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Abstract
Effective lifelong learning across diverse tasks
requires diverse knowledge, yet transferring ir-
relevant knowledge may lead to interference and
catastrophic forgetting. In deep networks, trans-
ferring the appropriate granularity of knowledge
is as important as the transfer mechanism, and
must be driven by the relationships among tasks.
We first show that the lifelong learning perfor-
mance of several current deep learning architec-
tures can be significantly improved by transfer
at the appropriate layers. We then develop an
expectation-maximization (EM) method to auto-
matically select the appropriate transfer configura-
tion and optimize the task network weights. This
EM-based selective transfer is highly effective,
as demonstrated on three algorithms in several
lifelong object classification scenarios.

1. Introduction
Transfer at different layers within a deep network corre-
sponds to sharing knowledge between tasks at different
levels of abstraction. In multi-task scenarios that involve di-
verse tasks, reusing low-layer representations may be appro-
priate for tasks that share feature-based similarities, while
sharing high-level representations may be more appropriate
for tasks that share more abstract similarities. Selecting
the appropriate granularity of knowledge to transfer is an
important architectural consideration for deep networks that
support multiple tasks.

In scenarios where tasks share substantial similarities, many
multi-task methods have found success using a universal
configuration of the knowledge sharing (Caruana, 1993;
Yang and Hospedales, 2017; Lee et al., 2019; Liu et al.,
2019; Bulat et al., 2020), such as sharing the lower layers
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of a deep network with upper-level task-specific heads. As
tasks become increasingly diverse, the appropriate granu-
larity for transfer may vary between tasks based on their
relationships, necessitating more selective transfer. Prior
work in selective sharing for deep networks has typically
either (1) branched the network into a tree structure (Lu
et al., 2017; Yoon et al., 2018; Vandenhende et al., 2019;
He et al., 2018), which emphasizes the sharing of lower
layers or (2) introduced new learning modules between task
models (Yang and Hospedales, 2017; Xiao et al., 2018; Cao
et al., 2018; Rusu et al., 2016) which increases the com-
plexity of training. The transfer configuration could then be
optimized in batch settings to maximize performance across
the tasks.

However, the problem of selective transfer is further com-
pounded in continual or lifelong learning settings, in which
tasks are presented sequentially. The optimal transfer con-
figuration may vary between tasks or over time. To verify
this premise and motivate our work, we conducted a simple
experiment: we took a multi-task CNN with shared layers
and a lifelong learning CNN that uses factorized transfer
(DF-CNN (Lee et al., 2019)) and varied the set of CNN
layers that employed transfer (with task-specific fully con-
nected layers at the top). Using two data sets, we considered
transferring at all CNN layers, transfer at the top-k CNN
layers, transfer at the bottom-k CNN layers, and alternating
transfer/no-transfer CNN layers. The results are shown in
Figure 1, with details given in Section 2. Clearly, we see
that the optimal transfer configuration varies between task
relationships and transfer mechanisms. Restricting the trans-
fer layers significantly improves performance over the naı̈ve
approach of transferring at all layers, with the alternating
configuration performing extremely well in both cases.

To enable a more flexible version of selective transfer, we
investigate the use of architecture search to dynamically ad-
just the transfer configuration between tasks and over time.
We use expectation-maximization (EM) to learn both the pa-
rameters of the task models and the layers to transfer within
the deep net. This approach, Lifelong Architecture Search
via EM (LASEM), enables deep networks to transfer dif-
ferent sets of layers for each task, allowing more flexibility
over branching-based configurations for selective transfer.
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(b) HPS / Office-Home
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(d) DF-CNN / Office-Home

Figure 1: Accuracy of CNN models averaged over ten tasks
in a lifelong learning setting with 95% confidence inter-
val. This empirically shows that the optimal transfer con-
figuration varies, and choosing the correct configuration is
superior to transfer at all layers.

