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Abstract
Policy gradient methods have shown success in
learning continuous control policies for high-
dimensional dynamical systems. A major down-
side of such methods is the amount of exploration
they require before yielding high-performing poli-
cies. In a lifelong learning setting, in which an
agent is faced with multiple consecutive tasks over
its lifetime, reusing information from previously
seen tasks can substantially accelerate the learn-
ing of new tasks. We provide a novel method for
lifelong policy gradient learning that trains life-
long function approximators directly via policy
gradients, allowing the agent to benefit from accu-
mulated knowledge throughout the entire training
process. We show empirically that our algorithm
learns faster and converges to better policies than
single-task and lifelong learning baselines, and
completely avoids catastrophic forgetting on a
variety of challenging domains.

1. Introduction
Policy gradient (PG) methods have been successful in learn-
ing control policies on high-dimensional, continuous sys-
tems (Schulman et al., 2015; Lillicrap et al., 2016; Schulman
et al., 2017). However, like most methods for reinforcement
learning (RL), they require the agent to interact with the
world extensively before outputting a functional policy. In
some settings, this experience is prohibitively expensive,
such as when training an actual physical system.

If an agent is expected to learn multiple consecutive tasks
over its lifetime, then we would want it to leverage knowl-
edge from previous tasks to accelerate the learning of new
tasks. This is the premise of lifelong RL methods (Bou
Ammar et al., 2014; Kirkpatrick et al., 2017). Most pre-
vious work in this field has considered the existence of a
central policy that can be used to solve all tasks the agent
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will encounter. If the tasks are sufficiently related, this
model serves as a good starting point for learning new tasks,
and the main problem becomes how to avoid forgetting the
knowledge required to solve tasks encountered early in the
agent’s lifetime.

However, in many cases, the tasks the agent will encounter
are less closely related, and so a single policy is insufficient
for solving all tasks. A typical approach for handling this
(more realistic) setting is to train a separate policy for each
new task, and then use information obtained during training
to find commonalities to previously seen tasks and use these
relations to improve the learned policy. Note that this only
enables the agent to improve policy performance after an
initial policy has been trained. Such methods have been
successful in outperforming the original policies trained
independently for each task, but unfortunately do not allow
the agent to reuse knowledge from previous tasks to more
efficiently explore the policy space, and so the learning itself
is not accelerated.

We propose a novel framework for lifelong RL via PG learn-
ing that automatically leverages prior experience during the
training process of each task. In order to enable learning
highly diverse tasks, we follow prior work in lifelong RL
by searching over factored representations of the policy-
parameter space to learn both a shared repository of knowl-
edge and a series of task-specific mappings to constitute
individual task policies from the shared knowledge.

Our algorithm, lifelong PG: faster training without forget-
ting (LPG-FTW) yields high-performing policies on a vari-
ety of benchmark problems with a surprisingly low amount
of experience needed per task, and avoids the problem of
catastrophic forgetting (McCloskey and Cohen, 1989).

2. Related Work
A large body of work in lifelong RL is based on parame-
ter sharing, where the underlying relations among multiple
tasks are captured by the model parameters. The key prob-
lem is designing how to share parameters across tasks in
such a way that subsequent tasks benefit from the earlier
tasks, and the modification of the parameters by future tasks
does not hinder performance of the earlier tasks.

Two broad categories of methods have arisen that differ in
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the way they share parameters.

The first class of lifelong RL techniques, which we will
call single-model, assumes that there is one model that
works for all tasks. These algorithms follow some standard
single-task learning (STL) PG algorithm, but modify the PG
objective to encourage transfer across tasks. A prominent
example is elastic weight consolidation (EWC) (Kirkpatrick
et al., 2017), which imposes a quadratic penalty for deviat-
ing from earlier tasks’ parameters to avoid forgetting. This
idea has been extended by modifying the exact form of the
penalty (Li and Hoiem, 2017; Zenke et al., 2017; Nguyen
et al., 2018; Ritter et al., 2018; Ebrahimi et al., 2020; Tit-
sias et al., 2020), but most of these approaches have not
been evaluated in RL. In order for single-model methods to
work, they require one of two assumptions to hold: either
all tasks must be very similar, or the model must be over-
parameterized to capture variations among tasks. The first
assumption is clearly quite restrictive, as it would preclude
the agent from learning highly varied tasks. The second, we
argue, is just as restrictive, since the over-parameterization
is finite, and so the model can become saturated after a
(typically small) number of tasks.

