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Abstract. In this paper, we propose a novel graph-based method for
knowledge transfer. We model the transfer relationships between source
tasks by embedding the set of learned source models in a graph using
transferability as the metric. Transfer to a new problem proceeds by
mapping the problem into the graph, then learning a function on this
graph that automatically determines the parameters to transfer to the
new learning task. This method is analogous to inductive transfer along a
manifold that captures the transfer relationships between the tasks. We
demonstrate improved transfer performance using this method against
existing approaches in several real-world domains.

1 Introduction

Knowledge transfer from previously learned tasks to a new task is a fundamental
component of human learning. Transfer enables us to learn complex tasks quickly
by automatically building on our previous knowledge. Recent research efforts
have shown that transfer can also improve machine learning, enabling more
rapid learning or higher levels of performance.

Most machine learning methods for transfer rely on an explicit set of source
tasks to identify a set of model parameters that can be transferred to a new target
task. In many cases, these source tasks are hand-selected by an expert in advance.
Methods for transfer may combine information from all source tasks [1, 2] or
may use information from only a few tasks chosen by an automated process [3].
Accidentally transferring from irrelevant source tasks may inhibit learning and
decrease performance—a phenomenon known as negative transfer. Our approach
to transfer explicitly models the transfer relationships between the source tasks
to automatically avoid this problem and transfer only relevant information.

Given a set of source tasks and a target task, our method attempts to auto-
matically determine the knowledge to transfer in learning the target task. In our
formulation, this knowledge is a vector of model parameters. We estimate the
transfer relationships between the source tasks and embed them into a graph, us-
ing a notion of transferability to determine the edge weights. This model transfer
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graph corresponds to a discrete approximation of a high-dimensional manifold
that captures the transfer relationships between the source tasks. Tasks that are
close on this manifold have high transferability; tasks that are far apart have
low transferability. Each task has an associated vector of model parameters that
represents the knowledge at its location.

Intuitively, each location on the transfer manifold has an ideal parameter
vector that should be transferred in learning a task at that location. Therefore,
we can determine the knowledge to transfer to a target task by approximating
the parameter vector at the target task’s location on the manifold. Given a new
target task, we first extend the the graph to include the new task. We define
a function on the graph that determines the parameters to transfer to each
location in the graph. By its construction, this transfer function respects the
local geometry of the graph and, therefore, the transfer relationships among the
source tasks. We learn the transfer function using the source tasks’ parameters as
samples of the function at various locations on the transfer manifold. Then, we
evaluate the function at the new task’s location to yield the parameter vector to
transfer in learning the new task. We also define a reusable form of the transfer
function that can be used for multiple transfer scenarios without relearning.

2 Related Work

Parameter-based transfer has been used by Marx et al. [1] to learn logistic re-
gression models. They fit logistic regression models independently to each source
task, and then estimate the prior distribution for the target model’s weights a
posteriori from the source tasks’ models. Kienzle & Chellapilla [2] use a weight
vector for transfer in SVMs, biasing the regularization term toward the weight
vector, instead of the zero vector as in standard SVM training. The biased logis-
tic regression method we propose in Sect. 3 is based on a combination of biased
regularization and Marx et al.’s logistic regression transfer.

In contrast to the approaches of Marx et al. and Kienzle & Chellapilla, which
combine knowledge from all given source tasks for transfer, Thrun & O’Sullivan’s
Task Clustering (TC) algorithm [3, 4] groups tasks for more selective transfer.
Their method also transfers parameter vectors, sharing weighted Euclidean dis-
tance metrics between k-nearest-neighbor classifiers. Transfer occurs by having
one k-nearest-neighbor model use the distance metric from another model. Their
approach optimizes a single distance metric for each cluster, effectively deter-
mining an average parameter vector for each cluster of tasks. Upon receiving a
new task, the TC algorithm matches the new task to a cluster, then transfers
that cluster’s distance metric to the new task. Our approach is similar to Thrun
& O’Sullivan’s in determining the transfer relationships between tasks. How-
ever, the TC algorithm transfers only a single parameter vector to all tasks in a
cluster, while our flexible transfer function allows each location on the transfer
surface to have a different parameter vector based on the local geometry.