It also introduces little additional computation in compari-
son to exhaustive search over all transfer configurations or
training selective transfer modules between task networks.
To demonstrate its effectiveness, we applied LASEM to
three architectures that support knowledge transfer between
tasks in several lifelong learning scenarios and compared
it against other lifelong learning and architecture search
methods.

2. The Effect of Different Transfer
Configurations in Lifelong Learning

This section further describes the experiments mentioned
in the introduction as motivation for our proposed LASEM
method. The hypothesis of our work is that lifelong deep
learning can benefit from using a more flexible transfer
mechanism that selectively chooses the transfer architecture
for each task. This would permit it to dynamically select,
for each task model, which layers to transfer and which to
keep as task-specific (enabling it to customize transferred
knowledge to an individual task).

To determine the effect of different transfer configurations,
we conducted a set of initial experiments using two estab-
lished methods:

Multi-Task CNN with hard parameter sharing (HPS):
This approach shares the hidden CNN layers between all
tasks, and maintains task-specific fully connected output
layers. It is one of the most common methods for multi-task
learning of neural networks (Caruana, 1993; 1997), and is
widely used.

Deconvolutional factorized CNN (DF-CNN): The DF-
CNN (Lee et al., 2019) adapts CNNs to a continual learning
setting by sharing layer-wise knowledge across tasks. The
convolutional filters of each task model are dynamically
generated from a task-independent layer-dependent shared
tensor through a series of task-specific mapping. When train-
ing the task models consecutively, gradients flow through to
update the shared tensors and the task-specific parameters,
so this transfer architecture enables the DF-CNN to learn
and compress knowledge universal among the observed
tasks into the shared tensors.

Both these methods utilize a set of transfer-based CNN lay-
ers and non-transfer task-specific layers. For a network with
d CNN layers, there are 2d potential transfer configurations.
To explore the effect of transfer at different layers, we varied
the transfer configuration among several options:

• All: Transfer at all CNN layers. Note that the original
DF-CNN used this configuration.

• Top k: Transfer across task models occurs only at the
k highest CNN layers, with all others remaining task-
specific. We would expect this transfer configuration
to benefit tasks that share high-level concepts but have
low-level feature differences.

• Bottom k: Transfer occurs only at the k lowest CNN
layers, which is opposite of the Top d−k. We would ex-
pect it to benefit tasks that share perceptual similarities
but have high-level differences.

• Alternating: This configuration alternates transfer and
non-transfer layers, enabling the non-transfer task-
specific layers to further customize the transferred
knowledge to the task.

We evaluate the performance of various transfer configura-
tions on the CIFAR-100 (Krizhevsky and Hinton, 2009) and
Office-Home (Venkateswara et al., 2017) data sets, follow-
ing the lifelong learning experimental setup used in previous
work (Lee et al., 2019). CIFAR-100 involves ten consecu-
tive tasks of ten-way image classification, where any object
class occurs in only one task. Office-Home involves ten
tasks of thirteen-way classification, separated into two do-
mains: ‘Product’ images and ‘Real World’ images. The
CNN architectures used for each data set and optimization
settings follow prior work (Lee et al., 2019). During train-
ing, we measured the peak per-task accuracy on held-out
test data, averaging over five trials.

Our results, shown in Figure 1, reveal that permitting trans-
fer at all layers does not guarantee the best performance.
This observation complicates learning on novel tasks, since
the best transfer configuration depends both on the algorithm
and the task relations in the data set. Notably, we see that
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Figure 2: The Alternating {2, 4} transfer configuration for three different architectures with four convolutional layers and
one task-specific fully-connected layer. Models are illustrated for two tasks, red and green, with transfer-based layers
denoted in blue.

the DF-CNN, which is designed for lifelong learning, can be
improved beyond the original version (Lee et al., 2019) by
allowing transfer at only some layers. Furthermore, we can
see that the optimal transfer configuration varies between
data sets and algorithms. For instance on Office-Home, shar-
ing lower layers in the HPS multi-task CNN achieves better
performance on average, but transferring upper layers works
better for the DF-CNN. Similarly, the Alternating configu-
ration consistently achieves near the best performance for
the DF-CNN, benefiting from permitting the non-transfer
layers to customize transferred knowledge to the individual
task, but it is not consistently as good for HPS.