The second class, which we will call multi-model, assumes
that there is a set of shared parameters, representing a col-
lection of models, and a set of task-specific parameters, to
select a combination of these models relevant for the current
task. A classical example is PG-ELLA (Bou Ammar et al.,
2014; 2015; Isele et al., 2016), which assumes that the pa-
rameters for each task are factored as a linear combination
of dictionary elements. In a first stage, these methods learn
a policy for each task in isolation (i.e., ignoring any infor-
mation from other tasks) to determine similarity to previous
policies, and in a second stage, the parameters are factored
to improve performance via transfer. The downside of this is
that the agent does not benefit from prior experience during
initial training, which is critical for efficient learning in a
lifelong RL setting.

Our approach, LPG-FTW, uses multiple models like the lat-
ter category, but learns these models directly via PG learning
like the former class. This enables LPG-FTW to be flex-
ible and handle highly varied tasks while also benefiting
from prior information during the learning process, thus
accelerating the training. A similar approach has been ex-
plored in the context of model-based RL (Nagabandi et al.,
2019), but their focus was discovering when new tasks were
encountered in the absence of task indicators.

Other approaches store experiences in memory for future
replay (Isele and Cosgun, 2018; Rolnick et al., 2019) or use
a separate model for each task (Rusu et al., 2016; Garcia
and Thomas, 2019). The former is not applicable to PG
methods without complex and often unreliable importance
sampling techniques, while the latter is infeasible when the

number of tasks grows large.

Meta RL (Duan et al., 2016; Finn et al., 2017; Gupta et al.,
2018; Clavera et al., 2019) and multi-task RL (Parisotto
et al., 2016; Teh et al., 2017; Yang et al., 2017; Zhao et al.,
2017) also seek to accelerate learning by reusing informa-
tion from different tasks, but in those settings the agent does
not handle tasks arriving sequentially and the consequent
problem of catastrophic forgetting. Instead, there is a large
batch of tasks available for training and evaluation is done
either on the same batch or on a target task.

3. RL via Policy Gradients
In RL, the agent faces a Markov decision process (MDP)
〈X ,U , T,R, γ〉, whereX ⊆ Rd is the set of states, U ⊆ Rm
is the set of actions, T : X × U × X 7→ [0, 1] is a probabil-
ity distribution P (x′ | x,u) of transitioning to state x′

after executing an action u in state x, R : X × U 7→ R
is the reward function that measures the goodness of each
state-action pair, and γ ∈ [0, 1) is the discount factor that
reduces the importance of rewards far in the future. A policy
π : X × U 7→ [0, 1] prescribes the behavior of the agent by
specifying the probability P (u | x) of selecting an action
u when on a state x. The goal of the agent is to find the
policy π∗ that maximizes the expected long-term returns
E
[∑∞

i=0 γ
iRi
]
, where Ri = R(xi,ui).

PG algorithms have shown success in solving continuous
state-action RL problems by assuming that the policy πθ is a
function approximator parameterized by θ ∈ Rd (Schulman
et al., 2015; Lillicrap et al., 2016; Schulman et al., 2017).
The search over policies then reduces to finding the set of
parameters θ∗ that optimizes the objective given by the
long-term rewards: J (θ) = E

[∑∞
i=0 γ

iRi
]
. Different

approaches use varied strategies for estimating the gradient
∇θJ (θ). However, the common high-level idea is to use
the current policy πθ to sample trajectories of interaction
with the environment, and then estimating the gradient as
the average of some function of the features and rewards
encountered through the trajectories.

