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ABSTRACT
Multi-view learning algorithms typically assume a complete
bipartite mapping between the different views in order to
exchange information during the learning process. However,
many applications provide only a partial mapping between
the views, creating a challenge for current methods. To
address this problem, we propose a multi-view algorithm
based on constrained clustering that can operate with an
incomplete mapping. Given a set of pairwise constraints in
each view, our approach propagates these constraints using
a local similarity measure to those instances that can be
mapped to the other views, allowing the propagated con-
straints to be transferred across views via the partial map-
ping. It uses co-EM to iteratively estimate the propaga-
tion within each view based on the current clustering model,
transfer the constraints across views, and update the clus-
tering model, thereby learning a unified model for all views.
We show that this approach significantly improves cluster-
ing performance over several other methods for transferring
constraints and allows multi-view clustering to be reliably
applied when given a limited mapping between the views.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering;
I.2.6 [Artificial Intelligence]: Learning
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1. INTRODUCTION
Using multiple different views often has a synergistic ef-

fect on learning, improving the performance of the result-
ing model beyond learning from a single view. Multi-view
learning is especially relevant to applications that simultane-
ously collect data from different modalities, with each unique
modality providing one or more views of the data. For ex-
ample, a textual field report may have associated image and
video content, and an Internet web page may contain both
text and audio. Each view contains unique complementary
information about an object; only in combination do they
yield a complete representation of the original object. Con-
cepts that are challenging to learn in one view (e.g., iden-
tifying images of patrons at an Italian restaurant) may be
easier to recognize in another view (e.g., via the associated
textual caption), providing an avenue to improve learning.
Multi-view learning can share learning progress in a single
view to improve learning in the other views via the direct
correspondences between views.

Current multi-view algorithms typically assume that there
is a complete bipartite mapping between instances in the
different views to represent these correspondences, denoting
that each object is represented in all views. The predictions
of a model in one view are transferred via this mapping to
instances in the other views, providing additional labeled
data to improve learning. However, what happens if we
have only a partial mapping between the views, where only
a limited number of objects have multi-view representations?

This problem arises in many industrial and military appli-
cations, where data from different modalities are often col-
lected, processed, and stored independently by specialized
analysts. Consequently, the mapping between instances in
the different views is incomplete. Even in situations where
the connections between views are recorded, sensor avail-
ability and scheduling may result in many isolated instances
in the different views. Although it is feasible to identify a
partial mapping between the views, the lack of a complete bi-
partite mapping presents a challenge to most current multi-
view learning methods. Without a complete mapping, these
methods will be unable to transfer any information involving
an isolated instance to the other views.

To address this problem, we propose a method for multi-
view learning with an incomplete mapping in the context
of constrained clustering. Constrained clustering [21, 5, 7,
24] is a class of semi-supervised learning methods that clus-
ter data subject to a set of hard or soft constraints that



Figure 1: An illustration of multi-view constrained
clustering between two disjoint data views: text and
images. We are given a very limited mapping be-
tween the views (solid black lines) and a set of pair-
wise constraints in the images view: two must-link
constraints (thick solid green lines) and one cannot-
link constraint (thick dashed red line). Based on the
current clustering, each given constraint is propa-
gated to pairs of images that are in close proximity
to the given constraint and can be mapped to the
text view. These propagated must-link and cannot-
link constraints (thin solid green and dashed red
lines, respectively) are then directly transferred via
the mapping to form constraints between texts and
influence the clustering in the next co-EM iteration.

specify the relative cluster membership of pairs of instances.
These constraints serve as background information for the
clustering by specifying instance pairs that belong in either
the same cluster (a must-link constraint) or different clus-
ters (a cannot-link constraint). Given a set of constraints
in each view, our approach transfers these constraints to
affect learning in the other views. With a complete map-
ping, each constraint has a direct correspondence in the
other views, and therefore can be directly transferred be-
tween views using current methods. However, with a partial
mapping, these constraints may be between instances that
do not have equivalences in the other views, presenting a
challenge to multi-view learning, especially when the map-
ping is very limited.

This paper proposes the first multi-view constrained clus-
tering algorithm that considers the use of an incomplete
mapping between views. Given an incomplete mapping,
our approach propagates the given constraints within each
view to pairs of instances that have equivalences in the other
views. Since these propagated constraints involve only in-
stances with a mapping to the other views, they can be
directly transferred to instances in those other views and
affect the clustering. The weight of each propagated con-
straint is given by its similarity to the original constraint,
as measured by a local radial basis weighting function that
is based on the current estimate of the clustering. This pro-
cess is depicted in Figure 1. Our approach uses a variant
of co-EM [17] to iteratively estimate the propagation within
each view, transfer the constraints across views, and update
the clustering model. Our experiments show that using co-
EM with constraint propagation provides an effective mech-
anism for multi-view learning under an incomplete mapping
between views, yielding significant improvement over several
other mechanisms for transferring constraints across views.

2. BACKGROUND AND RELATED WORK
Our approach combines constrained clustering with multi-

view learning. In this section, we review the related work
on both of these topics.

2.1 Constrained clustering
Constrained clustering algorithms [21, 5, 7, 24] learn a

clustering model subject to a set of constraints C that spec-
ify the relative cluster membership of sets of instances. De-
pending on the algorithm, this labeled knowledge may be
treated as either hard constraints that cannot be violated,
as in COP-Kmeans [21], or soft constraints that can be vi-
olated with some penalty, as in SCOP-Kmeans [22], PCK-
Means [5], and MPCK-Means [7]. In this paper, we focus on
soft constrained clustering, where each constraint specifies
the relative cluster membership of pairs of points.

