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Abstract

In this paper, we propose a novel graph-based
method for knowledge transfer. We embed a set
of learned background models in a graph that
captures the transferability between the models.
We then learn a function on this graph that au-
tomatically determines the parameters to transfer
to each learning task. Transfer to a new problem
proceeds by mapping the problem into the graph,
then using the function to determine the param-
eters to transfer in learning the new model. This
method is analogous to inductive transfer along a
manifold that captures the transfer relationships

model transfer graph represents a space for models using
transferability as the metric, based on samples given by the
source tasks, and corresponds to a discrete approximation
of a high-dimensional manifold that captures the transfer
relationships between the source tasks.

We then define a function on this manifold that determines
the parameters for all models. This transfer function re-
spects the local geometry of the graph and, therefore, the
transfer relationships among the source tasks. We use the
parameters of the source tasks’ models as samples of the
function at various locations on the manifold. We learn the
transfer function using these sample values and the basis
functions for the graph’s Laplacian (see Section 3).

between the tasks. ) ) ) o
Given a target task, we interpolate its position on the true

manifold by extending the graph to include the new task.
We construct basis functions on the extended graph using
the graph Laplacian, and then use these basis vectors to es-
Knowledge transfer from previously learned tasks to a newtimate the transfer function’s value at the target task. This
task is a fundamental component of human learning. Mosyields a transferred parameter vector for the target task,
machine learning methods for transfer rely on an explicitwhich we then use to learn the new model.

set of sourcetasks to identify a set of model parameters
that can be applied (transferred) to a nengettask. In

d
many cases, these source tasks are selected by an expBrt ©© @ Set of labeld” € IN. All tasks map from the same
in advance. Methods for transfer may combine informa-nPUt space to the same set of labels. The goal for learning a

tion from all source tasks (Marx et al., 2005; Kienzle & model for each task is to recover the true mapping- ¥

Chellapilla, 2006) or may use information from only a few from the set of labeled training instances.

tasks that are selected by an automated process (Thrun ur approach to transfer assumes that all models are from
O’'Sullivan, 1996). Our approach to transfer can adapt itself single class of learning algorithms that supports transfer
automatically to use information only from relevant sourcefrom one model to another. This transfer method must rep-
tasks when given both relevant and irrelevant source taskgesent the transferable components ofsharcemodel as

Given a set of source tasks and a new target task, odft pargmeter vector il’, and learn thearget model us-
method attempts to determine the parameter values o this transferred parameter vector. This formulation of

transfer from the background tasks in learning the targe_{ransfer using a parameter vector characterizes many exist-

task. Our approach to knowledge transfer embeds the mod9 transfer algorithms. In the experiments, we use a form
els learned on the source tasks into a graph, using a n(?-f logistic regression biased toward a vector of weights.

tion of transferabilityto determine the edge weights. This

1. Introduction

We define daskas a mapping from an instance spacec

2. Related Work

Presented atlorth East Student CO”OquUm on Artificial Intelli- Parameter_based transfer has been prevu)usly used by
gence (NESCAJ2008. Copyright the authors. Marx et al. (2005) to learn a logistic regression model us-



ing information from the source tasks. They fit logistic found that the combinatorial Laplacian (hereafter referred
regression models independently to each source task, and as just theaplacian) worked better in our experiments
then estimate the prior distribution for the target model'sand so we focus on it for the remainder of this paper.

weightsa posteriorifrom the source tasks’ models. Kien- . . - L
X . The LaplacianL is symmetric; therefore, its eigenvalues

zle and Chellapilla (2006) use a weight vector for transfer . . .
) A o . are all real and non-negative. The eigendecomposition of
in SVMs, biasing the regularization term toward the weight " ~. T n T . .

