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Abstract

Methods for learning from demonstration (LfD) have shown success in acquiring
behavior policies by imitating a user. However, even for a single task, LfD may
require numerous demonstrations. For versatile agents that must learn many tasks
via demonstration, this process would substantially burden the user if each task
were learned in isolation. To address this challenge, we introduce the novel problem
of lifelong learning from demonstration, which allows the agent to continually
build upon knowledge learned from previously demonstrated tasks to accelerate
the learning of new tasks, reducing the amount of demonstrations required. As
one solution to this problem, we propose the first lifelong learning approach to
inverse reinforcement learning, which learns consecutive tasks via demonstration,
continually transferring knowledge between tasks to improve performance.

1 Introduction

In many applications, such as personal robotics or intelligent virtual assistants, a user may want
to teach an agent to perform some sequential decision-making task. Often, the user may be able
to demonstrate the appropriate behavior, allowing the agent to learn the customized task through
imitation. Research in inverse reinforcement learning (IRL) [29, 1, 43, 21, 31, 28] has shown success
with framing the learning from demonstration (LfD) problem as optimizing a utility function from user
demonstrations. IRL assumes that the user acts to optimize some reward function in performing the
demonstrations, even if they cannot explicitly specify that reward function as in typical reinforcement
learning (RL).1 IRL seeks to recover this reward function from demonstrations, and then use it to train
an optimal policy. Learning the reward function instead of merely copying the user’s policy provides
the agent with a portable representation of the task. Most IRL approaches have focused on an agent
learning a single task. However, as AI systems become more versatile, it is increasingly likely that
the agent will be expected to learn multiple tasks over its lifetime. If it learned each task in isolation,
this process would cause a substantial burden on the user to provide numerous demonstrations.

To address this challenge, we introduce the novel problem of lifelong learning from demonstration, in
which an agent will face multiple consecutive LfD tasks and must optimize its overall performance.
By building upon its knowledge from previous tasks, the agent can reduce the number of user
demonstrations needed to learn a new task. As one illustrative example, consider a personal service
robot learning to perform household chores from its human owner. Initially, the human might want to
teach the robot to load the dishwasher by providing demonstrations of the task. At a later time, the
user could teach the robot to set the dining table. These tasks are clearly related since they involve
manipulating dinnerware and cutlery, and so we would expect the robot to leverage any relevant
knowledge obtained from loading the dishwasher while setting the table for dinner. Additionally, we
would hope the robot could improve its understanding of the dishwasher task with any additional

1Complex RL tasks require similarly complex reward functions, which are often hand-coded. This hand-
coding would be very cumbersome for most users, making demonstrations better for training novel behavior.
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knowledge it gains from setting the dining table. Over the robot’s lifetime of many tasks, the ability
to share knowledge between demonstrated tasks would substantially accelerate learning.

We frame lifelong LfD as an online multi-task learning problem, enabling the agent to accelerate
learning by transferring knowledge among tasks. This transfer can be seen as exploiting the underlying
relations among different reward functions (e.g., breaking a wine glass is always undesired). Although
lifelong learning has been studied in classification, regression, and RL [10, 34, 4], this is the first study
of lifelong learning for IRL. Our framework wraps around existing IRL methods, performing lifelong
function approximation of the learned reward functions. As an instantiation of our framework, we
propose the Efficient Lifelong IRL (ELIRL) algorithm, which adapts Maximum Entropy (MaxEnt)
IRL [43] into a lifelong learning setting. We show that ELIRL can successfully transfer knowledge
between IRL tasks to improve performance, and this improvement increases as it learns more tasks.
It significantly outperforms the base learner, MaxEnt IRL, with little additional cost, and can achieve
equivalent or better performance than IRL via Gaussian processes with far less computational cost.

2 Related Work

The IRL problem is under-defined, so approaches use different means of identifying which reward
function best explains the observed trajectories. Among these, maximum margin IRL methods [29, 1]
choose the reward function that most separates the optimal policy and the second-best policy. Variants
of these methods have allowed for suboptimal demonstrations [32], non-linear reward functions [35],
and game-theoretic learning [37]. Bayesian IRL approaches [31, 30] use prior knowledge to bias
the search over reward functions, and can support suboptimal demonstrations [33]. Gradient-based
algorithms optimize a loss to learn the reward while, for instance, penalizing deviations from the
expert’s policy [28]. Maximum entropy models [43, 21, 42] find the most likely reward function
given the demonstrations, and produce a policy that matches the user’s expected performance without
making further assumptions on the preference over trajectories. Other work has avoided learning the
reward altogether and focuses instead on modeling the user’s policy via classification [27].

Note, however, that all these approaches focus on learning a single IRL task, and do not consider
sharing knowledge between multiple tasks. Although other work has focused on multi-task IRL,
existing methods either assume that the tasks share a state and action space, or scale poorly due
to their computational cost; our approach differs in both respects. An early approach to multi-task
IRL [12] learned different tasks by sampling from a joint prior on the rewards and policies, assuming
that the state-action spaces are shared. Tanwani and Billard [38] studied knowledge transfer for
learning from multiple experts, by using previously learned reward functions to bootstrap the search
when a new expert demonstrates trajectories. Although efficient, their approach does not optimize
performance across all tasks, and only considers learning different experts’ approaches to one task.

