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Summary Efficient Lifelong Inverse Reinforcement Learning ELIRL Algorithm — Training Experimental Results
We introduce the novel problem of lifelong imitation learning and develop the first . . - . . Given a new task t, Objectworld: A 32x32 grid with colored objects. Each color has an associated reward
algorithm for lifelong inverse reinforcement learning (IRL). }l\ _Z" m’ Z ﬁz ﬂ Q‘ 1. Observe demonstrated trajectories z@) on its surrounding 5x5 grid that varies with each task.
Capabiliti ¢ h: ,/ | — 2. Use single-task MaxEnt IRL to find a(t) and H® Highway: A 3-lane highway with 4 possible speeds. Each driver prefers a particular
dapabilities or our approach: ceoe Ht_g] L[t_g] L’ t—l] H ¢ I L’tJrl] ﬂt—l—Z] ﬂt+3) so e 3. s« argmin (a® —Ls)TH® (a® —Ls) + u|s| speed and lane, with different associated weights for each driver.
* Learns multiple tasks consecutively — Al updateL(i s, a® H® ) '
curren . . : : ; . . .
+ Transfers knowledge to accelerate learning of new tasks s LS ELIRL improves reward as it learns more tasks = Improved policy performance!
- Supports a variety of base Iearning algorithms sequentially Expert demos Per-task Computational Complexity: ® 15 @ 3 ‘ ‘
* Has lower computational cost than current multi-task learning algorithms \Zy 5 5 3 % & _Et:gtre
e Supports varying feature spaces across tasks O(lf(d, |A|, |SD + MH + Md*® + k=d ) = 10! %2 MaxEnt IRL | -
\ . J \ J \ J 'e D | e e e e e GPIRL
We demonstrate the effectiveness of ELIRL in lifelong learning settings. i#ohdﬁ\évdge MaxEnt Hessian ELIRL overhead % ~ .| T — | §
2.) Knowledge is Iearned reward r(t) s stored for o 2 | %1 7
IntrOdUCtion transferrled from future use =k ©
previously : E o) L
Goal: Develop intelligent systems that JEEECHERLE 4.) Existing ELIRL Algorithm — Testing <0 | | | | | 5500 | | | | |
_ = Sreviously leamed . knowledge . . 0 2 Ay @Y @ e 0 4w G @ e
* Rapidly learn to imitate demonstrated tasks knowledge L is refined J Given a previously encountered task t, Number of tasks trained Number of tasks trained
* Re-use knowledge relevant to different tasks 4°@d % H.° 1. [Optional*] Re-optimize the task-specific coefficients Objectworld
. e . | | ‘. DL NN .
Learn to imitate varied tasks r Y p—a 2 > Lifelong é% 20 A Q% | s(t) « arg min,(a® _Lnews)TH(t)(aég—Lnews) 1L /z]|s||1 % 12 3 5 |
We frame lifelong learning from . | ; (V' 1 @ N JLearning System 2. Approximate the reward parameters 8"/ < Lnews( ) 519 D 5l
ldemqnstr?ct.ion as Onl,i”]f multi-ta‘fk @ r = & - () () 3. Use 0" as the reward function of 7 in standard reinforcement learning = §
earning of inverse reinforcemen : : : : S 6/ S 1) e
Iearning e \Z?-’- )4!‘ 0 L S *This optional step allows earlier tasks to benefit from the newest knowledge. % 2 E 1 =
8 ' . A ) @ AN & The task parameters are factorized into a shared T B ] = 4 o
- - : . basis and task-specific coefficients S Em £ & ol | 7
|(')fu1 Ilfell?ng !farnmg algprlt?_m wraEc)rs\ aroundde::lstlr;g IRL methods and performs | B '(t) ICI . = o'l _:: X TE Computational Complexity of the Re-optimization: § j <q>é O R S SO
ifelong function approximation on the reward functions. _ ‘111 g . : : | | | | |
6 60"’ = Ls 3 B Constructing and solving an instance of LASSO [Ruvolo and Eaton, ICML "13] g = el Er s el C
k d I R : f ) L : i I ».‘(” ,'*., \ 1 | l| 3 5 5 Number of tasks trained Number of tasks trained
Background: Inverse Reinforcement Learnin oqe  “source B .
8 8 A prior is chosen to encourage knowledge transfer e O(d + kd” + dk ) AT
N
Given an environment MDP\r : (S, A, T, ) . . . .