. : . LyieldsL = QAQ" = )"._, Nigig; , whereA is the di-
vector, instead of the zero vector as in standard SVM train- . . =
) . - . .agonal matrix of eigenvaluds; ... \,] and the columns
ing. The biased logistic regression method we propose 'r(])fQ are the eigenvectof |. Q forms an orthonor
Section 6 is based on a combination of biased regulariza- 9 8- nl

tion and Marx et al.’s logistic regression transfer. mal basis forl..
. =X <A <. <N i -
In contrast to the approaches of Marx et al. and K|en-Le.t0 .>‘1 <2 < < Ay be the_elgenvalues di con
) : tained inA, and letg; denote the eigenvector correspond-
zZle et al., which combine knowledge from all source tasks
e e Ing to \;. Spectral graph theory tells us that the smallest
for transfer, Thrun and O’Sullivan’s (1996) Task Cluster- . ; ) I ) .
: . . eigenvalue); is always 0 (with multiplicity 1, sincé: is
ing (TC) algorithm groups tasks for more selective trans- ) .
4 . connected) ang is constant over all vertices.
fer. Their method also transfers parameter vectors, sharing
weighted Euclidean distance metrics betwdenearest- Spectral graph theory has connections to Riemannian man-
neighbor classifiers. Transfer occurs by having déne ifolds, which we use to define the surface on which transfer
nearest-neighbor model use the distance metric from amsccurs. A graphG can represent a sample of the mani-
other model. Upon receiving a new task, the TC algorithmfold M, with the vertices as points on the manifold and
matches the new task to a cluster, then transfers that clushe edges connecting points that are close to each other on
ter's distance metric to the new task. the manifold. Letf be a smooth functiorf : M — R

: on a Riemannian manifold1 with Riemannian metria.
Bakker and Heskes (2003) take a Bayesian approach t?he Laplace-Beltrami operatdk is defined to be the di-

clustering tasks, using EM to optimize the task clusters. A .
second form of their approach uses a gating network, simyc 9ence of the gradient o¥1, and can act orf. Hodge

ilar to that used in the mixture-of-experts model (Jordan &theory (Rosenberg, 1997) implies thiahas a unique spec-

Jacobs, 1994), on top of the Bayesian EM framework tc)trum based on the eigenfunctions of the Laplace-Beltrami

allow the priors to vary depending on the task’s features. Operator on\1.

, T The graph Laplacian is a discrete form of the continuous
Pratt’s (1993) Discriminability-Based Transfer method Laplace-Beltrami operator that acts on a funciion’ —

for neural networks selectively transfers weights from A defined on the araph
learned network, modifying them as needed to enable grapn.

learning on a target task. Explanation-Based Neural Net- 1 gu)  g(v)
works (Mitchell & Thrun, 1996) use a more indirect ap- Lg(u) = NG <\/d— - ﬁ) ) )
proach to parameter transfer, using extracted invariances Y o~ “ Y

about a domain to bias the learning of model parameters. yyherey ~ u denotes that verticesandw are adjacent in

G. Like the continuousf, g can also be characterized by
3. Technical Background the eigenfunctions of the Laplacian. The smoothnesg of

] . ) ] on the graphZ is given by the Dirichlet sunb(g, G) =
This section provides an overview of the spectral graph theZ Awo (g(u) — g(v))zl

ory (Chung, 1994) used in this paper. L&V, A) be an
undirected connected weighted graph with a set ekr-
ticesV and a weightea x n adjacency matrix. A, ,, # 0 4. The Model Transfer Graph
implies that there is an edge between verticesdv. Let
the degree of vertex be denoted byl, = >"'_, A, .
Let T be the diagonal matrix whetg, , = d,,. The com-
binatorial Laplacian matrix. for the graph is given by
L=T-A:

Given the set of background learning tasks, ..., t,},

the first step is to construct the model transfer graph. We

assume that sufficient training examples are given for each

background task to learn models that have a high degree

of performance. Let these learned base models be denoted
dy — Ay, fu=wv, {ma,...,my,}, with m; corresponding to task.