A pairwise constraint 〈xi, xj , w, type〉 ∈ C denotes the
relative clustering of instances xi and xj , where the non-
negative weight of the constraint is given by w ∈ R+

0 (the
set of non-negative real numbers) and type ∈ {must-link ,
cannot-link} specifies whether xi and xj belong in either
the same cluster (must-link) or different clusters (cannot-
link). In soft constrained clustering, w can be viewed as the
penalty for violating the constraint. Throughout this pa-
per, wherever the weight or type of constraint are obvious
from context, we will omit them and indicate a pairwise con-
straint as simply 〈xi, xj〉 or 〈xi, xj , w〉. For convenience, we
refer to the sets of all must-link and cannot-link constraints
as, respectively, Cml and Ccl .

Although our approach can use most current constrained
clustering algorithms, we focus on the PCK-Means [5] and
MPCK-Means [7] algorithms. PCK-Means performs soft
constrained clustering by combining the K-Means objective
function with penalties for constraint violations. MPCK-
Means builds on PCK-Means to learn the distance metrics
for each cluster during the clustering process. In the re-
mainder of this section, we provide a brief overview of these
methods; further details are available in the original papers.

We first describe the MPCK-Means algorithm, and then
show the simplifications that yield PCK-Means. The MPCK-
Means algorithm generates a k-partitioning of the data X ⊆
Rd by minimizing the following objective function, which
combines the K-Means model with penalties for violating
must-link and cannot-link constraints:

JMPCK =
∑
xi∈X

(
‖xi − µxi‖

2
Mxi
− log(det(Mxi))

)
+

∑
〈xi,xj ,w〉∈Cml

wfml(xi, xj)1(µxi 6= µxj )

+
∑

〈xi,xj ,w〉∈Ccl

wfcl(xi, xj)1(µxi = µxj ) ,

where

fml(xi, xj) = 1
2
‖xi − xj‖2Mxi

+ 1
2
‖xi − xj‖2Mxj

fcl(xi, xj) = ‖x′xi
− x′′xi

‖2Mxi
− ‖xi − xj‖2Mxi

,

µxi and Mxi are respectively the centroid and metric of the
cluster to which xi belongs, x′xi

and x′′xi
are the points with

the greatest separation according to the Mxi metric, the
function 1(b) = 1 if predicate b is true and 0 otherwise, and

‖xi − xj‖M =
√

(xi − xj)TM(xi − xj) is the Mahalanobis
distance between xi and xj using the metric M. The first



term of JMPCK attempts to maximize the log-likelihood of
the K-Means clustering, while the second and third terms
incorporate the costs of violating constraints in C.

MPCK-Means uses expectation-maximization (EM) to lo-
cally minimize JMPCK to generate the clustering. The E-
step consists of assigning each point to the cluster that min-
imizes JMPCK from the perspective of that data point, given
the previous assignments of points to clusters. The M-step
consists of two parts: re-estimating the cluster centroids
given the E-step cluster assignments, and updating the met-
ric matrices {Mh}Kh=1 to decrease JMPCK . The latter step
enables MPCK-Means to learn the metrics for each cluster in
combination with learning the constrained clustering model.
Learning a Mahalanobis metric has also been considered by
Xing et al. [24] and Bar-Hillel et al. [2]. The PCK-Means al-
gorithm is a simplified form of this approach that minimizes
the same objective function as MPCK-Means, but eliminates
the metric learning aspect and assumes an identity distance
metric, setting fml(xi, xj) = 1 and fcl(xi, xj) = 1.

2.2 Multi-view learning
Multi-view learning was originated by Blum et al. in the

co-training algorithm [8] for semi-supervised classification.
Co-training uses the model for each view to incrementally
label the unlabeled data. Labels that are predicted with high
confidence are transferred to the corresponding unlabeled in-
stances in the other views to improve learning, and the pro-
cess iterates until all instances are labeled. Co-training as-
sumes independence between the views, and shows decreased
performance when this assumption is violated [17].

Nigam and Ghani [17] propose the co-EM algorithm as an
iterative multi-view form of expectation-maximization. At
each iteration, co-EM estimates the model for a view and
uses it to probabilistically label all of the data; these labels
are then transferred to train another view during the next
iteration. Co-EM repeats this process until the models for all
views converge. Unlike co-training, co-EM does not require
the views to be independent in order to perform well. The
approach we explore in this paper uses a variant of co-EM to
iteratively infer constraints in each view, and transfer those
constraints to affect learning in the other views.

Clustering with multiple views has previous been explored
by Bickel and Scheffer [6], who developed a multi-view EM
algorithm that alternates between the views used to learn
the model parameters and estimate the cluster assignments.
Multi-view clustering has also been studied using canoni-
cal correlation analysis to construct low-dimensional embed-
dings from multiple views [9], spectral clustering that mini-
mizes the disagreement between views [12], cross-modal clus-
tering between perceptual channels [11], and information-
theoretic frameworks [19, 14, 20].