4. The Lifelong Learning Problem
We frame lifelong PG learning as online multi-task learning
of policy parameters. In this setting, the agent will be faced
with a sequence of tasks Z(1), . . . ,Z(Tmax) over its lifetime.
Each of these tasks will be an RL problem defined by an
MDP Z(t) = 〈X (t),U (t), T (t), R(t), γ〉. As described in
Section 3, each task’s policy is assumed to be parameterized
by a vector θ(t). The goal of the lifelong learning agent
is to find the set of policy parameters

{
θ(1), . . . ,θ(Tmax)

}
that maximizes the overall performance across all tasks:
1
Tmax

∑Tmax

t=1 E
∑∞
i=0 γ

iR
(t)
i . We do not assume knowledge

of the total number of tasks, the order in which these tasks
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Algorithm 1 LPG-FTW(d, k, λ, µ,M )

T ← 0, L←initializeL(d, k)
loop
t←getTask()
if isNewTask(t) then
s(t) ←initializeSt(k)
T ← T + 1

else
A← A− 2

(
s(t)s(t)

>)⊗H(t)

b← b− s(t) ⊗
(
−g(t) + 2H(t)α(t)

)
end if
for i = 1, . . . , N do
T← getTrajectories(Ls(t))
s(t)← PGStep(T,L, s(t), µ)
if i mod M == 0 then
α(t) ← Ls(t)

g(t),H(t) ← gradAndHess(α(t))

At ← A+ 2
(
s(t)s(t)

>)⊗H(t)

bt ← b+ s(t) ⊗
(
−g(t) + 2H(t)α(t)

)
vec(L)←

(
1
TAt − 2λI

)−1 ( 1
T bt
)

end if
end for
A← At, b← bt

end loop

will arrive, or the relations between the different tasks.

Upon observing each task, the agent will be allowed to
interact with the environment for a limited time, typically
insufficient for obtaining optimal performance on the task
without exploiting relevant information from prior tasks.
During this time, the learner will strive to discover any
relevant information from the current task to 1) relate it to
previously stored knowledge in order to permit transfer and
2) store any newly discovered knowledge for future re-use.
At any time, the agent may be evaluated on any previously
seen task. Crucially, this formulation requires the agent to
perform well on all tasks (and not just the final one), so it
must strive to retain knowledge from all early tasks.

5. Lifelong Policy Gradient Learning
Our framework for lifelong PG learning uses factored rep-
resentations. The central idea is assuming that the policy
parameters for task t can be factored into θ(t) ≈ Ls(t),
where L ∈ Rd×k is a shared dictionary of policy factors
and s(t) ∈ Rk are task-specific coefficients that select com-
ponents for the current task. We further assume that we have
access to some base PG algorithm that, given a single task,
is capable of finding a parametric policy that performs well
on the task, although not necessarily optimally.

Upon encountering a new task t, LPG-FTW, given as Al-
gorithm 1, will use the base learner to optimize the task-
specific coefficients s(t), without modifying the knowledge
baseL. This corresponds to searching for the optimal policy
that can be obtained by combining the factors of L. Every
M�1 steps, the agent will update the knowledge base L
with any relevant information collected from t up to that
point. This allows the agent to search for policies with an
improved knowledge base in subsequent steps.

Concretely, the agent will strive to solve the following opti-
mization during the training phase:

s(t)=argmax
s

`(Lt−1, s)=argmax
s

J (t)(Lt−1s)−µ‖s‖1, (1)

where J (t)(·) is any PG objective and the `1 norm encour-
ages sparsity. The agent will then optimize the following
second-order approximation to the multi-task objective to
incorporate new knowledge into the dictionary:

Lt = arg max
L

ĝt(L) (2)

ĝt(L) = −λ‖L‖2F +
1

t

t∑
t̂=1

ˆ̀(L, s(t̂),α(t̂),H(t̂), g(t̂))

ˆ̀(L, s,α,H, g)=−µ‖s‖1 + ‖α−Ls‖2H + g>(Ls−α),

where g(t̂) andH(t̂) are the gradient and Hessian of J (t̂)(θ)

evaluated at α(t̂) = Lt̂−1s
(t̂):

g(t̂) =∇θJ (t̂)(θ)

∣∣∣∣
θ=α(t̂)

H(t̂) =
1

2
∇θ,θ>J (t̂)(θ)

∣∣∣∣
θ=α(t̂)

.