Lu,v = _Au,v if Au,’u 7é 0, (1)

; We coulddirectly plot the models iiR?, since each model
0 otherwise.

has a transferabie-dimensional parameter vector How-
We can also define theormalized Laplaciammatrix £ as  ever, this embedding ignores the fact that the transferred
£ =1-T"2AT" =, wherel is the identity matrix. While knowledge mustmprove performancen the target task.
both forms of the Laplacian are applicable to our work, weSimilarity between two parameter vectors does not imply



that models using those vectors will have similar perfor-to the ideal amount of transfer:
mance on a task. Therefore, it is important to measure sim- Pii(q) - Pi(q)
ilarity in the transfer space based wansferability, that is, transfer; . ;(q) = PH] . 1; .
the degree of similarity between two models should cor- mas (£5) i(9)
relate with the degree to which the transferred knowledgernjs ratio forces positive transfer to be ja,1]. Neg-
improves learning performance on a task. (This transferative transfer—which occurs when transfer decreases the
ability may not be symmetric; we discuss this issue in Secperformance from the baseline—can fall outside the range
tion 4.2.) [—1, 0]; however, we consider only positive transfer in con-
structing the transfer graph, which eliminates this problem.

3

4.1. Computing the Transferability between Tasks . _— o .
ptting y This definition of transferability for a given amount of

We define transferability from tagkto ¢; as the change in training data lends itself to a definition of overall transfer-
performance on task between learning with and without ability for a given range of training set sizes. In particular,
transfer fromt;’'s model. This definition is similar to the we can integrate and average Equation 3 over a range of
approach used by Thrun and O’Sullivan in their task clus-values forg, yielding a single overall measure of transfer-
tering framework (1996). While their method simply looks ability. By consideringransfer;_, ; across the entire learn-

at the change in performance for a specific number of training curve, we compute the average amount of transfer ex-
ing instances, we also examine the change in performangsected for an arbitrary amount of training data. This com-
over the entire learning curve. Although we focus on thisputation assumes a uniform probability distribution over
definition of transferability, the transfer graph method isthe amount of training data that will be available for a new
general enough to use other measures of transferability. task; it is a simple matter to scale this computation for a

Let m(t, v, q) denote the model learned for taskisingq non-uniform probability distribution.

training instances with transfer from parameter veetor To compute the overall transferability, we generate the
which may be null {) for learning without transfer. Let baseline learning curve without transfét; = {P;(q)},

m; = m(t;, 0, all) be the model learned on tagkwith-  and the transfer learning curv@,_.; = {P,_;(q)}, vary-

out transfer using all available data. Tasls base model ing the value ofg over all available training data. Ide-
m,; has an associated parameter veetgrwhich we can ally, the increment between successii&should be very
transfer to learn other tasks. small; in the experiments, we generate a sampled form of

o e the learning curve by varying from 5% to 100% of the
To measure the transferability from tagko taskt;, given available training data usirig% increments.

¢ training instances, we first determine the baseline per-
formance for task; without transfer. We learm:f =  We then measure the arela_.; between these two paired
m(t;,0,q) and evaluate this model on the testing data forcurves, counting areas formed whéh_.; is above the
task¢; to generate the baseline performamégq). We  baseline”; as positive, and areas formed whgn., ; is be-
similarly determine the transfer performance by learning dow C; as negative. The ideal area of transfgy.,; is then
modelm;_ ; = m(t;, v;, q) using transfer from task, and  the area between the baselifie and the lineP,,q.(t;).
evaluating the model on the testing data for tgskielding  Finally, we then take the ratio of;_, ; to the ideal amount
transfer performanc®;_, ;(¢). Any performance measure of transfer4,4..; to compute the transferability. Figure 1
that evaluates to a real number can be used to compute tlilustrates this step. This computation has the benefit of
transferability (e.g., predictive accuracy, f-measure). In outbeing invariant to the learning curveisaxis scale.
experiments, we use predictive accuracy on the held-out

test set to evaluate performance. 4.2. Constructing the Transfer Graph

In an ideal transfer Situation, the transferred informationTo ensure that our S|m||ar|ty metric is SymmetriC, we de-

would immediately increase the performance of the learnegine the undirected transfer similarity between taskand
model to the maximum possible performance. Our best esy; to be the minimum of the two directed transferabilities:
tlmaf[e of the maximum possible performance is simply thetmngferi ;(@) = min (tmnsferiqj(q), tmnsferj_,i(q)).
maximum performance we have ever Observed on#gsk The largest potential problem is overestimating the amount
across all baselines and transfer situations using all possgf transfer between two tasks, and using the minimum of
ble amounts of training data, denotétl,q, (¢;). The ideal  the directed transferabilites ensures that our estimate of the
increase due to transfer would therefore be the differencggnsfer is as large as possible without being a potential
betweens,, . (t;) and P;(q). overestimation. Using other forms of symmetrization, such

We compute the transfer from taskto taskt ; with g train- as taking the average or maximum, could lead to overesti-

ing instances to be the ratio of the actual amount of transfefation. While this construction underestimates the amount
of transfer, we show empirically that it performs well.