3. Architecture Search for the Optimal
Transfer Configuration

The experiment presented above reveals that the transfer con-
figuration can have a significant effect on lifelong learning
performance, and that the best transfer configuration varies.
These observations inspire our work to develop a more flex-
ible mechanism for selective transfer in lifelong learning by
viewing the transfer configuration as a new hyper-parameter
for each task model. The search space grows exponentially
as the neural network gets deeper (i.e., 2d configurations for
d CNN layers) and linearly as the more tasks are learned.

Formally, a layer-based transfer configuration for task t can
be specified by a d-dimensional binary vector ct ∈ C =
{0, 1}d, where each ct,j is a binary indicator whether or not
the jth layer involves transfer. We can compactly notate ct
by a set of its indices containing True entries. For example,
the Alternating configuration described in Section 2 can be
denoted by c = [0, 1, 0, 1] = {2, 4} (refer to Figure 2).

Our goal is to optimize the task-specific transfer configu-
ration while simultaneously optimizing the parameters of

the task models and shared knowledge in a lifelong set-
ting. Treating ct as a latent variable of the model for task t,
we employ expectation-maximization (EM) to perform this
joint optimization. For each new task, LASEM maintains
a set of transfer-based parameters θ(l)s and task-specific pa-
rameters θ(l)t for each layer l, using the chosen configuration
ct to determine which combination of parameters will be
used to form the specific model. In brief, the E-step esti-
mates the usefulness of the representation that each transfer
configuration ci ∈ C can learn from the given data (i.e., the
likelihood of data), while the M-step optimizes parameters
of the task model and shared knowledge.

We first consider how to model the prior πt on possible
configurations of the current task’s ct. Using a simple
frequency-based probability estimate with Laplace smooth-
ing represents the prior probability of each configuration as

P (c(t) = ci) = πt(ci) =
nci

+ 1∑
j(ncj

+ 1)
, (1)

where c(t) denotes the configuration for task t, and nci
is the

number of mini-batches whose most probable configuration
is ci. This estimate considers each transfer configuration
solely based on the current task’s data, but alternative priors
could instead be used, such as measuring the most frequent
transfer configuration historically over all tasks or mea-
suring the most frequent configuration over related tasks
(which requires a notion of task similarity, such as via a task
descriptor (Isele et al., 2016; Sinapov et al., 2015)).

In the E-step, the posterior on configurations is derived by
combining the above prior and likelihood, which can be
computed from the output of the task network on the current
task’s data Dnew := (Xnew, ynew):

P (ci|Dnew) ∝ πt(ci)P (ynew|Xnew, ci) . (2)
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CIFAR100

4% data
Office-Home

60% data
STL10

20% data

Static Transfer Configurations
Transfer at All Layers
LASEM

Architecture Acc. (%) Rel. Acc.
CIFAR-100 (10 Tasks)

HPS 39.3 ± 0.1 96.2
TF 38.4 ± 0.5 95.8

DF-CNN 42.0 ± 0.6 99.3
Office-Home (10 Tasks)

HPS 58.4 ± 0.9 96.6
TF 59.1 ± 1.0 96.9

DF-CNN 59.5 ± 1.1 97.2
STL-10 (20 Tasks)

TF 71.0 ± 0.6 97.1
DF-CNN 70.7 ± 0.4 98.2

Figure 3: (Left) Lifelong learning performance of LASEM applied to three methods and three scenarios. Black boxes show
the range of mean accuracies that different static configurations can achieve, with the blue lines denoting mean performance
of employing transfer at all layers. The red dots denote the mean performance of LASEM. The whiskers depict 95%
confidence intervals. (Right) Accuracy and relative accuracy of LASEM with respect to the best static transfer configuration.