The notion of transfer in IRL was also studied in an unsupervised setting [2, 11], where each task
is assumed to be generated from a set of hidden intentions. These methods cluster an initial batch
of tasks, and upon observing each new task, use the clusters to rapidly learn the corresponding
reward function. However, they do not address how to update the clusters after observing a new task.
Moreover, these methods assume the state-action space is shared across tasks, and, as an inner loop
in the optimization, learn a single policy for all tasks. If the space was not shared, the repeated policy
learning would become computationally infeasible for numerous tasks. Most recently, transfer in
IRL has been studied for solving the one-shot imitation learning problem [13, 17]. In this setting, the
agent is tasked with using knowledge from an initial set of tasks to generalize to a new task given
a single demonstration of the new task. The main drawback of these methods is that they require a
large batch of tasks available at training time, and so cannot handle tasks arriving sequentially.

Our work is most similar to that by Mangin and Oudeyer [25], which poses the multi-task IRL
problem as batch dictionary learning of primitive tasks, but appears to be incomplete and unpublished.
Finn et al. [16] used IRL as a step for transferring knowledge in a lifelong RL setting, but they do not
explore lifelong learning specifically for IRL. In contrast to existing work, our method can handle
distinct state-action spaces. It is fully online and computationally efficient, enabling it to rapidly learn
the reward function for each new task via transfer and then update a shared knowledge repository.
New knowledge is transferred in reverse to improve the reward functions of previous tasks (without
retraining on these tasks), thereby optimizing all tasks. We achieve this by adapting ideas from
lifelong learning in the supervised setting [34], which we show achieves similar benefits in IRL.
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3 Inverse Reinforcement Learning

We first describe IRL and the MaxEnt IRL method, before introducing the lifelong IRL problem.

3.1 The Inverse RL Problem

A Markov decision process (MDP) is defined as a tuple 〈S,A, T, r, γ〉, where S is the set of states,
A is the set of actions, the transition function T : S × A × S 7→ [0, 1] gives the probability
P (si+1 | si, ai) that being in state si and taking action ai will yield a next state si+1, r : S 7→ R
is the reward function2, and γ ∈ [0, 1) is the discount factor. A policy π : S × A 7→ [0, 1] models
the distribution P (ai | si) over actions the agent should take in any state. When fully specified, an
MDP can be solved via linear or dynamic programming for an optimal policy π∗ that maximizes the
rewards earned by the agent: π∗ = argmaxπ V

π , with V π = Eπ
[∑

i γ
ir(si)

]
.

In IRL [29], the agent does not know the MDP’s reward function, and must infer it from demonstra-
tions Z = {ζ1, . . . , ζn} given by an expert user. Each demonstration ζj is a sequence of state-action
pairs [s0:H ,a0:H ] that is assumed to be generated by the user’s unknown policy π̂∗. Once the reward
function is learned, the MDP is complete and so can be solved for the optimal policy π∗.

Given an MDP\r = 〈S,A, T, γ〉 and expert demonstrations Z , the goal of IRL is to estimate the
unknown reward function r of the MDP. Previous work has defined the optimal reward such that the
policy enacted by the user be (near-)optimal under the learned reward (V π

∗
= V π̂

∗
), while (nearly)

all other actions would be suboptimal. This problem is unfortunately ill-posed, since it has numerous
solutions, and so it becomes necessary to make additional assumptions in order to find solutions that
generalize well. These various assumptions and the strategies to recover the user’s policy have been
the focus of previous IRL research. We next focus on the MaxEnt approach to the IRL problem.

3.2 Maximum Entropy IRL

In the maximum entropy (MaxEnt) algorithm for IRL [43], each state si is represented by a feature
vector xsi ∈ Rd. Each demonstrated trajectory ζj gives a feature count xζj =

∑H
i=0 γ

ixsi , giving
an approximate expected feature count x̃ = 1

n

∑
j xζj that must be matched by the agent’s policy

to satisfy the condition V π
∗
= V π̂

∗
. The reward function is represented as a parameterized linear

function with weight vector θ ∈ Rd as rsi = r(xsi ,θ) = θ>xsi and so the cumulative reward of a
trajectory ζj is given by rζj = r(xζj ,θ) =

∑
si∈ζj γ

iθ>xsi = θ>xζj .

The algorithm deals with the ambiguity of the IRL problem in a probabilistic way, by as-
suming that the user acts according to a MaxEnt policy. In this setting, the probability of
a trajectory is given as: P (ζj | θ, T ) ≈ 1

Z(θ,T ) exp(rζj )
∏

(si,ai,si+1)∈ζj T (si+1 | si, ai), where
Z(θ, T ) is the partition function, and the approximation comes from assuming that the tran-
sition uncertainty has little effect on behavior. This distribution does not prefer any trajec-
tory over another with the same reward, and exponentially prefers trajectories with higher re-
wards. The IRL problem is then solved by maximizing the likelihood of the observed trajectories
θ∗ = argmaxθ logP (Z | θ) = argmaxθ

∑
ζj∈Z logP (ζj | θ, T ). The gradient of the log-likelihood

is the difference between the user’s and the agent’s feature expectations, which can be expressed
in terms of the state visitation frequencies Ds: x̃−

∑
ζ̃∈ZMDP

P (ζ̃ | θ, T )xζ̃ = x̃−
∑
s∈S Dsxs,

where ZMDP is the set of all possible trajectories. The Ds can be computed efficiently via a forward-
backward algorithm [43]. The maximum of this concave objective is then achieved when the feature
counts match, and so V π

∗
= V π̂

∗
.