Ideal performance

Transfer curve C,

i—j

Number of Training Instances

dimensional manifold, represented by the model transfer
graph. The smooth functiofiacts on this manifold; there-

T R R T S fore, we can characterizébased on the eigenfunctions of
0] ) .
= . the model transfer graph’s Laplacian
3 Baseline C,
8 5.1. Extending the Transfer Graph
3 P-N :
Transfer = — Given a small sample of the data fram,.; (much less data
A+P than was given for any other task...t,), we approxi-

mate the modet,, 1 's location in the graph by computing
its transferability from every other tagk transfer; ., ;.

This yields a set of weighted edddsetweenn,, . ; and all
other modelsn; ...m,, allowing us to localizen,,, 1 in

Figure 1. Graphical depiction of computing the transfer betweenthe transfer graph. Let these weightsibg. . . w,,.

two taskst; and; from learning curves. The extended transfer graph that includes task, can

now be defined byy = (V, 4), whereV = V {t,+1}
We define the vertices of the model transfer graph toandAisthe(n + 1) x (n + 1) extended adjacency matrix
be the source tasks and their associated motfels= o
{(t;;m;)}_,. We can construct the symmetric adjacency A= { A w }
matrix A for the transfer graph for a given amount of train- w0

ing datag as . .
We then form the graph Laplaciah of GG, and take the

eigenvectors) of the Laplacian as a set of basis vectors
over the extended graph.

if i = 5,
otherwise.

0
Aig = { max (0, transfer; ;(q)) > ()
providing us with a complete definition of the model trans- For very large transfer graphs, the new eigenvectors could
fer graph given a set of source tasks and their assoche computed efficiently using the Nyt method (Baker,
ated learned models. Since we need only model the posit977; Fowlkes et al., 2004; Drineas & Mahoney, 2005) to
tive transfer, this construction eliminates all negative edgegxtendL’s eigenvectors to the new task, |, based on the
from A. The known portion of the model transfer space edge weightsi. The Nystdm extension gives:
is then given by the weighted grajgh = (V, A) with the
edge weights specified iA. 1 < .
Gi(tnt1) = x > i ailt;) (5)

3 ]:1

5. Transfer to a Target Task
whereg;(t;) is thei'" eigenvector applied to mode}.
However, the transfer graphs used in the experiments were
small enough that we could directly compute the eigende-
composition ofL.

Once the model transfer gragh = (V, A) has been con-
structed, transfer to a new target task ; involves extend-
ing G to includet,, ;. Each vertex in the model transfer
graph has an associatéedimensional parameter vector.
We estimate the parameter vector fqr.,’s model from
the other models’ parameters. This process is equivale
to interpolating the position of,.; on the manifold that We assumed earlier that there was a funcifont” — R
models the transferability, and then determining the transthat governs the assignment of parameter vectors to models
fer function’s value at that point. in the transfer graph. To determine the parameter vector for
the new mode,, .1, we extendf to formf:V — R?.

n&i.z. Determining the Transferred Parameters

We assume that there is some underlying hidden functio
f: V — R? that governs the assignment of the parameterghe eigenvector@ form an orthonormal basis for the set of
to each vertex. Transfer to a target task involves determinall functions on(; therefore f = QW for some(n+1) x 6
ing the target model’s location in the model transfer spacematrix 1. Using the known parameter vectars. . . v,, as
and then determining the parameters for the target modadamples of the function values on the graph, wifitising
based on the parameters of the other models in the spadeast-squares. This maké¢san approximation off at the

In other words, we are attempting to determine the paramknown sample points on the graph . . t,,, and a smoothed
eter values thaf would assign to the target model. interpolant for it at,, ;.

This approach requires thgtbe smooth over some sur-  1The edges are also directed, although we ignore directional-
face, so we interpret the models as lying on some highity, since the transfer is one-way only.