3. PRELIMINARIES
Our multi-view constrained clustering approach (described

in the next section) takes as input multiple views of the
data X = {XA, XB , . . .}. Each view V of the data is given
by a set of instances XV = {xV1 , xV2 , . . . , xVnV

}, with each

xVi ∈ RdV . The feature set and dimensionality dV may dif-
fer between the views. We will initially focus on the case of
two views, given by XA and XB , and extend our approach
to handle an arbitrary number of views in Section 4.3.

Within X , there are pairs of instances that correspond to
different views of the same objects. We denote this con-

nection between two instances xAu and xBv in different views
by a relation ri = 〈xAu , xBv 〉 ∈ XA × XB . The set of rela-
tions RA×B = {r1, r2, . . .} ⊆ XA × XB defines a bipartite
graph between XA and XB . Most other work on multi-view
learning [17, 8, 6] assumes that RA×B defines a complete
bipartite mapping between the two views. We broaden this
assumption and consider the case whereRA×B provides only
a partial mapping between the views, and moreover when
there are many more data instances than relations between
views (i.e., |RA×B | << |XA|+ |XB |).

We also have a set of pairwise must-link and cannot-link
constraints for each view V , given by CV ⊆ XV × XV ×
R+

0 × {must-link , cannot-link}. Depending on the applica-
tion, these constraints may either be manually specified by
the user or extracted automatically from labeled data. Note
that the constraints describe relationships between instances
within a single view, while the mapping RA×B defines con-
nections between instances in different views.

4. MULTI-VIEW CONSTRAINED
CLUSTERING

Our multi-view constrained clustering approach takes as
input multiple views of the data X = {XA, XB , . . .}, their
associated sets of pairwise constraints CA, CB , . . ., and a (po-
tentially incomplete) mapping RU×V between each pair of
different views U and V . Although we focus primarily on
the case of two views A and B, we also generalize our ap-
proach to multiple views, as described in Section 4.3. The
objective of our approach is to determine a k-partitioning
of the data for each view that respects both the constraints
within each view and the mapping between the views.

Our approach, given as Algorithm 1, iteratively clusters
each view, infers new constraints within each view, and
transfers those inferred constraints across views via the map-
ping. Through this process, progress in learning the model
for one view will be rapidly transmitted to other views, mak-
ing this approach particularly suited for problems where dif-
ferent aspects of the model are easy to learn in one view but
difficult to learn in others.

The base constrained clustering algorithm is given by the
CKmeans subfunction, which computes the clustering that
maximizes the log-likelihood of the data X given the set of
must- and cannot-link constraints C. Our implementation
uses either the PCK-Means or MPCK-Means algorithms
as the CKmeans subfunction due to their native support
for soft constraints and, for MPCK-Means, metric learn-
ing. However, our approach can utilize other constrained
K-Means clustering algorithms, provided they meet the cri-
teria for the CKmeans function listed above.

We fit the clustering model across both views using a vari-
ant of the co-EM algorithm [17]. In the E-step, we propa-
gate the set of given constraints based on the current clus-
tering models to those instances (X̂A and X̂B) with direct
mappings to the other views (Step 11, further described in
Section 4.1). These propagated constraints can then be di-
rectly transferred to the other views via the mapping RA×B

(Steps 4–9, further described in Section 4.2) to influence
clustering during the M-step (Step 10). Note that instead of
taking the direct union of all of the constraints, we keep only
the maximally weighted constraint of each type (must-link
and cannot-link) for every pair of instances; this operation
is notated by the

max⋃ operator in Step 9.
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Figure 2: The relationship between the E-steps and
M-steps in the different views.

Following previous work on co-EM and multi-view clus-
tering [17, 6], we iterate the E-step in one view to propagate
the constraints followed by the M-step in the other view to
transfer those constraints and update the clustering. Each
iteration of the co-EM loop (Steps 6–13) contains two it-
erations of both the E-step and the M-step, one for each
view. The relationship between these steps is illustrated
in Figure 2. The co-EM process continues until each view
has internally converged. We assume convergence has oc-
curred when the PCK-Means/MPCK-Means objective func-
tion’s value differs by less than ε = 10−6 between successive
iterations. Like Nigam and Ghani [17], we observed that
our co-EM variant converged in very few iterations in prac-
tice. The iterative exchange of constraints between the views
ensures a consistent clustering that respects both the con-
straints within and the mapping between views. The next
two sections detail each step of the co-EM process.

4.1 E-step: Constraint propagation
In our model, the sets of pairwise constraints are the sole

mechanisms for guiding the resulting clustering. We can
directly map a constraint 〈xu, xv〉 between views only if the
mapping is defined in RA×B for both endpoints xu and xv
of the constraint. When RA×B is incomplete, the number of
constraints with such a direct mapping for both endpoints
is likely to be small. Consequently, we will be unable to
directly map many of the constraints between views; each
constraint that we cannot map represents lost information
that may have improved the clustering.

Let X̂V ⊆ XV be the set of instances for view V that
are mapped to another view. Given the initial constraints
in CV , we infer new constraints between pairs of instances
in X̂V based on their local similarity to constraints in CV .
We define this local similarity metric based on the current
clustering model for view V , and propagate a constraint
〈xVu , xVv 〉 ∈ CV to a pair of points xVi , x

V
j ∈ X̂V if the pair is

sufficiently similar to the original constraint. This process
essentially considers these as spatial constraints [15] that af-
fect not only the endpoints, but local neighborhoods of the
instance space around those endpoints. Any effect on a pair
of points in the neighborhood can be realized as a weighted
constraint between those instances. Our constraint prop-
agation method infers these constraints between instances
in X̂V with respect to the current clustering model. Since
this set of new constraints (which we refer to as propagated
constraints) is between instances with a direct mapping to
other views, these constraints can be directly transferred to
those other views via the mapping RA×B . This approach
can also be interpreted as inferring two weighted must-link
constraints 〈xVu , xVi 〉 and 〈xVv , xVj 〉 and taking the transitive

closure of them with 〈xVu , xVv 〉 to obtain 〈xVi , xVj 〉.