Bakker & Heskes [5] take a Bayesian approach to clustering tasks, using EM
to optimize the clusters. They also use a gating network, similar to that used in



the mixture-of-experts model [6], on top of the Bayesian EM framework to allow
the priors to vary depending on the task’s features. Pratt’s Discriminability-
Based Transfer method [7] for neural networks selectively transfers weights from
a learned network, modifying them as needed to enable learning on a target task.
Explanation-Based Neural Networks [8] use a more indirect approach to param-
eter transfer, using extracted invariances about a domain to bias the learning of
model parameters. These approaches allow some of the model parameters to be
dependent on the source tasks, while others are fit to the target task’s data. In
our approach, we allow all of the transferred model parameters to be modified in
the final learned model, if the target task’s data warrants such an adjustment.

3 Transfer Using Biased Logistic Regression

We define a task as a mapping from an instance space X ⊂ Rd to a set of labels
Y ∈ N. All tasks map from the same X to the same Y. The goal for learning the
model for a task is to recover the true mapping X → Y from the labeled training
data. Each learned model can be characterized as a vector of parameters, which
can be transferred in learning a model for another task.

Our approach requires a base transfer learning algorithm to learn the models
for each task. We use a biased form of logistic regression as the base learning
algorithm in the experiments. Biased logistic regression penalizes deviations from
a given parameter vector in Rd, effectively biasing the learned model toward the
transferred parameters. While we focus on this transfer learning algorithm, our
method can utilize other parameter-based transfer learning algorithms.

The well-known logistic regression model gives the probability of an instance
x having a binary label y as:

P (y = 1|x) =
exp(xβ)

1 + exp(xβ)
, (1)

P (y = 0|x) = 1− P (y = 1|x) , (2)

where x ∈ Rd and β ∈ Rd. The parameter vector β is obtained by maximizing
the log-likelihood of the labeled training data {(xi, yi)}q

i=1:

l(β) =
q∑

i=1

[yi logP (yi = 1|xi) + (1− yi) logP (yi = 0|xi)] . (3)

Combining ridge estimation with logistic regression3 [10, 11] adds a penalty
on the norm of β, and involves choosing β to maximize the penalized log-
likelihood lλ(β) = l(β) − λ‖β‖2, where λ is the ridge parameter that controls
the shrinkage of the norm ‖β‖ =

√∑
j β

2
j .

To use logistic regression for transfer, we penalize deviations of β from a
given transferred vector β0:

lλ(β) = l(β)− λ‖β − β0‖2 . (4)
3 We use the Weka machine learning toolkit’s implementation of this method [9].



This approach is inspired by biased regularization of support vector machines [2,
12] and the logistic regression transfer method of Marx et al. [1].

Standard (non-biased) logistic regression corresponds to β0 as the zero vector.
This bias vector β0 can be transferred from the learned β of another logistic
regression model, allowing one logistic regression model to be biased toward
the parameters of another model. In practice, x and β are often augmented
to include a constant term for the intercept. Note that we do not transfer the
constant term, allowing it to be fit individually to each problem. When λ = 0,
the bias term disappears and does not affect the learned weights; as λ→∞, the
logistic regression learned weights approach the bias weights.

We use the Bayesian-optimal λ = σ2

τ2 [13], where σ2 is the variance of the
model’s log-likelihood errors {− logP (y = yi|xi)}q

i=1, and τ2 is the variance of
the elements of (β−β0). Viewed from the perspective of transfer, this assumption
implies a normal probability distribution over the transfer from β0 to β.

The logistic regression transfer method of Marx et al. [1] uses a similar con-
struction, in which they penalize deviations of the model parameters from a
given set of normal distributions, considering both means and variances derived
from the transferred parameter vectors. The method we use here (based on ridge
regression) corresponds to their method using a constant variance for all param-
eters, which is absorbed into λ. The major problem with using their method
in this application is that it is dependent on having a set of source tasks from
which to estimate the parameter variances and thereby the regularization; in
this application, we have only one source parameter vector and, therefore, no
variance.