The M-step improves the log-likelihood via the estimated
probability distribution over the transfer configurations.
Both θs and θt are updated by the aggregated gradients
of the log-likelihood in cases where the transfer configura-
tions match the corresponding parameter. To combine the
gradients of a specific parameter tensor over multiple pos-
sible configurations, we take the sum of the corresponding
gradients weighted by the above posterior estimate.

θ(l)′s ← θ(l)s + λ
∑

i:ci,l=1

P (ci|Dnew)∇ logL(Dnew|ci)

θ
(l)′
t ← θ

(l)
t + λ

∑
i:ci,l=0

P (ci|Dnew)∇ logL(Dnew|ci)
(3)

for l ∈ {1, · · · , d}. Here, L(Dnew|ci) is the likelihood of
data given configuration ci: P (ynew|Xnew, ci). The main
difference in the update rules in Equation 3 is the condition
for the index of the summation.

Our LASEM follows lifelong learning framework in which
the learner encounters tasks sequentially. The parameters of
the transfer-based components are initialized once at the be-
ginning of the learning process, while the parameters of the
task-specific components and prior probability of configura-
tions are initialized every new task. LASEM iterates E- and
M-steps on data of the current task until task switches, and
the best transfer configuration for the task is determined by
the learned posterior probability. To reduce the complexity
of computation, LASEM uses one set of transfer-based and
task-specific parameters (θs and θt) for all transfer configu-
rations, rather than maintaining distinct sets of parameters
for each configuration.

4. Experiments
We evaluated Lifelong Architecture Search via EM
(LASEM) following the same experimental protocol for
lifelong learning as used in Section 2. In addition to using
CIFAR100 and Office-Home, we introduce a lifelong learn-
ing version of the STL-10 data set (Coates et al., 2011). STL-
10 has 5,000 training and 8,000 test images divided evenly
among 10 classes, with higher resolution than CIFAR-100.
We constructed 20 tasks of three-way classification using
20% and 5% of the given training data for training and val-
idation, respectively. To increase the task variations, for
each task we randomly chose three images classes, applied
Gaussian noise to the images with a random mean and vari-
ance, and randomly permuted the channels. All results were
averaged over five trials with random task orders. Details
of these three experiments as well as architectures of neural
networks can be found in Appendix A.

4.1. Performance of LASEM

We applied LASEM to three lifelong learning architec-
tures: a multi-task CNN with hard-parameter sharing (HPS)
(Caruana, 1997), Tensor Factorization (TF) (Yang and
Hospedales, 2017; Bulat et al., 2020) and the Deconvo-
lutional Factorized CNN (DF-CNN) (Lee et al., 2019). HPS
interconnects CNNs in tree structures, with task models
explicitly using the same parameters of all shared layers. In
contrast, the TF and DF-CNN task models explicitly share
only a fraction of tensors, and parameters of each task model
are generated via transfer.
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Selective Sharing Accuracy(%) Train. Time
(k sec)

DEN 48.00 ± 0.60 55.9 ± 0.6
ProgNN 60.03 ± 0.45 96.7 ± 0.0

DARTS HPS 45.64 ± 1.20 43.8 ± 0.0
DARTS DF-CNN 56.77 ± 0.49 33.2 ± 0.0

LASEM HPS 58.44 ± 0.90 70.2 ± 0.0
LASEM TF 59.14 ± 0.80 77.3 ± 0.1

LASEM DF-CNN 59.45 ± 1.10 83.2 ± 0.2

Table 1: Comparison of test accuracy and training time for
the same epochs between selective transfer methods and
LASEM, ± standard errors. The best accuracies are in bold
and indistinguishable at 95% confidence.