Algorithm 1 Multi-view Constrained Clustering with Con-
straint Propagation

Input: first view XA and constraints CA,
second view XB and constraints CB ,
thresholds tA ∈ (0, 1] and tB ∈ (0, 1],
the set of cross-view relations RA×B , and
the number of clusters k.

1: Compute the transitive closure of CA
⋃
CB
⋃
RA×B .

2: Augment CA, CB , andRA×B with additional constraints
from the transitive closure involving only instances from,
respectively, XA ×XA, XB ×XB , and XA ×XB .

3: Let X̂A ⊆ XA be the set of instances from XA involved
in RA×B ; similarly define X̂B ⊆ XB .

4: Define constraint mapping functions fA 7→B and fB 7→A

across views via RA×B .

5: Initialize the sets of propagated constraints PV = ∅ for
V ∈ {A,B}.

6: repeat

7: for V ∈ {A,B} do

8: Let U denote the opposite view from V .

// M-step

9: Define the unified set of constraints, mapped with
respect to view V :

C̃V = CV
max⋃

fU 7→V (PU )

10: Update the clustering using constrained K-Means:
(PV ,MV ) = CKmeans(XV , C̃V , k)

// E-step

11: Estimate the set of propagated constraints:

PV =
{
〈xVi , xVj 〉 : xVi , x

V
j ∈ X̂V ∧

〈xVu , xVv 〉 ∈ CV ∧

W
(
〈xVi , xVj 〉, 〈xVu , xVv 〉

)
≥ tV

}
12: end for

13: until PA and PB have both internally converged

Output: the clustering PA and PB .

Subfunction: (P,M) = CKmeans(X, C, k)
Function prototype for constrained K-Means.

Input: data X, must-link and cannot-link constraints C,
and the number of clusters k.

Output: the clustering P and set of metrics for each
cluster M = {M1, . . . ,Mk}.

The propagation process occurs with respect to the cur-
rent clustering model for view V . Since we use K-Means
variants as the base learning algorithm, the learned model
is essentially equivalent to a Gaussian mixture model, under
particular assumptions of uniform mixture priors and con-
ditional distributions based on the set of constraints [7, 4].
Therefore, we can consider that each cluster h is generated
by a Gaussian with a covariance matrix Σh. For base clus-
tering algorithms that support metric learning (e.g., MPCK-
Means), the cluster covariance is related to the inverse of the
cluster metric Mh learned as part of the clustering process.
Bar-Hillel et al. [2] note that, in practice, metric learning



typically constructs the metric modulo a scale factor αh.
Although this scale factor does not affect clustering, since
only relative distances are required, constraint propagation
requires absolute distances. Therefore, we must rescale the
learned covariance matrix M−1

h by αh to match the data.

We compute αh based on the empirical covariance Σ̃h of
the data Ph ⊂ XV assigned to cluster h, given by

Σ̃h =
1

|Ph|
∑
x∈Ph

(x− µh)(x− µh)T + γI , (1)

adding a small amount of regularization γI to ensure that
Σ̃h is non-singular for small data samples. Given M−1

h and

Σ̃h, we compute αh as the scale such that the variances of
the first principal component of each matrix are identical.
We take the eigendecomposition of each matrix

M−1
h = Q

M−1
h

Λ
M−1

h
QT

M−1
h

Σ̃h = QΣ̃h
ΛΣ̃h

QT
Σ̃h

(2)

to yield diagonal matrices of eigenvalues in Λ
M−1

h
and ΛΣ̃h

.

To derive the scale factor αh, we ensure that both first prin-
cipal components have equal variances, which occurs when

αh =
max

(
ΛΣ̃h

)
max

(
Λ

M−1
h

) , (3)

yielding Σh = αhM−1
h as the covariance matrix for cluster h.

When the base learning algorithm does not support metric
learning, such as PCK-Means, we can instead use Σh = Σ̃h

as cluster h’s covariance matrix. The model for cluster h is
then given by

Gh(xV ) = exp

(
− 1

2

∥∥∥xV − µV
h

∥∥∥2
Σh

−1

)
, (4)

where
∥∥xV − µV

h

∥∥2
Σh

−1 = (xV − µV
h )TΣh

−1(xV − µV
h ) is the

squared Mahalanobis distance between xV and µV
h according

to the cluster’s rescaled metric Σh
−1.

We assume that each constraint should be propagated
with respect to the current clustering model, with the shape
(i.e., covariance) of the propagation equivalent to the shape
of the respective clusters (as given by their covariance matri-
ces). Additionally, we assume that the propagation distance
should be proportional to the constraint’s location in the
cluster. Intuitively, a constraint located near the center of
a cluster can be propagated a far distance, up to the clus-
ter’s edges, since being located near the center of the cluster
implies that the model has high confidence in the relation-
ship depicted by the constraint. Similarly, a constraint lo-
cated near the edges of a cluster should only be propagated
a short distance, since the relative cluster membership of
these points is less certain at the cluster’s fringe.