4 Modeling the Transferability Between Source Tasks

Given a set of source tasks {ti}n
i=1, our approach is composed of three steps:

– Learn the base models {mi}n
i=1 for the source tasks {ti}n

i=1 (Sect. 4.1).
– Construct the model transfer graph to model the transfer relationships

between the source tasks (Sect. 4.2).
– Transfer to a new task tn+1 by extending the model transfer graph to

include tn+1, and then learning the transfer function f to determine the
parameter vector vn+1 to transfer to tn+1 (Sect. 5).

4.1 Learning the Base Models

Given the set of source tasks {ti}n
i=1, our first step is to learn the set of base

models {mi}n
i=1 for the source tasks. For a task ti, we learn the corresponding

model mi using biased logistic regression without transfer, biasing the model
parameters toward zero. We assume that sufficient training examples are given
for each source task to learn base models that have a high degree of performance.

Each trained modelmi has an associated parameter vector vi ∈ Rθ, which can
be transferred in learning models for other tasks. For biased logistic regression
models, θ = d, with vi corresponding to the learned β vector.



4.2 Constructing the Model Transfer Graph

Given the set of source tasks {ti}n
i=1 and their corresponding learned models

{mi}n
i=1, we embed these tasks in a space that captures the transfer relationships

between the tasks. Two tasks that have high transferability should be close in
the space; tasks that have low or negative transferability should be far apart.

We define transferability from task ti to tj as the change in performance on
task tj between learning with and without transfer from ti’s model. Although
we focus on this definition of transferability, our approach is general enough
to use other measures. This definition is very similar to the approach used by
Thrun and O’Sullivan [3]. While their task clustering method simply looks at
the change in performance for a specific number of training instances, we also
consider the average transferability over the entire learning curve.

We model the space of transfer using a model transfer graph, with each task
as a vertex in the graph. A pair of vertices are connected via an edge if they have
positive transferability; this edge is weighted based on the amount of positive
transferability between the tasks, which is in (0, 1].

We could directly plot the models in Rθ, since each model can be character-
ized by its transferable parameter vector. However, this embedding ignores that
the transferred knowledge must improve performance on the target task. Sim-
ilarity between two parameter vectors does not imply that models using those
vectors will have similar performance on a task. Therefore, it is important to
measure similarity in the transfer space based on transferability.

The model transfer graph corresponds to a discrete approximation of the
continuous transfer manifold, using transferability as the metric. The source
tasks are known samples of various locations on the manifold, with each task ti
having an associated parameter vector vi. Transfer to a new task, as described in
Sect. 5, occurs by approximating the location of the new task on the manifold,
then using the transfer function to determine the parameter vector to transfer.

Measuring transferability
We measure transferability from task ti to tj as the direct change in per-

formance between learning with and without transfer. For a task tj , we can
generate two learning curves for the task’s model: one for learning tj ’s model
with transfer from ti, and one for learning the model without transfer. For learn-
ing with transfer, we use logistic regression biased toward the parameter vector
vi that characterizes ti’s base model mi. For learning without transfer, we use
standard regularized logistic regression, which is biased toward the zero vec-
tor. Any performance measure that evaluates to a real number in [0, 1] can be
used to compute the performance (e.g., predictive accuracy, f-measure). In our
experiments, we use predictive accuracy on the held-out test set.

Let performancej(q) be the performance on task tj without transfer given q
training instances, and let performancei→j(q) be the performance on task tj with
transfer from ti given q training instances from task tj . Then, the transferability
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Fig. 1. The transferability measure: transfer(q) = A.

from task ti to tj is given by

transfer i→j(q) = performancei→j(q)− performancej(q) . (5)

Note that transfer i→j ∈ [−1, 1], with positive transfer falling in (0, 1].
This definition of transferability for a given amount of training data lends

itself to a definition of overall transferability from task ti to tj . Specifically, we
can average Eqn. 5 over a range of values for q, yielding a measure of the overall
transferability from ti to tj . By considering transfer i→j across the entire learning
curve, we compute the expected amount of transfer for an arbitrary amount of
training data. This computation assumes a uniform probability distribution over
the amount of training data that will be available for a new task; it is a simple
matter to scale this computation for a non-uniform probability distribution.