Let Q be the rows ofy) corresponding to the sampled ver- log-likelihood of the labeled training dafdz;, y;)},:

tices (in this cas@ = an*) We fit each column ofV
separately using regularized least-squares by solving:

feom [+ [VRS|[ ®

W, i = arg,, min ’

1(B) = Z [yi log P(y; = 1|z;) +

(1 —wi)log P(y; = Ozs)] . (10)

where VA serves as the regularization operator in thisCombining ridge estimation with logistic regres-

Tikhonov regularization problem. The regularization in sijor? (Duffy & Santner, 1989;

Le Cessie & Van

this case acts as a weighted penalty on the average secordeuwelingen, 1992) adds a penalty on the norm of
derivative of the function, enforcing smoothness by scaling3, and involves choosing? to maximize the penalized
each eigenvector weight by its corresponding eigenvalugog-likelihood I*(3) = 1(3) — A||B||?, where ) is the

Ai, thereby increasing the regularization on higher-orderidge parameter that controls the shrinkage of the norm

eigenvectors to prevent overfitting with the high-frequencyHﬁ” —

components.

1/Ej ﬁ]?. Inspired by biased regularization of
support vector machines (Kienzle & Chellapilla, 2006;

We derive this expression by constraining the smoothSclolkopf & Smola, 2002) and the logistic regression

ness of f—the L2 norm of the gradient of, given by

(V £,V f):

= 0" Q"(QAQ" Qu)

= wTTAIw

=wlAw .
Therefore, we can constrain the smoothpes§ &y pe-
nalizing the least-squares problem witd Aw, which is

= 2
equivalent to the penaltM\waH in Equation 6. The so-
lution to this least-squares problem is given by

)

Once we have the least-squares estimatéifotthe trans-
ferred parameters are given by,.; = Qpn41,.W, which
we then use in learning the model for tagk ;.

W= (Q"Q+R) Q" fs

6. Transfer using Biased Logistic Regression

We use a biased form of logistic regression as the bas

transfer method of Marx et al. (2005), we penalize
deviations of3 from a given vectop,:

(B) = 1(B) = B — Bol” -

Standard (non-biased) logistic regression corresponés to
as the zero vector. This bias vect@y can be transferred
from the learneds of another logistic regression model,
allowing one logistic regression model to be biased toward
the parameters of another model. Note that we do not trans-
fer the constant term, allowing it to be fit individually to
each problem.

(11)

When A = 0, the bias term disappears and does not af-
fect the learned weights; as — oo, the logistic regres-
sion learned weights approach the bias weights. In the ex-
periments, we use the Bayesian-optimvainaking two as-
sumptions about the model (Hastie et al., 2001). First, we
assume that the errofg;;, — p(z;)}?_, are normally dis-
tributed NV (0, 02) with variances?. Second, we assume
that the parameters jf are independent and normally dis-
tributed N (3, 72) with meang3, and variance-2. Under
these assumptions, the Bayesian-optimal lambda is given
by A = ‘;—z (Hastie et al., 2001). Viewed from the perspec-
tive of transfer, this assumption implies a normal probabil-
ﬁ"y distribution over the transfer frorfiy to 3.

learning algorithm in the experiments. Biased logistic re-

gression penalizes deviations from a given weight vectorThe logistic regression transfer method proposed by
effectively biasing the learned model toward the transferredMarx et al. (2005) uses a similar construction, in which
parameters. they penalize the model parameters for deviating from a
The well known logistic regression model gives the proba_given sgt of normal distributiqns, considering both means
bility of a data instance having a binary labej as: and variances that were derived from the transferred pa-

rameter vectors. The method we use here (based on ridge

exp(z3) estimation) corresponds to their method using a constant
Py =1]z) = T eap(ad) (8)  variance for all parameters, which is absorbed intdhe
major problem with using their method in this framework
Ply=0lz) =1—-P(y =1lz) , )

is that it is dependent on havingsatof source tasks from

wherez € R? and3 € R®. The parameter vectos is 2\We use the Weka machine learning toolkit's implementation
obtained in standard logistic regression by maximizing theof this method (Witten & Frank, 2000).