We propagate a given constraint 〈xVu , xVv 〉 ∈ CV to two
other points xVi , x

V
j ∈ XV according to a Gaussian radial

basis function (RBF) of the distance as 〈xVi , xVj 〉moves away

from 〈xVu , xVv 〉. Under this construction, the weight of the
propagated constraint decreases according to the RBF cen-
tered in 2dV -dimensional space at the original constraint’s
endpoints

[
xVu xVv

]
∈ R2dV with a covariance matrix ΣV

uv

based on the respective clusters’ covariance matrices.
To form the propagation covariance matrices for each end-

point, we scale the covariance matrix associated with end-
point xVu by the weight assigned to that endpoint according
to the clustering model (Equation 4). This ensures that the
amount of propagation falls off with increasing distance from

the centroid, in direct relation to the model’s confidence in
the cluster membership of xVu . The covariance matrix for
the constraint propagation function is then given by

ΣV
uv =

[
Gcu

(
xVu
)

Σcu 0
0 Gcv

(
xVv
)

Σcv

]
, (5)

where cu denotes the cluster of xu and 0 denotes the dV ×dV
zero matrix. This construction assumes independence be-
tween xVu and xVv . While this assumption is likely to be
violated in practice, we empirically show that it yields good
results. For convenience, we represent the covariance matri-
ces associated with each endpoint by ΣxV

u
= Gcu

(
xVu
)

ΣV
cu

for xVu and ΣxV
v

= Gcv

(
xVv
)

ΣV
cv for xVv . Figure 3 illustrates

the results of this process on an example cluster.
Given a constraint 〈xVu , xVv , w, type〉 ∈ CV and two candi-

date points xVi ∈ XV and xVj ∈ XV , we can now estimate

the weight of the propagated constraint 〈xVi , xVj 〉 as

W
(
〈xVi , xVj 〉, 〈xVu , xVv 〉

)
= w ×

max
(
W ′
(
〈xVi , xVj 〉, 〈xVu , xVv 〉

)
, (6)

W ′
(
〈xVj , xVi 〉, 〈xVu , xVv 〉

))
where

W ′
(
〈xVi , xVj 〉, 〈xVu , xVv 〉

)
= exp

(
− 1

2

∥∥∥xVi − xVu ∥∥∥2
Σ−1

xV
u

)
×

exp

(
− 1

2

∥∥∥xVj − xVv ∥∥∥2
Σ−1

xV
v

)
. (7)

Since the ordering of the instances matters in the propaga-
tion, we compute both possible pairings of constraint end-
points (xVu and xVv ) to target endpoints (xVi and xVj ), taking
the maximum value of the propagation in Equation 6 to de-
termine the best match. Under this propagation scheme,
a constraint propagated to its own endpoints is given a
weight of w (since the second term of the RHS of Equa-
tion 6 will be 1); the weight of the propagated constraint
decreases as the endpoints xVi and xVj move farther from xVu
and xVv . Section 4.4 describes mechanisms for implementing
constraint propagation efficiently, taking advantage of the
independence assumption between the two endpoints of a
constraint and memoization of repeated computations.

The E-step of Algorithm 1 (Step 11) uses Equation 6 to
propagate all given constraints within each view to those
instances X̂V with cross-view mappings, thereby inferring
the expected value of constraints between those instances
given the current clustering. Using this expected set of con-
straints, we can then update the current clustering model in
the M-step as described in the next section.

4.2 M-step: Updating the clustering model
Given the expected constraints between instances in X̂V ,

we transfer those constraints to the other views and then
update the clustering model to reflect these new constraints.
These steps together constitute the M-step of Algorithm 1.

Any propagated constraint where both endpoints are in
X̂V can be transferred directly to another view U via the
bipartite mapping RV×U . We define a mapping function
fV 7→U : XV ×XV ×R+

0 ×{must-link, cannot-link} 7→ XU×
XU×R+

0 ×{must-link, cannot-link} that takes a given con-
straint c = 〈xVi , xVj , w, type〉 ∈ CV and maps it to constrain
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Figure 3: Constraint propagation applied to a sin-
gle example cluster h, showing the learned covari-
ance matrix Σh (dashed blue ellipse) rescaled to fit
the data, two constraints (solid black lines) and the
weighting functions centered at each endpoint (dot-
ted green ellipses), which decrease in variance as
they move farther from the centroid µh.

instances in XU by:

fV 7→U (c) =
{
〈xUu , xUv , w, type〉 : 〈xVi , xUu 〉 ∈ RV×U ∧ (8)

〈xVj , xUv 〉 ∈ RV×U} .

Using this construction, we can define the mapping func-
tions fB 7→A and fA 7→B in Algorithm 1. We then use these
functions fA 7→B and fB 7→A to map propagated constraints
between views in Step 9, transferring constraints inferred
in one view to the other related views. These transferred
constraints (from view U) can then be combined with the
original constraints in each view V to inform the clustering.
Instead of taking the direct union of these constraints, we
keep only the maximally weighted constraint between each
pair of instances to form the set

C̃V = CV
max⋃

fU 7→V (PU ) , (9)

since each inferred constraint represents an estimate of the
minimal strength of the pairwise relationship.

The optimal clustering models for view V can then be
computed by clustering the data in each view subject to
the constraints in C̃V (Step 10). The CKmeans subfunction
computes the clustering that maximizes the log-likelihood of
the data subject to the set of constraints, thereby completing
the M-step of Algorithm 1.