Defining the model transfer graph
The spectral graph analysis techniques we use to analyze the transfer sur-

face (Sect. 5.2) rely on the model transfer graph being undirected. A symmetric
affinity measure is the most natural representation for the transfer surface. How-
ever, transfer by its nature is directed from source knowledge to a target task.
Therefore, transfer i→j is not guaranteed to be the same as transfer j→i.

We define the symmetric undirected transferability between tasks ti and tj
to be the minimum of the two directed transferabilities:

transfer i,j(q) = min
(
transfer i→j(q), transfer j→i(q)

)
. (6)

The largest potential problem is overestimating the amount of transfer between
two tasks, and using the minimum of the directed transferabilites ensures that
our estimate of the transfer is as large as possible without being a potential over-
estimation. Using other forms of symmetrization, such as taking the average or
maximum, could lead to overestimation. While this construction underestimates
the amount of transfer, we show empirically that it performs well in Sect. 6.

We define the vertices of the model transfer graph to be the source tasks
V = {ti}n

i=1, and the symmetric adjacency matrix A for q training instances as

Ai,j(q) =
{

0 if i = j,
max

(
0, transfer i,j(q)

)
otherwise. (7)



Since we need only model the positive transfer, this construction eliminates all
negative edges from A(q). We store multiple snapshots of the graph’s adjacency
matrix {A(qi)}qk

q1
at various numbers of training instances. In the experiments, we

sampled the learning curve every five percent of the training data, so k = 20 with
successive qi’s in 5% increments. To transfer to a new task, we select the current
picture of the transferability space for the given number q̂ of target task training
instances, and use that version of the model transfer graph G(q̂) = (V,A(q̂)).

5 Transfer to a New Task

From Sect. 4, we can construct a model transfer graph to represent the transfer
relationships among the source tasks. In this section, we describe a procedure
for using the graph to determine the parameters to transfer to a new task.

Given q̂ training instances of a new target task tn+1, we can extend the model
transfer graph G(q̂) to include tn+1. We then learn a transfer function on the
extended graph to determine the parameter vector to transfer to the new task.
This process is equivalent to interpolating the position of tn+1 on the transfer
manifold, and then determining the transfer function’s value at that point.

5.1 Extending the Model Transfer Graph

Given a small sample (q̂ instances) of the data from tn+1 (much less data
than was given for any other task t1 . . . tn), we approximate task tn+1’s loca-
tion in the graph by computing its transferability from every other task ti:
{transfer i→n+1(q̂)}n

i=1. This yields a set of weighted edges4 between tn+1 and
all other tasks t1 . . . tn, allowing us to localize tn+1 in the transfer graph. Let
these weights be ŵ1 . . . ŵn, where ŵi = transfer i→n+1(q̂).

The extended model transfer graph that includes task tn+1 can now be de-
fined by Ĝ = (V̂ , Â), where V̂ = V

⋃
{tn+1} and Â is the (n + 1) × (n + 1)

extended adjacency matrix given by

Â =
[
A(q̂) ŵT

ŵ 0

]
. (8)

5.2 Learning the Transfer Function

Once the graph G(q̂) has been extended to include the new target task, the next
step is to learn the transfer function on Ĝ and use it to determine the knowledge
to transfer in learning tn+1. Each vertex i in the extended model transfer graph
Ĝ has some associated transfer knowledge given by its parameter vector vi. For
the new target task tn+1, this transfer knowledge is unknown, and the transfer
function can estimate it automatically from the source tasks’ parameter vectors.

The source tasks represent a known sample of the transfer surface, with the
parameter vectors {vi}n

i=1 representing the transfer knowledge at these sample
4 We ignore the directionality of the edges, since the transfer is one-way only.



locations on the manifold. Each parameter vector vi is in Rθ. We assume that
there is some function that determines the transfer knowledge for a task based on
that task’s location on the transfer surface. This transfer function f̂ : V̂ → Rθ

is able to assign a parameter vector to each task located on the transfer surface.
The source tasks’ parameter vectors {vi}n

i=1 represent known values of the
transfer function f̂ at various locations (given by the source tasks) on the trans-
fer surface. Therefore, the source tasks’ locations coupled with their parameter
vectors provide training data for learning the transfer function f̂ . To transfer to
a new task tn+1, we can evaluate the learned transfer function at tn+1’s location
on the transfer surface to yield a parameter vector for tn+1.