4 The Lifelong Inverse RL Problem

We now introduce the novel problem of lifelong IRL. In contrast to most previous work on IRL, which
focuses on single-task learning, this paper focuses on online multi-task IRL. Formally, in the lifelong
learning setting, the agent faces a sequence of IRL tasks T (1), . . . , T (Nmax), each of which is an

2Although we typically notate functions as uppercase non-bold symbols, we notate the reward function as r,
since primarily it will be represented as a parameterized function of the state features and a target for learning.
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MDP\r T (t) =
〈
S(t),A(t), T (t), γ(t)

〉
. The agent will learn tasks consecutively, receiving multiple

expert demonstrations for each task before moving on to the next. We assume that a priori the agent
does not know the total number of tasks Nmax, their distribution, or the order of the tasks.

The agent’s goal is to learn a set of reward functionsR =
{
r(θ(1)), . . . , r(θ(Nmax))

}
with a corre-

sponding set of parameters Θ =
{
θ(1), . . . ,θ(Nmax)

}
. At any time, the agent may be evaluated on

any previous task, and so must strive to optimize its performance for all tasks T (1), . . . , T (N), where
N denotes the number of tasks seen so far (1 ≤ N ≤ Nmax). Intuitively, when the IRL tasks are
related, knowledge transfer between their reward functions has the potential to improve the learned
reward function for each task and reduce the number of expert demonstrations needed.

After N tasks, the agent must optimize the likelihood of all observed trajectories over those tasks:

max
r(1),...,r(N)

P
(
r(1), . . . , r(N)

) N∏
t=1

 nt∏
j=1

P
(
ζj | r(t)

) 1
nt

, (1)

where P (r(1), . . . , r(N)) is a reward prior to encourage relationships among the reward functions,
and each task is given equal importance by weighting it by the number of associated trajectories nt.

5 Lifelong Inverse Reinforcement Learning

The key idea of our framework is to use lifelong function approximation to represent the reward
functions for all tasks, enabling continual online transfer between the reward functions with efficient
per-task updates. Intuitively, this framework exploits the fact that certain aspects of the reward
functions are often shared among different (but related) tasks, such as the negative reward a service
robot might receive for dropping objects. We assume the reward functions r(t) for the different tasks
are related via a latent basis of reward components L. These components can be used to reconstruct
the true reward functions via a sparse combination of such components with task-specific coefficients
s(t), using L as a mechanism for transfer that has shown success in previous work [19, 26].

This section develops our framework for lifelong IRL, instantiating it following the MaxEnt approach
to yield the ELIRL algorithm. Although we focus on MaxEnt IRL, ELIRL can easily be adapted to
other IRL approaches, as shown in Appendix D. We demonstrate the merits of the novel lifelong IRL
problem by showing that 1) transfer between IRL tasks can significantly increase their accuracy and
2) this transfer can be achieved by adapting ideas from lifelong learning in supervised settings.

5.1 The Efficient Lifelong IRL Algorithm

As described in Section 4, the lifelong IRL agent must optimize its performance over all IRL tasks
observed so far. Using the MaxEnt assumption that the reward function r

(t)
si = θ>x

(t)
si for each task

is linear and parameterized by θ(t) ∈ Rd, we can factorize these parameters into a linear combination
θ(t) = Ls(t) to facilitate transfer between parametric models, following Kumar and Daumé [19] and
Maurer et al. [26]. The matrix L ∈ Rd×k represents a set of k latent reward vectors that are shared
between all tasks, with sparse task-specific coefficients s(t) ∈ Rk to reconstruct θ(t).

Using this factorized representation to facilitate transfer between tasks, we place a Laplace prior on
the s(t)’s to encourage them to be sparse, and a Gaussian prior on L to control its complexity, thereby
encouraging the reward functions to share structure. This gives rise to the following reward prior:

P
(
r(1), . . . , r(N)

)
=

1

Z (λ, µ)
exp

(
−Nλ‖L‖2F

) N∏
t=1

exp
(
−µ‖s(t)‖1

)
, (2)

where Z(λ, µ) is the partition function, which has no effect on the optimization. We can substitute
the prior in Equation 2 along with the MaxEnt likelihood into Equation 1. After taking logs and
re-arranging terms, this yields the equivalent objective:

min
L

1

N

N∑
t=1

min
s(t)

{
− 1

nt

∑
ζ
(t)
j ∈Z(t)

logP
(
ζ
(t)
j | Ls(t), T (t)

)
+ µ‖s(t)‖1

}
+ λ‖L‖2F . (3)
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Note that Equation 3 is separably, but not jointly, convex in L and the s(t)’s; typical multi-task
approaches would optimize similar objectives [19, 26] using alternating optimization.