4.3 Extension to multiple views
Algorithm 1 can be easily extended to support more than

two views. Each view XV independently maintains its own
sets of given constraints CV , threshold tV , data X̂V ⊆ XV

involved in any cross-view relations, current partitioning
PV , current cluster metricsMV , and propagated constraints
PV . To handle more than two views, we maintain separate
mappings RU×V for each pair of views XU and XV and use
each mapping to define pairwise mapping functions fU 7→V

and fV 7→U between views. For D views, X(1), . . . , X(D),
this approach will yield D2 −D mapping functions.

To generalize our approach to more than two views, we
hold each set of propagated constraints fixed, and iteratively

update the clustering (M-step), then recompute the set of
propagated constraints (E-step) for one view. The unified
sets of constraints for each view V becomes (Step 9)

CV = CV
max⋃D

U=1
fU 7→V (PU ) (10)

under the convention that fU 7→U (PU ) = ∅. Each iteration
of co-EM loops over the E-steps and M-steps for all views,
and proceeds until the clustering for each view converges.

4.4 Implementation efficiency
The overall computational complexity of Algorithm 1 is

limited by the maximum number of EM iterations and the
complexity of the CKMeans function, which depends on the
chosen clustering algorithm. Besides these aspects, the con-
straint propagation step (Step 11) incurs the greatest com-
putational cost. To make this step computationally efficient,
our implementation relies on the independence assumption
inherent in Equation 7 between the two endpoints of the con-
straint. To efficiently compute the weight of all propagated
constraints, we memoize the value of each endpoint’s prop-

agation G(xVi , x
V
u ) = exp

(
− 1

2
(xVi − xVu )TΣ−1

xV
u

(xVi − xVu )
)

for xVi ∈ X̂V and xVu ∈ X̄V , where X̄V is the set of points
involved in CV . Through memoization, we reduce the con-
straint propagation step to |X̂V | × |X̄V | Gaussian evalu-
ations. Memoization applies similarly to all other views.
Each constraint propagation is inherently independent from
the others, making this approach suitable for parallel imple-
mentation using Hadoop/MapReduce [13].

When the covariance matrix ΣxV
u

is diagonal, we can
further reduce the computational cost through early stop-
ping of the Gaussian evaluation once we are certain that
the endpoint’s propagation weight will be below the given
threshold tV . When ΣxV

u
is diagonal, given by ΣxV

u
=

diag(σ2
1 , σ

2
2 , . . . , σ

2
dV

),

G(xVi , x
V
u ) = exp

(
−1

2

dV∑
k=1

(xVi,k − xVu,k)2

σ2
k

)
. (11)

Since a constraint is only propagated when the weight
exceeds tV > 0 and the maximum propagation for each
Gaussian weight G(xVi , x

V
u ) ∈ [0, 1], we only need to evalu-

ate W ′
(
〈xVi , xVj 〉, 〈xVu , xVv 〉

)
when both G(xVi , x

V
u ) ≥ tV and

G(xVj , x
V
v ) ≥ tV . Therefore we must ensure that

tV ≤ exp

(
−1

2

dV∑
k=1

(xVi,k − xVu,k)2

σ2
k

)
(12)

−2 ln tV ≥
dV∑
k=1

(xVi,k − xVu,k)2

σ2
k

. (13)

Since all terms in the RHS summation are positive, we can
compute them incrementally and stop early once the sum
exceeds −2 ln tV , since we will never need to evaluate any
propagation weight W ′(·) involving G(xVi , x

V
u ). In our im-

plementation, we set G(xVi , x
V
u ) = 0 in any cases where we

can guarantee that G(xVi , x
V
u ) < tV .

5. EVALUATION
We evaluated multi-view constrained clustering on a vari-

ety of data sets, both synthetic and real, showing that our
approach improves multi-view learning under an incomplete
mapping as compared to several other methods.



5.1 Data sets
In order to examine the performance of our approach

under various data distributions, we use a combination of
synthetic and real data in our experiments. We follow the
methodology of Nigam and Ghani [17] to create these multi-
view data sets by pairing classes together to create “super-
instances” consisting of one instance from each class in the
pair. The two original instances then represent two differ-
ent views of the super-instance, and their connection forms
a mapping between the views. This methodology can be
trivially extended to an arbitrary number of views. These
data sets are described below and summarized in Table 1.

Four quadrants is a synthetic data set composed of 200
instances drawn from four Gaussians in R2 space with
identity covariance. The Gaussians are centered at the
coordinates (±3,±3), one in each of the four quadrants.
Quadrants I and IV belong to the same cluster and
quadrants II and III belong to the same cluster. The
challenge in this simple data set is to identify these clus-
ters automatically, which requires the use of constraints
to improve performance beyond random chance. To
form the two views, we drew 50 instances from each of
the four Gaussians, divided them evenly between views,
and created mappings between nearest neighbors that
were in the same quadrant but different views.

Protein includes 116 instances divided among six classes
of proteins {c1, c2, . . . , c6}. This data set was previously
used by Xing et al. [24]. To create multiple views of
this data set, we partition it into two views contain-
ing respectively instances from classes {c1, c2, c3} and
{c4, c5, c6}. We connected instances between the fol-
lowing pairs of classes to create the two views: c1 & c4,
c2 & c5, and c3 & c6. Through this construction, a
model learned for clustering {c1, c2, c3} in one view can
be used to inform the clustering of {c4, c5, c6} in the
other view. Since the clusters do not contain the same
numbers of instances, some instances within each view
are isolated in the mapping.