In order to ensure that the learned transfer function respects the transfer
relationships between the tasks, we must model the transfer function in a manner
that respects the model transfer graph’s geometry. To do this, we define f̂ using
a set of basis functions for the graph determined by spectral graph theory.

Determining the Basis Functions
This section describes the spectral graph theory [14] techniques we use to

derive the basis functions, which allow us to define a transfer function that will
respect the geometry of the model transfer graph.

Let G = (V,A) be the model transfer graph, which is an undirected connected
weighted graph with a set of n vertices V and a weighted n × n adjacency
matrix A. Recall that Au,v 6= 0 implies that there is an edge depicting positive
transferability between vertices u and v. We can denote the degree of vertex v
by dv =

∑n
u=1Au,v. Let T be the diagonal matrix where Tv,v = dv.

Spectral graph theory allows us to define a set of basis functions for G based
on the graph Laplacian, an operator defined by the Laplacian matrix. The com-
binatorial Laplacian matrix L for the graph is given by L = T −A [14].

We can also define the normalized Laplacian L = I − T−
1
2AT−

1
2 , where I

is the identity matrix [14]. While both forms of the Laplacian are applicable to
our work, we found that the combinatorial Laplacian (hereafter referred to as
just the Laplacian) worked better in our experiments and so we focus on it.

The Laplacian L is symmetric; therefore, its eigenvalues are all real and non-
negative. The eigendecomposition of L yields L = QΛQT , where Λ is the diagonal
matrix of eigenvalues [λ1 . . . λn] and the columns of Q are the eigenvectors
[q1 . . . qn]. Let 0 = λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues, and let eigenvector
qi correspond to λi. Spectral graph theory tells us that the smallest eigenvalue
λ1 is always 0 (with multiplicity 1, since G is connected) and q1 is constant over
all vertices. The eigenvectors in Q form an orthonormal basis for L.

Spectral graph theory has connections to Riemannian manifolds, which we
use to define the surface on which transfer occurs. The model transfer graph G
represents a sample of the continuous transfer manifold M, with the vertices as
points on the manifold and the edges connecting points that are close to each
other on the manifold (i.e., tasks that have high transferability).

Let g be a smooth function g : M→ Rθ representing the transfer function on
the Riemannian transfer manifold M with Riemannian transferability metric ψ.



The Laplace-Beltrami operator ∆ is defined to be the divergence of the gradient
of M, and can act on g. Hodge theory [15] implies that g has a unique spectrum
based on the eigenfunctions of the Laplace-Beltrami operator on M.

Since we have only a sample of the transfer manifold given by the source
tasks, we work with a discrete form f of the true transfer function g. The graph
Laplacian is a discrete form of the continuous Laplace-Beltrami operator that
acts on a function f : V → Rθ defined on G. Like the continuous g, f can also
be characterized by the eigenfunctions of the Laplacian; therefore, Q forms a set
of basis functions which we can use to define the transfer function f .

While this analysis has focused on the original model transfer graphG, we can
similarly analyze the extended graph Ĝ. As with G, we can take the eigenvectors
Q̂ of Ĝ’s graph Laplacian L̂ to form a set of basis functions that can characterize
the extended transfer function f̂ on Ĝ.

Modeling the transfer function
Using the basis functions for Ĝ, we can model the transfer function f̂ : V̂ →

Rθ. The eigenvectors Q̂ form an orthonormal basis for the set of all functions on
Ĝ; therefore, f̂ = Q̂W for some (n+ 1)× θ matrix W .

We use the known parameter vectors {vi}n
i=1 as samples of the function values

on the graph, defining f = [v1 . . . vn]T , where the vi’s are column vectors. We can
similarly define the basis vectors for these sample points as the corresponding
rows of Q̂: Q = Q̂1...n,∗ . The matrix Q is n× (n+ 1), and f is n× θ.