To enable Equation 3 to be solved online when tasks are observed consecutively, we adapt concepts
from the lifelong learning literature. Ruvolo and Eaton [34] approximate a multi-task objective with
a similar form to Equation 3 online as a series of efficient online updates. Note, however, that their
approach is designed for the supervised setting, using a general-purpose supervised loss function in
place of the MaxEnt negative log-likelihood in Equation 3, but with a similar factorization of the
learned parametric models. Following their approach but substituting in the IRL loss function, for
each new task t, we can take a second-order Taylor expansion around the single-task point estimate of
α(t) = argminα−

∑
ζ
(t)
j ∈Z(t) logP

(
ζ
(t)
j | α, T (t)

)
, and then simplify to reformulate Equation 3 as

min
L

1

N

N∑
t=1

min
s(t)

{(
α(t) − Ls(t)

)>
H(t)

(
α(t) − Ls(t)

)
+ µ‖s(t)‖1

}
+ λ‖L‖2F , (4)

where the Hessian H(t) of the MaxEnt negative log-likelihood is given by (derivation in Appendix A):

H(t)=
1

nt
∇2

θ,θL
(
r
(
Ls(t)

)
,Z(t)

)
=

(
−
∑
ζ̃∈ZMDP

xζ̃P (ζ̃|θ)

)(∑
ζ̃∈ZMDP

x>
ζ̃
P (ζ̃|θ)

)
+
∑
ζ̃∈ZMDP

xζ̃x
>
ζ̃
P (ζ̃|θ) . (5)

Since H(t) is non-linear in the feature counts, we cannot make use of the state visitation frequencies
obtained for the MaxEnt gradient in the lifelong learning setting. This creates the need for obtaining
a sample-based approximation. We first solve the MDP for an optimal policy πα(t)

from the
parameterized reward learned by single-task MaxEnt. We compute the feature counts for a fixed
number of finite horizon paths by following the stochastic policy πα(t)

. We then obtain the sample
covariance of the feature counts of the paths as an approximation of the true covariance in Equation 5.

Given each new consecutive task t, we first estimate α(t) as described above. Then, Equation 4 can
be approximated online as a series of efficient update equations [34]:

s(t)← argmin
s

`
(
LN , s,α

(t),H(t)
)

LN+1← argmin
L

λ‖L‖2F +
1

N

N∑
t=1

`
(
L, s(t),α(t),H(t)

)
, (6)

where ` (L, s,α,H) = µ‖s‖1 +(α−Ls)>H(α−Ls), and L can be built incrementally in practice
(see [34] for details). Critically, this online approximation removes the dependence of Equation 3
on the numbers of training samples and tasks, making it scalable for lifelong learning, and provides
guarantees on its convergence with equivalent performance to the full multi-task objective [34]. Note
that the s(t) coefficients are only updated while training on task t and otherwise remain fixed.

Algorithm 1 ELIRL (k, λ, µ)
L← RandomMatrixd,k
while some task T (t) is available do
Z(t) ← getExampleTrajectories(T (t))
α(t), H(t) ← inverseReinforcementLearner(Z(t))
s(t) ← argmins(α

(t)−Ls)>H(t)2(α(t)−Ls)+µ‖s‖1
L← updateL(L, s(t),α(t),H(t), λ)

end while

This process yields the estimated re-
ward function as r

(t)
si = Ls(t)xsi . We

can then solve the now-complete MDP
for the optimal policy using standard
RL. The complete ELIRL algorithm is
given as Algorithm 1. ELIRL can either
support a common feature space across
tasks, or can support different feature
spaces across tasks by making use of
prior work in autonomous cross-domain
transfer [3], as shown in Appendix C.

5.2 Improving Performance on Earlier Tasks

As ELIRL is trained over multiple IRL tasks, it gradually refines the shared knowledge in L. Since
each reward function’s parameters are modeled as θ(t) = Ls(t), subsequent changes to L after
training on task t can affect θ(t). Typically, this process improves performance in lifelong learning
[34], but it might occasionally decrease performance through negative transfer, due to the ELIRL
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simplifications restricting that s(t) is fixed except when training on task t. To prevent this problem,
we introduce a novel technique. Whenever ELIRL is tested on a task t, it can either directly use the
θ(t) vector obtained from Ls(t), or optionally repeat the optimization step for s(t) in Equation 6 to
account for potential major changes in the L matrix since the last update to s(t). This latter optional
step only involves running an instance of the LASSO, which is highly efficient. Critically, it does not
require either re-running MaxEnt or recomputing the Hessian, since the optimization is always done
around the optimal single-task parameters, α(t). Consequently, ELIRL can pay a small cost to do this
optimization when it is faced with performing on a previous task, but it gains potentially improved
performance on that task by benefiting from up-to-date knowledge in L, as shown in our results.