which to estimate the parameter variances and thereby the Number of  Portion of

regularization parameters; in this application, we have only Target task instances relevant
one source parameter vector and, therefore, no variance. source tasks
sci.space 360 1/12
; talk.politics.mideast 365 2/12
/. Evaluation comp.windows.x 360 6/12
Our experiments examine transfer in two domains: letter sci.med 370 8/12
and newsgroup recognition. The Letters data set (Asuncion “J” 550 1/12
& Newman, 2007) characterizes various fonts of each char- “H” 550 11/12

acter using 16 features. The Newsgroup experiments use
the 20 newsgroups data set (Rennie, 2003), characterized
by a binary vector of the 100 most discriminating words as

determined by Weka’s string-to-wordvector filter (Witten For every possible transfer scenario, we determined the
& Frank, 2000). Both original data sets are very large, sowumber of relevant source tasks by generating the complete

we randomly selected five percent of each data set to use ifodel transfer graph for all tasks in that domain (includ-
the experiments. ing the target tasks), and examining the (positive) incom-

, ing edges to each target task. We then chose the specific
For Letters, we took the first 13 letters (A-M) and gen-y.ansfer scenarios for these experiments based on the ratio

erated 13 binary problems of each of these letters againg relevant to irrelevant source tasks. Table 1 summarizes
the last 13 letters (N-Z). For example, the task of recog+ch transfer scenario used in the experiments.
nizing the letter A used “A’s as positive examples and all

letters N—Z as negative examples. We chose this construdzigure 2 compares the performance of the graph transfer
tion to yield tasks that would interfere as little as possiblefunction against an “average” transfer method, and against
with each other. For example, if instead we had convertedhe baseline of learning without transfer. The average trans-
this data set into 26 one-versus-rest classification probleméer method simply averages the parameter vectors from all
there would be interference between the tasks, as one taskggurce tasks (including irrelevant tasks) and transfers that
positive examples would appear as other tasks’ negative exverage parameter vector to the target task.

amples, diminishing the possib_ility of tran;fer. The NeWS'Figures 2(a)-2(c) depict transfer scenarios with a mix of
groups tasks are constructed similarly, using the first neWsgg|ayant and irrelevant source tasks. In these scenarios, the
groupin _eaCh major category as nt_a_gatlve exanijaled th_e_ graph transfer method shows statistically significant (with
13 remaining newsgroups as positive examples. Additiong o545t 9504 confidence) performance improvement over
ally, we resampled the data with replacement to ensure thaf o a9e parameter transfer, demonstrating our method's
the class priors were approximately equal, and normalized ijiv to focus on information from relevant source tasks.
the feature values to lie if0, 1]. These results support the use of localized estimates for the
We constructed model transfer graphs for both Letters antfansfer parameters for some problems, unlike the work of
Newsgroups over 10 trials of 10-fold cross-validation overMarx et al. (2005) and Kienzle et al. (2006), which use es-
all available data on the source tasks, excluding the targdtmates based on all the source problems (corresponding to
task from the computations. The held-out fold was used fothe average transfer method).

performance evaluation to generate the baseline and traN$ne transfer scenarios of Figures 2(d) and 2(f) have few

fer learning curves. The base parameter vectors for eagfiqjevant source tasks, and in these cases, we see that
task were computed from all available data. transferring the average parameter vector works quite well.

For each target task, we used 20 percent of the data fdlowever, these results could easily be skewed by providing
training and the remainder for testing. We used the trainingnore irrelevant source tasks. In such a case, we hypothe-
data to map the task to the transfer graph (again, compusize that the performance of the average parameter transfer
ing the transfer over 10 trials of 10-fold cross-validation would decrease, but that the graph transfer method would
on the training data), computed the transfer function on thésolate the irrelevant tasks and perform equally well. Sev-
extended transfer graph, and then used that function to e€ral data points in these figures show the average parameter
timate the parameter vector to transfer to the target task/ector outperforming the graph transfer method. This indi-
Then, the learned classifier was evaluated on the test datgates that in situations where there is a majority of relevant
This procedure was repeated for 50 trials. source tasks, it may be better to transfer the average param-
— . _ eter vector. However, in situations where the relevance of
_“The negative newsgroups are alt.atheism, comp.graphicoyrce tasks is questionable or unknown, the graph transfer
Q:i.cbfc?lirt?gfg’;ur::c'aums’ sci.crypt, - soc.religion.christian, - ande o might be a better choice, since it will automatically
exclude the irrelevant source tasks.