We fit each column ofW separately using regularized least-squares by solving:

W∗,i = argw min ||f∗,i −Qw||2 +
∣∣∣∣∣∣√Λ̂w

∣∣∣∣∣∣2 , (9)

where
√
Λ̂ serves as the regularization operator in this Tikhonov regularization

problem. The operator acts as a weighted penalty on the function’s average
second-derivative, enforcing smoothness by scaling each eigenvector’s weight by
its corresponding eigenvalue λi, thereby increasing the regularization on higher-
order eigenvectors to prevent overfitting with the high-frequency components.

We derive this expression by constraining the smoothness of f̂—i.e., the L2
norm of the gradient of f̂ , given by 〈∇ f̂ ,∇ f̂〉:

〈∇ f̂ ,∇ f̂〉 = 〈f̂ , L̂f̂〉
= (Q̂w)T (L̂Q̂w)

= wT Q̂T (Q̂Λ̂Q̂T Q̂w)

= wT IΛ̂Iw

= wT Λ̂w .

Therefore, we can constrain the smoothness of f̂ by penalizing the least-squares
problem with wT Λ̂w, which is equivalent to the penalty ||

√
Λ̂w||2 in Eqn. 9. The



solution to this least-squares problem is given by

W =
(
QTQ+ Λ̂

)−1

QT f . (10)

This process yields an (n+1)×θ matrix for W , which can be used unaltered
to form the extended transfer function f̂ = Q̂W that assigns a parameter vector
to each vertex in Ĝ. The extended transfer function f̂ approximates the known
parameter vectors {vi}n

i=1 at the source task vertices. At the new target task
tn+1, f̂ acts as a smoothed interpolent of the source tasks’ knowledge at tn+1’s
location, respecting the graph geometry and transferability relationships.

By the f̂ transfer function, the transferred parameters for the target task are
given by vn+1 = Q̂n+1,∗W , where Q̂n+1,∗ is the (n + 1)th row of Q̂. We then
transfer vn+1 in learning tn+1’s model.

5.3 Creating a Reusable Transfer Function

In the procedure we defined in Sect. 5.2, the transfer function must be relearned
for each new target task based on the geometry of the extended model transfer
graph. The transfer graphs used in the experiments were small enough that we
could directly compute the eigendecomposition of L̂. However, for very large
transfer graphs or for repeated transfer scenarios, this process of recomputing
the transfer function becomes a source of inefficiency. In this section, we describe
a method for creating a reusable form of the transfer function.

First, we construct the model transfer graph G using the source tasks as
described in Sect. 4. For G, we can construct the transfer function f : V → Rθ for
the source tasks by solving the least-squares problem f = QW for an n×θ matrix
W , where f = [v1 . . . vn]T and Q is the matrix of eigenvectors with eigenvalues
Λ of G’s graph Laplacian. The solution is given by W =

(
QTQ+ Λ

)−1
QT f .

While this f operates on G, applying it directly to the extended graph Ĝ
would not work, because there would be more than n eigenvectors. However, we
can use the Nyström method to extend G’s eigenvectors to new vertices without
increasing the number of eigenvectors, thereby allowing us to reuse the learned
transfer function f for multiple transfer scenarios.

The Nyström method [16–18] allows us to efficiently extend a graph’s eigen-
vectors to include a new vertex. Let {ŵi}n

i=1 be the transferability edge weights
between a new task tn+1 and all the vertices V of the original model transfer
graph G. The Nyström extension allows us to extend the eigenvectors Q of G’s
graph Laplacian to approximate the eigenvector values at the new task tn+1 as

qi(tn+1) =
1
λi

n∑
j=1

ŵj qi(tj) , (11)

where qi(tj) is the ith eigenvector applied to task tj .
Using these extended eigenvectors, we can form an approximation to the

true eigenvectors Q̂ of Ĝ, the extended model transfer graph that includes tn+1.



The Nyström approximation to the eigenvectors is given by Q̃, an (n + 1) × n
matrix. Since Q̃ and Q both contain n eigenvectors (recall that Q̂ contained n+1
eigenvectors), we can approximate the transfer function f̂ on Ĝ by f̃ = Q̃W using
the same weight matrix W without relearning. Then, for the new task tn+1, the
transferred parameter vectors are given by vn+1 = Q̃n+1,∗W .