5.3 Computational Complexity

The addition of a new task to ELIRL requires an initial run of single-task MaxEnt to obtain α(t),
which we assume to be of order O(iξ(d, |A|, |S|)), where i is the number of iterations required for
MaxEnt to converge. The next step is computing the Hessian, which costs O(MH +Md2), where
M is the number of trajectories sampled for the approximation and H is their horizon. Finally, the
complexity of the update steps for L and s(t) is O(k2d3) [34]. This yields a total per-task cost of
O(iξ(d, |A|, |S|) +MH +Md2 + k2d3) for ELIRL. The optional step of re-updating s(t) when
needing to perform on task twould incur a computational cost ofO(d3 + kd2 + dk2) for constructing
the target of the optimization and running LASSO [34].

Notably, there is no dependence on the number of tasks N , which is precisely what makes ELIRL
suitable for lifelong learning. Since IRL in general requires finding the optimal policy for different
choices of the reward function as an inner loop in the optimization, the additional dependence on N
would make any IRL method intractable in a lifelong setting. Moreover, the only step that depends
on the size of the state and action spaces is single-task MaxEnt. Thus, for high-dimensional tasks
(e.g., robotics tasks), replacing the base learner would allow our algorithm to scale gracefully.

5.4 Theoretical Convergence Guarantees

ELIRL inherits the theoretical guarantees showed by Ruvolo and Eaton [34]. Specifically, the
optimization is guaranteed to converge to a local optimum of the approximate cost function in
Equation 4 as the number of tasks grows large. Intuitively, the quality of this approximation depends
on how much the factored representation θ(t) = Ls(t) deviates from α(t), which in turn depends
on how well this representation can capture the task relatedness. However, we emphasize that this
approximation is what allows the method to solve the multi-task learning problem online, and it has
been shown empirically in the contexts of supervised learning [34] and RL [4] that this approximate
solution can achieve equivalent performance to exact multi-task learning in a variety of problems.

6 Experimental Results

We evaluated ELIRL on two environments, chosen to allow us to create arbitrarily many tasks with
distinct reward functions. This also gives us known rewards as ground truth. No previous multi-task
IRL method was tested on such a large task set, nor on tasks with varying state spaces as we do.

Objectworld: Similar to the environment presented by Levine et al. [21], Objectworld is a 32× 32
grid populated by colored objects in random cells. Each object has one of five outer colors and one of
two inner colors, and induces a constant reward on its surrounding 5 × 5 grid. We generated 100
tasks by randomly choosing 2–4 outer colors, and assigning to each a reward sampled uniformly from
[−10, 5]; the inner colors are distractor features. The agent’s goal is then to move toward objects with
“good” (positive) colors and away from objects with “bad” (negative) colors. Ideally, each column of
L would learn the impact field around one color, and the s(t)’s would encode how good or bad each
color is in each task. There are d = 31(5 + 2) features, representing the distance to the nearest object
with each outer and inner color, discretized as binary indicators of whether the distance is less than
1–31. The agent can choose to move along the four cardinal directions or stay in place.

Highway: Highway simulations have been used to test various IRL methods [1, 21]. We simulate the
behavior of 100 different drivers on a three-lane highway in which they can drive at four speeds. Each
driver prefers either the left or the right lane, and either the second or fourth speed. Each driver’s
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weight for those two factors is sampled uniformly from [0, 5]. Intuitively, each column of L should
learn a speed or lane, and the s(t)’s should encode the drivers’ preferences over them. There are
d = 4+ 3+ 64 features, representing the current speed and lane, and the distances to the nearest cars
in each lane in front and back, discretized in the same manner as Objectworld. Each time step, drivers
can choose to move left or right, speed up or slow down, or maintain their current speed and lane.

In both environments, the agent’s chosen action has a 70% probability of success and a 30% proba-
bility of a random outcome. The reward is discounted with each time step by a factor of γ = 0.9.

6.1 Evaluation Procedure

For each task, we created an instance of the MDP by placing the objects in random locations. We
solved the MDP for the true optimal policy, and generated simulated user trajectories following this
policy. Then, we gave the IRL algorithms the MDP\r and the trajectories to estimate the reward
r. We compared the learned reward function with the true reward function by standardizing both
and computing the `2-norm of their difference. Then, we trained a policy using the learned reward
function, and compared its expected return to that obtained by a policy trained using the true reward.

We tested ELIRL using L trained on various subsets of tasks, ranging from 10 to 100 tasks. At
each testing step, we evaluated performance of all 100 tasks; this includes as a subset evaluating all
previously observed tasks, but it is significantly more difficult because the latent basis L, which is
trained only on the initial tasks, must generalize to future tasks. The single-task learners were trained
on all tasks, and we measured their average performance across all tasks. All learners were given
nt = 32 trajectories for Objectworld and nt = 256 trajectories for Highway, all of length H = 16.
We chose the size k of L via domain knowledge, and initialized L sequentially with the α(t)’s of the
first k tasks. We measured performance on a new random instance of the MDP for each task, so as
not to conflate overfitting the training environment with high performance. Results were averaged
over 20 trials, each using a random task ordering.

We compared ELIRL with both the original (ELIRL) and re-optimized (ELIRLre) s(t) vectors to
MaxEnt IRL (the base learner) and GPIRL [21] (a strong single-task baseline). None of the existing
multi-task IRL methods were suitable for this experimental setting—other methods assume a shared
state space and are prohibitively expensive for more than a few tasks [12, 2, 11], or only learn different
experts’ approaches to a single task [38] . Appendix B includes a comparison to MTMLIRL [2] on a
simplified version of Objectworld, since MTMLIRL was unable to handle the full version.