Figure 3 compares the performance of the task-specific trans-
fer configurations discovered by LASEM (red) to using
a single static transfer configuration(black boxes). These
black boxes depict the performance range of the methods
using various transfer configurations (i.e., All, Top k, Bot-
tom k, Alternating) for all task models, with All shown in
blue. To estimate this range, we tested eight (50%) and 16
(25%) of the possible static configurations for the four-CNN-
layer (CIFAR-100 and Office-Home) and six-CNN-layer
(STL-10) task models, respectively.

We can see that LASEM chose transfer configurations that
perform toward the top of each range, especially on the
DF-CNN designed for lifelong learning. LASEM clearly
outperforms transfer at all layers. Automatically selecting
the transfer configuration becomes even more beneficial for
methods that have a wide range of performances for dif-
ferent static configurations. Moreover, LASEM imposes
little additional cost of computation in order to determine
the transfer configuration. In timing experiments, we found
that, compared to training with a pre-determined static trans-
fer configuration, LASEM requires only 30% additional
wall-clock time to search over 16 configurations of a net-
work with four CNN layers, and only double the time to
search over 64 configurations of a network with six CNN
layers. Brute force search over configurations requires 15×
and 63× additional time per task, respectively, over the
base learner. Additional analysis, including results on catas-
trophic forgetting, can be found in Appendix B.

4.2. Comparison to other selective transfer algorithms

We further compared the performance of LASEM against
other methods that employ some notion of selective trans-
fer, including the Dynamically Expandable Network (DEN)
(Yoon et al., 2018), the Progressive Neural Net (ProgNN)
(Rusu et al., 2016) and Differentiable Architecture Search
(DARTS) (Liu et al., 2018), on Office-Home. DEN is a life-
long learning architecture that extends tree structure sharing

of HPS by expanding, splitting, and selectively retraining
the network to introduce both shared and task-specific pa-
rameters in each layer if required. ProgNN learns additional
layer-wise lateral connections from earlier task models to
the current task model, which support one directional trans-
fer to avoid negative knowledge transfer (known as catas-
trophic forgetting). Both DEN and ProgNN can support
complex transfer configurations due to their lack of con-
straints, such as no assumption of a tree-structured config-
uration. For example, a ProgNN with all zero-weighted
lateral connections for a level creates a task-specific layer,
and zero-weighted current task model connections creates
a transfer-based layer. DARTS is the gradient-based frame-
work for neural architecture search, determining both the
most suitable operation of each layer and the best archi-
tecture of stacking these layers. To enable the selection
of architecture learnable, DARTS introduces a soft selec-
tion of the operators, making each layer a weighted sum of
operations.

Table 1 summarizes the performance of these methods and
our approach. ProgNN and LASEM DF-CNN are statis-
tically indistinguishable and perform better than the other
methods. LASEM DF-CNN is ∼14% faster than ProgNN
for learning ten tasks. This gap could become larger as
more tasks are learned because time complexity of ProgNN
is proportional to the square of the number of tasks while
the complexity of DF-CNN is linear. DEN and DARTS have
better training times, but fail to perform as well. Note that
LASEM shows high accuracy regardless of the base life-
long learner (e.g., HPS, TF, or DF-CNN) while introducing
relatively little additional time complexity (∼30% over the
base learner’s time).

5. Conclusion
We have shown that the transfer configuration can have a
significant impact on lifelong learning, and that the con-
figuration can be dynamically selected during the lifelong
learning process with minimal computational cost. The
improvement gained by choosing the optimal transfer con-
figuration significantly improves the performance of the
DF-CNN and TF over the original method and previously
published results. Although we focused on layer-based
transfer, LASEM could easily be extended to support partial
transfer within a layer by imposing within-layer partitions
and redefining the transfer configuration space C to sup-
port those partitions. Discovering these partitions directly
from data, or providing more flexible mechanisms for partial
within-layer transfer may further improve performance over
the layer-based transfer we explore in this paper.
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A. Experiment Details
This section provides detail on the experiments from the
main paper. The experiments are based on three image
recognition datasets: CIFAR-100 (Krizhevsky and Hinton,
2009), Office-Home (Venkateswara et al., 2017) and STL-10
(Coates et al., 2011).

