensem-
ble members are shared between the tasks.

Suppose that the ensemble tree splits after resolution
i. (In this paper, the split points are manually speci-
fied.) The root of the tree contains the set of shared
lower-resolution members nAB = {c1, . . . , ci}. Below
the root, the tree branches into two sets of non-shared
higher-resolution members, nA = {cA

i+1, . . . , c
A
r } and

nB = {cB
i+1, . . . , c

B
r }. Then the two ensembles are

given by EA = nAB

⋃
nA and EB = nAB

⋃
nB . Mem-

bers in nAB are shared between the A and B ensem-
bles, and trained on both A and B. Members in nA

and nB are trained on only A or only B, respectively.
In future work, we plan to generalize this single-level
binary tree structure to more than two tasks, where
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“more similar” tasks share more of their ensemble
structure than “less similar” tasks.

The weights {αk}i
k=1 of the shared ensemble members

are determined based on both tasks and are shared be-
tween ensembles. We are currently exploring methods
for determining the split point computationally, and
using unshared weights for the shared members.

4. Experiments

We conducted experiments using the letter dataset
from the UCI Machine Learning Repository (Blake &
Merz, 1998). The letter dataset consists of various
fonts of the twenty-six capital letters in the English al-
phabet characterized by 16 features. We use a subset
of the letter dataset consisting of 1,000 instances. We
examine several tasks involving transfer in the recog-
nition of pairs of similar letters: “C” to “G,” “O” to
“Q,” and “M” to “W.” We also tested several pairs
of dissimilar letters, and show results for one pair of
letters that are similar in terms of construction, but
differ when viewed at a low resolution: “F” to “E.”

For example, consider transfer from the task of recog-
nizing “C” to recognizing “G.” We select out all in-
stances of the target concept (“C” and “G”) from the
data set D. We create the following sets:

• C: all “C” instances in D, labeled as positive
• G: all “G” instances in D, labeled as positive
• Gupdate : subsets of G, of various sizes
• Neg : D − (C

⋃
G), labeled as negative.

The sets C, G, and Neg are divided into equal-
sized training and testing portions (Ctrain , Ctest , etc.).
The sizes of Neg train and Neg test are trimmed to
max(|C|, |G|), so the ratio of positive to negative in-
stances in the training and test sets is roughly two-
thirds, with the exception of the training set for the
shared ensemble members.

Suppose that the ensemble tree splits after mem-
ber i. The shared classifiers nCG = {c1, . . . , ci}
are trained on Ctrain

⋃
Gupdate

⋃
Neg train ; the other

“C” classifiers nC = {cC
i+1, . . . , c

C
r } are trained on

Ctrain

⋃
Neg train ; and the other “G” classifiers nG =

{cG
i+1, . . . , c

G
r } are trained on Gupdate

⋃
Neg train . We

evaluate the “C” ensemble using Ctest

⋃
Neg test and

the “G” ensemble using Gtest

⋃
Neg test .

As the baseline for transfer, we train a single multires-
olution “G” ensemble using Gupdate

⋃
Neg train . We

compare the learning curves for the “G” ensemble to
the ensemble tree across varying sizes of Gupdate .

We experimented using both the Hypercubes repre-
sentation (with r = 7 resolutions, specified manually

as used by He et al. (2005)) and the Dimension-Merge
representation (r = 16, since the letter data set has 16
dimensions). Our experiments used the J48 implemen-
tation of C4.5 provided in the Weka toolkit (Witten &
Frank, 2005) as the base classifier.

4.1. Results and Discussion

Figure 2 shows the results of our experiments. Con-
sider the learning task “C” to “G,” depicted in Fig-
ures 2(a) and 2(b). The figures show the “C to G
Tree” for learning with transfer against the “G En-
semble” for learning without transfer.

The black lines with round and square markers show
the multiresolution ensemble tree’s performance on the
transfer task (recognizing “G”). The light gray lines
show the multiresolution ensemble tree evaluated on
the background task (recognizing “C”), demonstrating
how the performance on the background task varies as
the shared ensemble members learn the transfer task.

We explored using every possible split point (i) for the
tree, and plot the two that show the greatest trans-
fer in most cases. In every case, as i decreases to
1, the learning curve approaches learning in isolation
using the single ensemble. When all ensemble mem-
bers are shared (i = 7 on Hypercubes and i = 16 on
Dimension-Merge), the ensemble trees show excellent
transfer with small transfer task (update) set sizes (in
some cases, more than shown on the plots). However,
with larger numbers of transfer task instances, the per-
formance may drop below that of the single ensemble,
due to interference between the tasks.

Figures 2(a)–2(e) show that learning using the mul-
tiresolution ensemble tree can outperform learning the
transfer task in isolation. These figures also show that
the optimal number of shared ensemble members may
vary depending on the size of the transfer task set,
and that the ensemble tree’s performance on the back-
ground task may decrease as i increases. These ob-
servations support our future work of making the en-
semble tree dynamic in response to the training data.
We have observed cases where the performance on
the background task increased slightly with additional
transfer task instances – an ideal case for transfer.

From the results, it appears that both the Hypercubes
and Dimension-Merge representations are sufficient for
allowing task transfer.

Figure 2(f) depicts a situation where the background
task and transfer task are similar from a standpoint of
letter construction (“F” and “E” differ by one stroke);
however, the letters differ from a low-resolution view-
point in the feature space. Using transfer inhibits
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(a) C to G using Hypercubes.
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(b) C to G using Dimension-Merge.
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(c) M to W using Hypercubes.
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(d) O to Q using Hypercubes.
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(e) O to Q using Dimension-Merge.
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(f) F to E using Hypercubes.

Figure 2. Learning curves for the letter recognition transfer over 200 trials using multiresolution ensembles.

learning in this task: the best results are obtained by
sharing only one ensemble member and are identical
to that of learning the transfer task in isolation. We
have tested the transfer between several other pairs of
dissimilar letters and obtained similar results.

5. Conclusion and Future Work

Our results show that the multiresolution ensem-
ble tree can successfully transfer knowledge between
learning tasks. Currently, we are exploring methods
for computationally selecting the ensemble tree split
point, adapting the split point dynamically in response
to the training data, and creating ensemble trees with
multiple ensembles. Our future work also includes
adapting the multiresolution transfer framework to use
image data and alternate resolution methods.
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