6 Evaluation

Our experiments examine transfer in two domains: letter and newsgroup recogni-
tion. The Letters data set [19] characterizes various fonts of each character using
16 features normalized to lie in [0, 1]. The Newsgroup experiments use the 20
newsgroups data [20], characterized by a binary vector of the 100 most discrim-
inating words, as determined by Weka’s string-to-wordvector filter [9]. Transfer
is often not useful given large amounts of data, since there would be enough data
to learn a model with high performance. Both original data sets are very large,
so we randomly selected five percent of each to use in the experiments.

For Letters, we took the first 13 letters (A–M) and generated 13 binary tasks
of each of these letters against the last 13 letters (N–Z), ensuring that each task
had unique negative examples and equal class proportions. For example, the task
of recognizing the letter C used 35 “C”s as positive examples and 35 random
letters N–Z as negative examples. We chose this construction to yield tasks that
would interfere as little as possible with each other. For example, if instead we
had converted this data set into 26 one-versus-rest classification problems, there
would be interference between the tasks, since one task’s positive examples would
appear as other tasks’ negative examples, diminishing the possibility of transfer.
The Newsgroups tasks are constructed similarly, using the first newsgroup5 in
each major category as negative examples for the tasks given by the 13 remaining
newsgroups.

The base models for each task were learned from all available data. We then
constructed model transfer graphs for both Letters and Newsgroups over 10
trials of 10-fold cross-validation over all available data on the source tasks, ex-
cluding the target task from the computations. The held-out fold was used for
performance evaluation to generate the baseline and transfer learning curves.

For each target task, we used the task’s training data to extend the transfer
graph (again, computing the transfer over 10 trials of 10-fold cross-validation
on the training data), learned the transfer function on the extended graph, and
then used it to estimate the parameter vector for the target task. We evaluated
the learned classifier with transfer on the task’s held-out test data. This pro-
cedure was repeated and averaged over 20 trials of 10-fold cross-validation to
generate the learning curves. Table 1 summarizes each transfer scenario used in
the experiments.

Figures 2 and 3 compare the performance of our “graph transfer” approach
against “hand-selected” transfer, an “average” transfer method, and the baseline
5 The negative newsgroups are alt.atheism, comp.graphics, misc.forsale, rec.autos,

sci.crypt, soc.religion.christian, and talk.politics.guns.



Table 1. Summary of transfer scenarios.

20 Newsgroups

Target task # instances “Hand-selected” source tasks

comp.windows.x 100 comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware,

comp.sys.mac.hardware

rec.sport.baseball 100 rec.motorcycles, rec.sport.hockey

sci.space 100 sci.electronics, sci.med

talk.politics.mideast 94 talk.politics.misc, talk.religion.misc

Letters

Target task # instances “Hand-selected” source tasks

C 70 E, G

E 88 B, F

G 70 C

H 70 K, M

J 72 I, L

L 68 I, J

of learning without transfer. The “hand-selected” transfer computes the average
parameter vector over each target task’s related source tasks given in Table 1.
For Newsgroups, these related tasks were chosen as the other newsgroups with
the same top-level category; the related Letters tasks were chosen based on vi-
sual similarity between the letters. The average transfer method simply averages
the parameter vectors from all source tasks (including irrelevant tasks), corre-
sponding to several current transfer approaches [1, 2].

All of the Newsgroup transfer scenarios contain a mix of both relevant and
irrelevant source tasks. The comp.windows.x task (Fig. 2(a)) has a higher pro-
portion of relevant source tasks than the other Newsgroup scenarios, due both
to the larger proportion of computer-related newsgroups and the broad applica-
bility of computers to other subjects.

Our graph transfer method shows statistically significant improvement (with
at least 95% confidence) over the average parameter vector on the Newsgroup
tasks, demonstrating its ability to focus on information from relevant source
tasks. The inclusion of irrelevant source tasks in computing the average parame-
ter vector sometimes results in negative transfer, which our graph transfer avoids.
These results support the use of localized estimates for the transfer parameters
instead of averaging information from all source tasks without regard to trans-
ferability. It also shows that our approach can achieve performance near that of
expensive “hand-selected” source tasks; in many cases, the performance of the
graph transfer and hand-selected transfer are statistically indistinguishable.