Table 1. Summary of transfer scenarios.
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Figure 2. Results on the Newsgroups and Letters transfer tasks. The top portion of each graph compares the learning curves of the graph
transfer function, transfer using the average parameter vector from all source tasks, and learning without transfer. The bottom portion of
each graph depicts the confidence level by which the transfer function’s performance is statistically different from each of the other two
methods as measured by a pairwise t-test. Typically, a difference with a confidence of 0.95 or above is considered statistically significant.

Figure 2(e) shows one scenario where we were unable tier when given very little training data. The biased logistic
obtain improvement over the average parameter vector, deegression algorithm we used in these experiments relies on
spite the large number of irrelevant tasks. When we exthe training data to determine the amount of transfer from
amined the model transfer graph for Letters, there were nthe given parameter vector. When given very little train-
tasks that were highly transferable to “J,” unlike in the othering data, the learning algorithm’s estimation of the ideal
transfer scenarios. The one task relevant to “J” had veramount of transfer may be inaccurate, and so it is outper-
low positive transfer. The lack of improvement from trans-formed by learning without transfer. It may also be the case
fer is most likely due to this lack of relevant source tasks. that the graph transfer method is unable to accurately lo-

In two of the transfer scenarios—Figures 2(b) and 2(e)_callze the target task in the model transfer graph given such

. . . . little data. In any case, these hindrances disappear with the
learning without transfer outperforms learning with trans- - . .
addition of slightly more training data.



8. Conclusion and Future Work Duffy, D. E., & Santner, T. J. (1989). On the small sample

hi d ib | hod for inducti ‘ properties of norm-restricted maximum likelihood esti-
This paper describes a novel method for inductive transfer ;¢ fo; logistic regression model€ommunications

using af.unction on the tr.ansfer graph. As shown by our re- in Statistics: Theory and Methodts, 959-980.

sults, using localized estimates of the transfer values results

in superior performance on some problems. The shortcutowlkes, C., Belongie, S., Chung, F., & Malik, J. (2004).
of always using the average parameter vector works well Spectral grouping using the Nys&tn method. IEEE
when all of the source tasks are relevant for transfer to Transactions on Pattern Analysis and Machine Intelli-
the target task, but this involves expensive hand-selection gence 26.

of the source tasks. Additionally, hand-selection relies on i o .

qualitative (and sometimes incorrect) judgments that thdiastie, T., Tibshirani, R., & Friedman, J. (200I)he el-
selected tasks will transfer well to the target task. ements of statistical learning: Data mining, inference,

and prediction New York: Springer.
We are exploring several extensions to our method. In this

paper, we required transferability to be symmetric betweedordan, M., & Jacobs, R. (1994). Hierarchical mixtures of
two models. However, it has been our experience that of- €xperts and the EM algorithmNeural Computationé,
ten transfer,_; # transfer;_,;, showing that transfer is 181-214.

not always symmetrlcal_ In practice. We plan to eXtendKienzIe, W., & Chellapilla, K. (2006). Personalized hand-
our method to support directed edges in the transfer graph. = . " L e
writing recognition via biased regularizatioffroceed-

Tecigues for spectl iy ofdiectd grapns neve . S0% L Ttnatonar Comeence o
y y b 9 9 Machine Learning Pittsburgh, PA.

them in this framework presents significant technical chal-

lenges that we leave to future work. Additionally, we are e Cessie, S., & Van Houwelingen, J. C. (1992). Ridge

conducting a more extensive evaluation of this method, in- estimators in logistic regressiompplied Statistics41,

cluding applying it to other domains, such as image recog- 191-201.

nition.

Marx, Z., Rosenstein, M. T., Kaelbling, L. P., & Dietterich,
T. G. (2005). Transfer learning with an ensemble of
background tasks.NIPS 2005 Workshop on Transfer
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