CIFAR-100 consists of images of 100 classes. The lifelong
learning tasks are created following Lee et al. (Lee et al.,
2019) by separating the dataset into ten disjoint sets of ten
classes, and randomly selecting 4% of the original training
data to generate training and validation sets in the ratio of
5.6:1 (170 training and 30 validation instances per task).
The images are used without any pre-processing except
re-scaling all pixel values to the range of [0, 1].

The Office-Home dataset has images of 65 classes in four
domains. Again following Lee et al., lifelong learning tasks
are generated by choosing ten disjoint groups of thirteen
classes in two domains: Product and Real-World. There is
no pre-defined training/testing split in Office-Home, so we
randomly split the images in the ratio 6:1:3 for the training,
validation, and test sets. The image sizes are not uniform, so
we resized all images to be 128-by-128 pixels and re-scaled
each pixel value to the range of [0, 1].

We introduce a lifelong learning variant of the STL-10
dataset, which contains ten classes. We constructed 20 three-
way classification tasks by randomly choosing the classes,
applying Gaussian noise to the images (with a mean and vari-
ance randomly sampled from {−10%,−5%, 0%, 5%, 10%}
of the range of pixel values), and randomly swapping chan-
nels. Note that any pair of tasks differs by at least one image
class, the mean and variance of the Gaussian noise, or the
order of channels for the swap. We sampled 25% of the
given training data and split it into training and validation
sets with the ratio 5.7:1 (318 training and 57 validation in-
stances per task). All of the original STL-10 test data are
used for held-out evaluation of performance.

The architectural details of the task models used for each
data set are described in Figure 4. We used the following
values for the hyper-parameters of the algorithms, following
the original papers wherever possible:

• The multi-task CNN with hard parameter sharing
(HPS) has no additional hyper-parameters.

• Tensor factorization has a scale of the weight orthog-
onality constraint, whose value was chosen by grid
search among {0.001, 0.005, 0.01, 0.05, 0.1} follow-
ing the original paper (Bulat et al., 2020).

• DF-CNN requires the size of the shared tensors and the
parameters of the task-specific mappings to be speci-
fied. Following the original paper (Lee et al., 2019),

we chose the spatial size of the shared tensors to be
half the spatial size of the convolutional filters, and the
spatial size of the deconvolutional filters as 3× 3. For
each convolutional layer with input channels cin and
output channels cout, the number of channels in the
shared tensors was one-third of cin+cout and the num-
ber of output channels of the deconvolutional filters
was two-thirds of cin + cout.

• DEN has several regularization terms and the size of
the dynamic expansion. We used the regularization
values in the authors’ published code, and set the size
of the dynamic expansion to be 32 by choosing the
most favorable value among {8, 16, 32, 64}.

• ProgNN requires the compression ratio of the lateral
connections, which we set to be 2, following the origi-
nal paper (Rusu et al., 2016).

• For DARTS, we used the hyper-parameter settings de-
scribed in the original paper (Liu et al., 2018).

A lifelong learner has access to the training data of only the
current task, and it optimizes the parameters of the current
task model as well as any shared knowledge, depending on
the algorithm. After the pre-determined number of training
epochs, the task switches to a new one regardless of the con-
vergence of the lifelong learner, which favors learners that
can rapidly adapt to each task. When the learner encounters
a new task, it initializes newly introduced parameters of
the new task model, but re-uses the parameters of shared
components, which initialize only once at the beginning of
the first task. As mentioned earlier, these new task-specific
parameters and shared parameters are optimized accord-
ing to the training data of the new task for another batch
of training epochs. We used the RMSProp optimizer with
the hyper-parameter values (such as learning rate and the
number of training epochs per task) described in Table 2.