Figure 1: Average reward and
value difference in the life-
long setting. Reward differ-
ence measures the error be-
tween learned and true reward.
Value difference compares ex-
pected return from the policy
trained on the learned reward
and the policy trained on the
true reward. The whiskers
denote std. error. ELIRL
improves as the number of
tasks increases, achieving bet-
ter performance than its base
learner, MaxEnt IRL. Using
re-optimization after learning
all tasks allows earlier tasks to
benefit from the latest knowl-
edge, increasing ELIRL’s per-
formance above GPIRL. (Best
viewed in color.)
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(a) Green and yellow (b) Green, blue, yellow (c) Orange

Figure 2: Example latent reward functions from Objectworld learned by ELIRL. Each column of L
can be visualized as a reward function, and captures a reusable chunk of knowledge. The grayscale
values show the learned reward and the arrows show the corresponding optimal policy. Each latent
component has specialized to focus on objects of particular colors, as labeled. (Best viewed in color.)
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Figure 3: Reverse transfer. Difference in error in the learned reward between when a task was first
trained and after the full model had been trained, as a function of task order. Positive change in errors
indicates positive transfer; negative change indicates interference from negative transfer. Note that
the re-optimization has both decreased negative transfer on the earliest tasks, and also significantly
increased the magnitude of positive reverse transfer. Red curves show the best exponential curve.

6.2 Results

Figure 1 shows the advantage of sharing knowledge among IRL tasks. ELIRL learned the reward
functions more accurately than its base learner, MaxEnt IRL, after sufficient tasks were used to train
the knowledge base L. This directly translated to increased performance of the policy trained using
the learned reward function. Moreover, the s(t) re-optimization (Section 5.2) allowed ELIRLre to
outperform GPIRL, by making use of the most updated knowledge.

Objectworld (sec) Highway (sec)
ELIRL 17.055± 0.091 21.438± 0.173
ELIRLre 17.068± 0.091 21.440± 0.173
MaxEnt IRL 16.572± 0.407 18.283± 0.775
GPIRL 1008.181± 67.261 392.117± 18.484

Table 1: The average learning time per task. The standard
error is reported after the ±.

As shown in Table 1, ELIRL re-
quires little extra training time ver-
sus MaxEnt IRL, even with the op-
tional s(t) re-optimization, and runs
significantly faster than GPIRL. The
re-optimization’s additional time is
nearly imperceptible. This signifies
a clear advantage for ELIRL when
learning multiple tasks in real-time.

In order to analyze how ELIRL captures the latent structure underlying the tasks, we created new
instances of Objectworld and used a single learned latent component as the reward of each new MDP
(i.e., a column of L, which can be treated as a latent reward function factor). Figure 2 shows example
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Figure 4: Results for extensions of
ELIRL. Whiskers denote standard er-
rors. (a) Reward difference (lower
is better) between MaxEnt, in-domain
ELIRL, and cross-domain ELIRL. Trans-
ferring knowledge across domains im-
proved the accuracy of the learned re-
ward. (b) Value difference (lower is
better) obtained by ELIRL and AME-
IRL on the planar navigation environ-
ment. ELIRL improves the performance
of AME-IRL, and this improvement in-
creases as ELIRL observes more tasks.
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(a) Cross-domain transfer
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latent components learned by the algorithm, revealing that each latent component represents the 5× 5
grid around a particular color or small subset of the colors.

We also examined how performance on the earliest tasks changed during the lifelong learning process.
Recall that as ELIRL learns new tasks, the shared knowledge in L continually changes. Consequently,
the modeled reward functions for all tasks continue to be refined automatically over time, without
retraining on the tasks. To measure this effect of “reverse transfer” [34], we compared the performance
on each task when it was first encountered to its performance after learning all tasks, averaged over 20
random task orders. Figure 3 reveals that ELIRL improves previous tasks’ performance as L is refined,
achieving reverse transfer in IRL. Reverse transfer was further improved by the s(t) re-optimization.

6.3 ELIRL Extensions to Cross-Domain Transfer and Continuous State-Action Spaces

We performed additional experiments to show how simple extensions to ELIRL can transfer knowl-
edge across tasks with different feature spaces and with continuous state-action spaces.

ELIRL can support transfer across task domains with different feature spaces by adapting prior
work in cross-domain transfer [3]; details of this extension are given in Appendix C. To evaluate
cross-domain transfer, we constructed 40 Objectworld domains with different feature spaces by
varying the grid sizes from 5 to 24 and letting the number of outer colors be either 3 or 5. We created
10 tasks per domain, and provided the agents with 16 demonstrations per task, with lengths varying
according to the number of cells in each domain. We compared MaxEnt IRL, in-domain ELIRL
with the original (ELIRL) and re-optimized (ELIRLre) s(t)’s, and cross-domain ELIRL with the
original (CD-ELIRL) and reoptimized (CD-ELIRLre) s(t)’s, averaged over 10 random task orderings.
Figure 4a shows how cross-domain transfer improved the performance of an agent trained only on
tasks within each domain. Notice how the s(t) re-optimization compensates for the major changes in
the shared knowledge that occur when the agent encounters tasks from different domains.