Letters/Digits uses the letters-IJL and digits-389 data
sets previously used by Bilenko et al. [7]. These are
subsets of the letters and digits data sets from the UCI
machine learning repository [1] containing only the let-
ters {I, J, L} and the digits {3, 8, 9}, respectively. We
map instances between views according to the follow-
ing pairings: I & 3, J & 8, and L & 9, leaving those
instances without a correspondence in the other view
isolated in the mapping.

Rec/Talk is a subset of the 20 Newsgroups data set [18],
containing 5% of the instances from the newsgroups
{rec.autos, rec.motorcycles} in the rec view, and 5% of
the newsgroups {talk.politics.guns, talk.politics.mideast}
in the talk view. We process each view independently,
removing stop words and representing the data as a bi-
nary vector of the 50 most discriminatory words as de-
termined by Weka’s string-to-wordvector filter [23]. As
in the previous data sets, we form the mapping between
views by pairing clusters in order.

We create a low-dimensional embedding of each data set
using the spectral features [16] in order to improve clus-
tering, with the exception of Four Quadrants, for which
we use the original features because the dimensionality is

Name #Insts #Dims k tV

Four Quadrants 200/200 2 2 0.75
Protein 67/49 20 3 0.50
Letters/Digits 227/317 16 3 0.95
Rec/Talk 100/94 50 2 0.75

Table 1: Data set and experiment parameters

already low. For each view V , we compute the pairwise
affinity matrix A between the instances xi and xj using
a radial basis function of their distance, given by Ai,j =
exp(−||xi − xj ||2/2σ2). We use σ = 1 as the rate at which
the affinity falls off with increasing distance. From A, we
form the normalized Laplacian matrix [10] for the data set,

given by L = I − D−
1
2 AD−

1
2 , where D is the diagonal

degree matrix Di,i =
∑dV

j=1Ai,j and I is the identity ma-
trix. The eigendecomposition of the normalized Laplacian
matrix L = QΛQT yields the spectral features for the data
set in the columns of the eigenvector matrix Q. We keep
the 2nd through d + 1th eigenvectors (corresponding to the
2nd through d + 1th lowest eigenvalues in Λ) as the fea-
tures for clustering; we discard the first eigenvector since it
is constant and therefore does not discriminate between the
instances. In this paper, we use d =

⌈√
dV
⌉

for Protein and
Letters/Digits, and d = 5 for the Rec/Talk data set. Addi-
tionally, we standardize all features to have zero mean and
unit variance. These spectral features are computed inde-
pendently between the different views, further emphasizing
that the mapping is the only connection between views.

5.2 Methodology
Within each view, we use the cluster labels on the in-

stances to sample a set of pairwise constraints, ensuring
equal proportions of must-link and cannot-link constraints.
The weight of all constraints w is set to 1. We also sample
a portion of the mapping to use for transferring constraints
between views. Both the sets of constraints and the mapping
between views are resampled each trial of our experiments.

We compare Constraint Propagation against several
other potential methods for transferring constraints:

Direct Mapping transfers only those constraints that
already exist between instances in X̂V . This approach
is equivalent to other methods for multi-view learning
that are only capable of transferring labeled information
if there is a direct mapping between views.

Cluster Membership can be used to infer constraints
between instances in X̂V . This approach simply con-
siders the relative cluster membership for each pair of
instances in X̂V and infers the appropriate type of con-
straint with a weight of 1.

Single View performs constrained clustering on each of
the individual views in isolation and serves as a lower
baseline for the experiments.

For the base constrained clustering algorithm, we use the
PCK-Means and MPCK-Means implementations provided
in the WekaUT extension1 to the Weka toolkit [23] with
their default values. For PCK-Means, Constraint Propaga-
tion uses the full empirical covariance for each cluster; for
MPCK-Means, it uses the diagonal weighted Euclidean met-
rics learned on a per-cluster basis by MPCK-Means.

1http://www.cs.utexas.edu/users/ml/risc/code/
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Figure 4: Comparison of multi-view constrained clustering performance. The percentage of instances mapped
between views (e.g., 20%, 40%, 100%) is denoted by the type of the line (dotted, dashed, solid), and the
constraint transfer method is denoted by the color and marker shape. In several plots, we truncated the
key due to space limitations; those plots use the same markers and colors to depict the constraint transfer
methods as the other plots. (Best viewed in color.)

We measure performance using the pairwise F-measure –
a version of the information-theoretic F-measure adapted to
measure the number of same-cluster pairs for clustering [3].
The pairwise F-measure is the harmonic mean of precision
and recall, given by

F-measure =
2 · precision · recall

precision + recall
(14)

where

precision =
num-pairs-correctly-predicted-in-same-cluster

num-total-pairs-predicted-in-same-cluster
,

recall =
num-pairs-correctly-predicted-in-same-cluster

num-total-pairs-in-same-cluster
.

We take the mean of the performance for all views, yielding
a single performance measure for each experiment.

In each trial, we consider performance as we vary the num-
ber of constraints used for learning and the percentage of
instances in each view that are mapped to the other views.
Our results are shown in Figure 4, averaged over 100 trials.