: : - 1 N 2 t . ELIRL transfers knowledge from new tasks to all previous tasks without retrainin
and a set of expert trajectories Z = {1, ..., ¢u}, 2 P (I'( ), ..., )) oc exp (—NA|L|F) H exXp (_M”S( )”1) : Theoretical Convergence Guarantees of ELIRL . e Ig - o ’ D .
with ¢; = [so.x, a0:z], output a reward r that = Fo— s Y el e :
. p . ELIRL inherits guaranteed convergence from ELLA [Ruvolo and Eaton, ICML “13] S £
explains the expert’s behavior. . . _ _ , £ g E
The multi-task objectlve encourages reward models to share structure * L converges to a local optimum of the approximate cost function S 3 =
. £ 9(t) _ 1.o(0) i (t) -
MaxEnt IRL 1 1 N The approximation is good if 8*/ = Ls'" is close to « i e e e
axent [Ziebart et al., ARAIO8] min = mind —— Z log P (C( ) | Ls®) T(t)) + ,LLHS(t) 11 ¢ + AL * This holds if the factored representation sufficiently captures task relatedness 7 & gz
Assumptions: = e 0 = =1 % - s |
. T ) e C Spat Y . . T 8 I &
« Linear reward: r,, = r(x,,,0) = 8" x,, e 1 V- — —— Extension of ELIRL for Cross-Domain Transfer el oo ot et
. . . exp X j i . : : 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
* Maximum entropy trajectories: P (¢; | 6) = — 3 - LS S SO IRELeEHIL e el S ELIRL supports tasks with different feature spaces. Task Number Task Number
Goal: Maximize log P(Z | 6) - We can approximate this objective as a sparse coding problem, which we can solve « We can assume tasks come from a set of groups {Q(”, - -,Q(Gm”)} ..
efficiently online [Ruvolo and Eaton, ICML ‘13] as . ks f ithi (9) sh h f AU LT o T 10 TS e : :
N ' = Tasks tfrom within a group G'¥’ s azi)t e same Teature space = colors for Objectworld Cross-domain transfer Continuous spaces
i i i : : e ELIRL learns projection matrices ¥'°’ that map the knowledge in L to g9 — e g
Lifelong Inverse Reinforcement Learning Problem N ( ) LS@) 510 ( B _ Ls(t)) + s b+ AL 2 proj A (If) 8 G oW Eogmes S
: ) o L. N <(t) ’ * The parameters are factored as ' =¥'9'Ls S B remali o = = 20001 -ELIRL
Given a sequence of tasks 7, ..., 7Wmaz) “egch of them an MDP\r: =l . I - : e W § N S 8
” O 4B ) () ) _ ) ) * A complexity term || ®'Y||f is added to the cost function for each group iy S0 o B IR = £
U= <S sl > where o' = are il = Z log P(¢;" | &, T%)  Optimization follows the same online procedure S e Fial i“ =
() (t) o e o g Z 2 =
Goal: Estimate the set of all reward functions R = {r (9(1)> ..,T (H(Nm”))} o= Extensi f ELIRL for Conti State-Action S - L EEET. é
@ _ 1 oo O\ 2@\ _ [ vy 0w I Xxtension o or Continuous State-Action sSpaces — PO U o s
How? Upon observing the N-th task, solve: = ntv"ﬂﬁ(r(LS )’Z ) = < Z G| 9)>< Z G 9)> i Z w10 . o m W w0
ks € Zupp C€Zupp CEZmpp ELIRL can easily be adapted to handle base learners other than MaxEnt IRL. Number of tasks trained
max P, ... ™) H (H P(¢ | r™) ) Upon observing task t, solve To handle continuous environments, we use AME IRL [Levine and Koltun, ICML “12]
Ao A t—1 s() « arg miné(LN, s, a® H(t)) Ly, < arg mlﬂ)\HLHF o i Zg (L s o® H(t))  AME IRL approximates the MaxEnt log-likelihood in infinite state-action spaces Each“ﬁgure V|suaI|zes o Objectworld
. (1) () S =1 « Using it as the base learners requires only computing the Hessian reward function given by one column Acknowledgement: This research was partly supported by
Reward prior P (r T ) encourages tasks to share structure. : : : , S s AFRL grant #FA8750-16-1-0109 and DARPA agreement
where ¢(L,s, o, H) = u|s|:1 + (@ — Ls) TH(a — Ls) . * ELIRL then wraps around AME IRL to enable it to operate in a lifelong setting e X HEAS750-18-2-0117.