We also explored an extension of ELIRL to continuous state spaces, as detailed in Appendix D. To
evaluate this extension, we used a continuous planar navigation task similar to that presented by
Levine and Koltun [20]. Analogous to Objectworld, this continuous environment contains randomly
distributed objects that have associated rewards (sampled randomly), and each object has an area
of influence defined by a radial basis function. Figure 4b shows the performance of ELIRL on 50
continuous navigation tasks averaged over 20 different task orderings, compared against the average
performance of the single-task AME-IRL algorithm [20] across all tasks. These results show that
ELIRL is able to achieve better performance in the continuous space than the single-task learner,
once a sufficient number of tasks has been observed.

7 Conclusion

We introduced the novel problem of lifelong IRL, and presented a general framework that is capable
of sharing learned knowledge about the reward functions between IRL tasks. We derived an algorithm
for lifelong MaxEnt IRL, and showed how it can be easily extended to handle different single-task
IRL methods and diverse task domains. In future work, we intend to study how more powerful base
learners can be used for the learning of more complex tasks, potentially from human demonstrations.
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Appendices to
“Lifelong Inverse Reinforcement Learning”

by Jorge A. Mendez, Shashank Shivkumar, and Eric Eaton

A Hessian Derivation for MaxEnt IRL

In this section, we derive the Hessian for the MaxEnt negative log-likelihood in Equation 5 of the main
paper. Recall that the Hessian is necessary for updating the L matrix and computing the task-specific
coefficients s(t). We begin by deriving the log-likelihood:

logP (Z | θ) = log
∏
ζj∈Z

P (ζj | θ, T )

=
∑
ζj∈Z

log
exp(θ>xζj )Tζj

Z(θ, T )

=
∑
ζj∈Z

θ>xζj +
∑

si,ai,si+1∈ζj

log T (si+1 | si, ai)− logZ(θ, T )

 ,

and its gradient:

∇θ logP (Z | θ) =∇θ

∑
ζj∈Z

θ>xζj +
∑

si,ai,si+1∈ζj

log T (si+1 | si, ai)− logZ(θ, T )


=
∑
ζj∈Z

xζj − n∇θ logZ(θ, T )

=nx̃− n∇θ log
∑
ζ̃

exp(θ>xζ̃)Tζ̃

=nx̃− n
∑
ζ̃ xζ̃ exp(θ

>xζ̃)Tζ̃∑
ζ̃ exp(θ

>xζ̃)Tζ̃

=nx̃− n
∑
ζ̃

P (ζ̃ | θ)xζ̃ ,

where Tζ =
∏
si,ai,si+1∈ζ T (si+1 | si, ai) and

∑
ζ̃ indicates

∑
ζ̃∈ZMDP

. Given this gradient, we can
now find the Hessian by taking the Jacobian of the gradient as follows:

∇θ,θ logP (Z | θ) = Jθ∇θ logP (Z | θ)

=���nJθx̃− nJθ

∑
ζ̃

P (ζ̃ | θ)xζ̃

= −nJθ

∑
ζ̃ xζ̃ exp(θ

>xζ̃)Tζ̃∑
ζ̃ exp(θ

>xζ̃)Tζ̃

= −n

(∑
ζ̃ xζ̃x

>
ζ̃
exp(θ>xζ̃)Tζ̃

)
����Z(θ, T )

Z �2(θ, T )

+ n

(∑
ζ̃ xζ̃ exp(θ

>xζ̃)Tζ̃

)(∑
ζ̃ x>

ζ̃
exp(θ>xζ̃)Tζ̃

)
Z2(θ, T )

= −n
∑
ζ̃

xζ̃x
>
ζ̃
P (ζ̃ | θ) + n

(∑
ζ̃

xζ̃P (ζ̃ | θ)

)(∑
ζ̃

x>
ζ̃
P (ζ̃ | θ)

)
.
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Taking the negative of the final expression and multiplying by 1
n as required by our definition, we get

the expression in Equation 5 of the main paper.

B Additional Experiments Comparing ELIRL to Multi-Task IRL

To analyze how ELIRL performed in comparison to an existing multi-task IRL method, we designed
a simplified domain and experimental setting that are compatible with the assumptions behind
Babes et al.’s method [2], MTMLIRL. We did attempt to learn the full-size Objectworld using the
MTMLIRL code provided by Babes et al. in the BURLAP library [24], but the computational cost of
MTMLIRL made it infeasible to run the experiment in a reasonble timeframe. So, in this Appendix,
we present results on a simplified Objectworld domain. Even on this simplified domain, we found
that MTMLIRL’s training time was three orders of magnitude greater than that of ELIRL.

We created 30 Objectworld tasks of size 8 × 8, with 3 outer colors and 2 inner colors. We fixed
the object locations across tasks to satisfy MTMLIRL’s assumption that all tasks use a common
state space. Note that the state space of this environment is significantly smaller than that used in
experiments described in Section 6.2 of the main paper.