5.3 Discussion
As shown in Figure 4, Constraint Propagation clearly per-

forms better than the baseline of Single View clustering, and
better than Cluster Membership for inferring constraints in
all cases, except for when learning with few constraints on
Letters/Digits. Constraint Propagation also yields an im-
provement over transfer using the Direct Mapping method
for each percentage of instances mapped between views, as
shown in Figure 5. We omit the Four Quadrants (PCK-
Means) results from Figure 5 due to the relatively high per-
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Figure 5: The performance improvement of con-
straint propagation over direct mapping in Figure 4,
averaged over the learning curve. The peak whiskers
depict the maximum percentage improvement.

formance gain of Constraint Propagation, which averages
a 21.3% improvement over Direct Mapping with peak gains
above 30%. Unlike Direct Mapping, Constraint Propagation
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Figure 7: The precision of the propagated must-
link (solid line) and cannot-link (dashed line) con-
straints, as measured against the true class labels.

is able to transfer those constraints that would otherwise be
discarded, increasing the performance of multi-view cluster-
ing. The performance of both Constraint Propagation and
Direct Mapping improve as the mapping becomes more com-
plete between the views, with Constraint Propagation still
retaining an advantage over Direct Mapping even with a
complete mapping, as shown in all data sets. We hypothesize
that in the case of a complete mapping, Constraint Propa-
gation behaves similarly to spatial constraints [15], warping
the underlying space with the inference of new constraints
that improve performance.

On these data sets, the number of constraints inferred by
Constraint Propagation is approximately linear in the num-
ber of original constraints, as shown in Figure 6. Clearly, as
the mapping between views becomes more complete, Con-
straint Propagation is able to infer a larger number of con-
straints between those instances in X̂V .

The improvement in clustering performance is due to the

high precision of the propagated constraints. Figure 7 shows
the average weighted precision of the propagated constraints
for the 100% mapping case, measured against the complete
set of pairwise constraints that can be inferred from the
true class labels. The proportion that each propagated con-
straint contributed to the weighted precision is given by the
constraint’s inferred weight w. We also measured the preci-
sion of propagated constraints for various partial mappings,
and the results were comparable to those for the complete
mapping. For each data set, the constraint inferred through
propagation show a high average precision of 98–100%, sig-
nifying that very few incorrect constraints are inferred by
the propagation method.

Interestingly, the constraint propagation method works
slightly better for cannot-link constraints than must-link
constraints. This phenomenon can be explained by a count-
ing argument that there are many more chances for a cannot-
link constraint to be correctly propagated than a must-link
constraint. For example, with k clusters where each clus-
ter contains n/k instances, each given must-link constraint

can be correctly propagated to numMLprop =
(
n/k
2

)
− 1

other pairs of instances in the same cluster. However, each
given cannot-link constraint can be correctly propagated to
numCLprop =

(
n
2

)
−k
(
n/k
2

)
− 1 other pairs of instances that

belong in different clusters,2 which is much greater than
numMLprop (e.g., for n = 1, 000 and k = 10, numCLprop =
449, 999 � 4, 949 = numMLprop). Therefore, a must-link
constraint has much less chance of being propagated cor-
rectly than a cannot-link constraint.

We found that for high-dimensional data, the curse of di-
mensionality causes instances to be so far separated that
Constraint Propagation is only able to infer constraints with
a very low weight. Consequently, it works best with a low-
dimensional embedding of the data, motivating our use of
spectral feature reduction. Other approaches could also be
used for creating the low-dimensional embedding, such as
principal components analysis or manifold learning.

Additionally, like other multi-view algorithms, we found
Constraint Propagation to be somewhat sensitive to the cut-
off thresholds tV , but this problem can be remedied by
using cross-validation to choose tV . Too high a thresh-
old yields performance identical to Direct Mapping (since
no constraints would be inferred), while too low a thresh-
old yields the same decreased performance as exhibited by
other co-training algorithms. For this reason, we recom-
mend setting tV to optimize performance as evaluated by
cross-validation over the set of constrained instances.

We ran several additional experiments on data sets with
poor mappings and distributions that violated the mixture-
of-Gaussians assumption of K-Means clustering; we omit
these results due to space limitations. On these data sets,
Constraint Propagation decreased performance in some cases,
due to inferring constraints that were not justified by the
data. This would occur, for example, in clusters with a
nested half-moon shape, where Constraint Propagation would
incorrectly infer constraints between instances in the oppos-
ing cluster. In these cases, clustering using only the directly
mapped constraints yielded the best performance.

2The number of propagated cannot-link constraints is de-
rived by taking the number of possible different constraints(
n
2

)
− 1, and subtracting off the total number of possible

must-link constraints k
(
n/k
2

)
.



6. CONCLUSION
Constraint propagation has the ability to improve multi-

view constrained clustering when the mapping between views
is incomplete. Besides improving performance, constraint
propagation also provides the ability for the user to inter-
act with one view to supply constraints, and for those con-
straints to be transferred to improve learning in the other
views. This is especially beneficial when the interaction is
more natural for the user in one view (e.g., images) than the
other views (e.g., text or audio) that may require lengthy ex-
amination of each instance in order to infer the constraints.

In future work, we will consider other methods for learning
with a partial mapping between views, such as label infer-
ence, manifold alignment, and transfer learning. This work
will improve the ability to use isolated instances that do not
have a corresponding multi-view representation to improve
learning, and enable multi-view learning methods to be used
for a wider variety of applications
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