Results on the letter transfer scenarios in Figs. 3(a)–(c) mirror the suc-
cesses of our approach on the Newsgroup tasks. The letter-L transfer scenario
(Fig. 3(d)) shows one case where we were unable to obtain clear improvement
over the average parameter vector, although in many cases its increased perfor-
mance over graph transfer is not statistically significant. This scenario also shows
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Fig. 2. Results of the Newsgroups transfer scenarios. The bottom portion of each graph
depicts the range where our graph transfer approach’s performance is statistically dif-
ferent at 95% confidence from each of the other three methods as measured by a
pairwise t-test.

the pitfalls of hand-selecting source tasks, in this case based on visual similarities
between the letters, in that these hand-selected tasks can unexpectedly result in
negative transfer.

Figures 3(e)–(f) depict two extreme transfer scenarios that demonstrate the
versatility of our approach. The complete model transfer graph for the letters
domain showed that all letters had positive transfer (on average) to the letter-
H task, with the exception of the letter-B task showing very slight negative
transfer. For the letter-H scenario with all relevant source tasks (Fig. 3(e)),
graph transfer achieves performance that is statistically indistinguishable from
the average parameter transfer, correctly combining information from all source
tasks. The transfer scenario in Fig. 3(f) depicts the opposite transfer scenario,
with only one source task showing very slight positive transfer to the letter-
J task. In this case, it is clear that any transfer would decrease performance,
and our graph transfer method shows the best performance of all the transfer
methods.

In working with our graph transfer approach, we did observe a few cases
where learning without transfer outperformed learning with transfer when given
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Fig. 3. Results of the Letter transfer scenarios. Figures (e) and (f) depict extreme
transfer scenarios: (e) all relevant source tasks on a difficult problem, and (f) no relevant
source tasks. For explanation of the lower significance graphs, see the caption to Fig. 2.

very little training data. However, these situations disappeared when averaged
over many trials and folds, as shown in our results. Biased logistic regression relies
on the training data to determine the amount of regularization from the given
parameter vector. When given very little training data, the learning algorithm’s
estimation of the ideal amount of transfer may be inaccurate, so it could be
outperformed by learning without transfer. It may also be the case that the graph



transfer method was occasionally unable to accurately localize the target task
in the model transfer graph given very little data. In any case, these hindrances
disappeared with the addition of slightly more training data.

We also explored a second transferability measure that was a normalized
form of Eqn. 5. This measure defined transferability as the percentage improve-
ment due to transfer against the best possible improvement. In an ideal transfer
situation, the learned model’s performance would immediately increase to the
maximum possible performance, which may be less than 1 due to noise in the
data. The percentage improvement due to transfer would then be the ratio of
Eqn. 5 to the maximum possible improvement. Using this normalized transfer-
ability measure yielded similar results to those we report here, so we omit these
results due to space limitations. In some cases, the normalized transferability
measure performed slightly worse than the unnormalized measure. However, a
more thorough analysis involving other transfer scenarios is required to conclude
whether the unnormalized measure we use in this paper is truly better.

7 Conclusion and Future Work

This paper describes a novel method for inductive transfer based on modeling
the transfer relationships between the source tasks. As shown by our results,
using localized estimates of the transfer values results in superior performance
on most problems. The shortcut of always using the average parameter vector
works well when all of the source tasks are relevant for transfer to the target
task, but this involves expensive hand-selection of the source tasks. Additionally,
hand-selection relies on qualitative (and sometimes incorrect) judgments that the
selected tasks will transfer well to the target task.

We are exploring several extensions to our approach. In this paper, we re-
quired transferability to be symmetric between two tasks. However, it has been
our experience that often transfer i→j is much greater than transfer j→i, show-
ing that transfer is not always symmetrical in practice. We plan to extend our
method to support directed edges in the transfer graph. Techniques for spec-
tral analysis of directed graphs have only been recently developed [21, 22] and
using them in this transfer framework presents significant technical challenges
that we leave to future work. Additionally, we are conducting a more extensive
evaluation of this method, including applying this method to other domains.
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