B. Additional Analysis of LASEM
We investigated several aspects of LASEM in addition to
mean peak per-task accuracy. First, the catastrophic forget-
ting ratio is shown in Figure 5. The catastrophic forgetting
ratio, proposed in (Lee et al., 2019), measures the ability of
the lifelong learning algorithm to maintain its performance
on previous tasks during subsequent learning. A low ratio
indicates that there is negative reverse transfer from new
tasks to previously learned tasks, and so the learner expe-
riences catastrophic forgetting. A ratio greater than 1 can
be interpreted as positive backward transfer. As depicted
in the figure, LASEM is able to retain the performance of
previous tasks compared to transferring at all CNN layers
and transferring at specific CNN-layers for all tasks (using
a static transfer configuration).
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(a) Architecture of task models of CIFAR-100 experiment

128X128X3 

Conv 
11X11, 64 
stride 1 
ReLU 

Conv 
5X5, 256 
stride 1 
ReLU 

max pool 
3X3 

43X43X64 15X15X256 

Conv 
3X3, 256 
stride 1 
ReLU 

111 

8X8X256 

Conv 
3X3, 256 
stride 1 
ReLU 

max pool 
2X2 

4X4X256 

Flatten 

4096 

FC 

64 

FC 

13 

max pool 
3X3 

max pool 
2X2 

FC 

256 

(b) Architecture of task models of Office-Home experiment
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Figure 4: Details of the task model architectures used in the experiments. Text by each convolutional layer describes the
filter sizes and the number of channels. All convolutional layers are zero-padded.

The different transfer configurations chosen by LASEM
are depicted in Figure 6 for CIFAR-100 and Office-Home.
We plot the most frequent transfer configurations as well
as the proportion of the time each layer was chosen to be
transfer-based or task-specific. We can see that HPS tends
to often prefer task-specific layers, while TF and DF-CNN
are more likely to use transfer layers due to the flexibility
of transfer. We can also see dependence between the cho-
sen layers, such as the DF-CNN preferring transfer among
the higher layers. Another interesting observation is that
non-tree structures, such as Alternating {2, 4} and sharing
middle layers [0,1,1,0], are often chosen. This contradicts
the assumption of a tree structure made often by related
research, and supports the consideration of more complex
transfer configurations for diverse tasks.
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(b) TF on CIFAR-100
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(c) DF-CNN on CIFAR-100
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(d) HPS on Office-Home
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(e) TF on Office-Home
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(f) DF-CNN on Office-Home

Figure 5: Catastrophic forgetting ratio of transfer at all CNN layers (blue), best static transfer configuration (black) and
LASEM (red), exhibiting the benefit of LASEM.

Dataset CIFAR-100 Office-Home STL-10
Number of Tasks 10 10 20

Type of Task Heterogeneous Classification
Classes per Task 10 10 3

Amount of Training Data 4% - 25%
Ratio of Training and Validation Set 5.6:1 6:1 5.7:1

Size of Image 32 × 32 128 × 128 96 × 96
Optimizer RMS Prop

Learning Rate 1× 10−4 2× 10−5 1× 10−4

Epoch per Task 2000 1000 500

Table 2: Parameters of the lifelong learning experiments
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(a) HPS on CIFAR-100
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(b) TF on CIFAR-100
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(c) DF-CNN on CIFAR-100
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(d) HPS on Office-Home
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(e) TF on Office-Home
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(f) DF-CNN on Office-Home

Figure 6: (Top) Histogram of the six most-selected configurations (i.e., the binary vectors ct, where 1 denotes that a layer
employs transfer). (Bottom) The fraction of the time each layer was selected to be transfer-based (red) or task-specific
(blue), revealing substantial variation between data sets.