The training procedure for the algorithms was the same as in the main experiments, providing each
IRL algorithm with nt = 5 simulated trajectories of length H = 16 for each task. We repeated the
experiments for 20 different random task orderings for ELIRL and 10 different initializations for
MTMLIRL. MTMLIRL was given access to all 30 tasks in batch in order to decrease its computation
time while allowing for knowledge sharing across all tasks.
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Figure B.1: Comparison against MTMLIRL.
The reward function learned by ELIRL was
more accurate than that learned by MTMLIRL
on the small-scale Objectworld experiment.

Training time (sec)
ELIRL 1.095± 0.036
MaxEnt IRL 1.074± 0.163
MTMLIRL 1239.426± 48.373

Table B.1: The average learning time per task
for ELIRL, MaxEnt IRL, and MTMLIRL on
the small-scale Objectworld. The standard er-
ror is reported after the ±.

Figure B.1 and Table B.1 show the results of this simplified experiment, which suggest that ELIRL
is capable of learning a more accurate reward function than MTMLIRL at a substantially reduced
computational cost.

C Support for Cross-Domain Transfer

To show how ELIRL can support transfer across tasks from different domains, we adapt ideas from
cross-domain transfer in the RL setting, which uses inter-domain mappings. Previous work in this
area has used hand-coded mappings [41, 40], learned pairwise mappings autonomously [39, 14, 7, 8,
6, 15, 18, 36], or learned mappings to a shared feature space [5, 3, 23, 22]. Since we consider the
case in which there is an unknown (potentially large) number of tasks, we focus upon the last strategy.

In this context, we assume that there is a set of groups
{
G(1), . . . ,G(Gmax)

}
and that all tasks from the

same group t ∈ G(g) share the feature space Rdg . To transfer knowledge about the reward functions
across groups, in addition to learning the shared knowledge base L ∈ Rd,k, the cross-domain
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algorithm learns a set of projection matrices Ψ(g) ∈ Rdg,k that specialize the knowledge in L to each
group, such that the parameter vectors are factorized as θ(t) = Ψ(g)Ls(t). By modifying the prior in
Equation 2 to include a Gaussian prior on the Ψ(g)’s and following previous work by obtaining the
second-order Taylor approximation [3], we obtain the cross-domain multi-task objective:

min
L

1

N

G∑
g=1

min
Ψ(g)

∑
t∈G(g)

min
s(t)

{(
α(t) −Ψ(g)Ls(t)

)>
H(t)

(
α(t) −Ψ(g)Ls(t)

)
+ µ‖s(t)‖1

}
+ γ‖Ψ(g)‖2F + λ‖L‖2F ,

(C.1)

which can be optimized online via efficient per-task updates. Results showing the effectiveness of
cross-domain transfer are presented in Section 6.3 of the main paper.

D ELIRL in Continuous State-Action Spaces

To show how ELIRL can easily support other IRL approaches as the base learner, in this section we
extend ELIRL to operate in continuous state-action spaces.

When dealing with high-dimensional, continuous environments, it can be prohibitively expensive to
discretize the state and action spaces as required in order to use MaxEnt IRL as the base learner for
ELIRL. Other existing IRL methods do not require discretization, such as the Relative Entropy IRL
algorithm [9] and the Approximated Maximum Entropy (AME) IRL algorithm [20]. The latter of the
two techniques is especially suitable to problems in robotics where the demonstrations provided by
users are rarely globally optimal, since it assumes only local optimality. We can employ AME-IRL
as the single-task learner in ELIRL to make ELIRL compatible with deterministic environments with
continuous state and action spaces.

Recall that MaxEnt IRL maximizes the likelihood of the demonstrated trajectories, and that in order
to evaluate this equation, we must compute the partition function. This cannot be done in the case of
continuous systems as it requires evaluating the policy at every state under a given reward. AME-IRL
overcomes this limitation by using the Laplace approximation of the MaxEnt log-likelihood, which
models the reward as locally Gaussian, thus removing the dependence on the partition function. The
approximate log-likelihood is given by:

logP (ζj | θ) =
1

2
gr
>Hr

−1gr +
1

2
log | −Hr | −

−du

2
log 2π , (D.1)

where gr and Hr are the gradient and Hessian of the reward function with respect to the expert user’s
actions, and du is the dimensionality of the actions. In order to optimize the multi-task objective in
Equation 4 of the main paper, we also require the Hessian H of the AME-IRL loss function with
respect to the reward parameters θ, which we obtain as:

H =
∂h

∂θ

> ∂gr

∂θ
+ h>

∂2gr

∂θ2 −
∂h

∂θ

> ∂Hr

∂θ
h− 1

2
h>

∂2Hr

∂θ2 h

+
1

2
tr

((
Hr
−1 ∂Hr

∂θ

)2

+ Hr
−1 ∂

2Hr

∂θ2

)
,

(D.2)

where h = Hr
−1gr. This expression can now be plugged into Equation 4 to enable ELIRL to operate

in continuous state-action spaces. Section 6.3 of the main paper presents experimental results of
applying ELIRL to continuous navigation tasks using AME-IRL as the base learner.
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