Unlike Bou Ammar et al. (2014), we do not compute the
approximation around a single-task optimum, enabling LPG-
FTW to update L without finding the (often infeasible)
optimum. In order to solve this optimization, we find:

A =− 2λI +
2

t

t∑
t̂=1

(
s(t̂)s(t̂)

>
)
⊗H(t̂) and

b =
1

t

t∑
t̂=1

s(t̂) ⊗
(
−g(t̂) + 2H(t̂)α(t̂)

)
,

where ⊗ denotes the Kronecker tensor product. Then, the
solution is given by vec(Lt) = A−1b. Notably, these can
be computed incrementally as each new task arrives, so that
L can be updated without preserving data or parameters
from earlier tasks.

In Equation 1, the agent leverages knowledge from all pre-
vious tasks while training on task t, by searching for θ(t)
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Algorithm 2 InitializeL(d, k, λ, µ)

T ← 0, L←empty(d, 0)
while T < k do
t←getTask()
s(t) ←initializeSt(k)
T ← T + 1
for i = 1, . . . , N do
T← getTrajectories(Ls(t))
s(t), ε(t) ← PGStep(T,L, s(t), ε(t), µ)

end for
L← addColumn(L, ε(t))
α(t) ← Ls(t) + ε(t)

g(t),H(t) ← gradAndHess(α(t))
A← A+ 2

(
s(t)s(t)

>)⊗H(t)

b← b+ s(t) ⊗
(
−g(t) + 2H(t)α(t)

)
end while

in the span of Lt−1. This makes LPG-FTW fundamentally
different from prior methods that learn each task’s parameter
vector in isolation and subsequently combine prior knowl-
edge to improve performance. One potential drawback is
that, by restricting the search to the span of Lt−1, we might
miss other, potentially better, policies. However, any set
of parameters far from the space spanned by Lt−1 would
be uninformative for the multi-task objective, since the ap-
proximations to the previous tasks would be poor near the
current task’s parameters and vice versa.

In Equation 2, LPG-FTW approximates the loss around the
current set of parameters α(t) via a second-order expansion
and finds the Lt that optimizes the average approximate
cost over all previously seen tasks, ensuring that the agent
does not forget the knowledge required to solve them.

Time complexity LPG-FTW introduces an overhead of
O(k × d) per PG step, due to the multiplication of the gra-
dient by L>. Additionally, every M � 1 steps, the update
step of L takes an additional O(d3k2). If the number of
parameters d is too high, we could use faster techniques
for solving the inverse of A in Equation 2, like the con-
jugate gradient method. We could also approximate the
Hessian with a Kronecker-factored (KFAC) or diagonal ma-
trix. While we didn’t use these approximations, they work
well in related methods (Bou Ammar et al., 2014; Ritter
et al., 2018), so we expect LPG-FTW to behave similarly.
However, note that the time complexity of LPG-FTW is
constant w.r.t. the number of tasks seen, since the cost is
computed incrementally. This applies to diagonal matrices,
but not to KFAC matrices, which require storing all Hes-
sians and recomputing the cost for every new task, which is
infeasible for large numbers of tasks.

5.1. Knowledge Base Initialization

The intuition we have built holds only when a reasonably
good L matrix has already been learned. But what happens
at the beginning of the learning process, when the agent has
not yet seen a substantial number of tasks? If we take the
naı̈ve approach of initializing L at random, then the s(t)’s
are unlikely to be able to find a well-performing policy, and
so updates to L will not leverage any useful information.

One common alternative is to initialize the k columns of L
with the STL solutions to the first k tasks, α(t)|kt=1. This is
evocative of the Forgy method of initializing the k-means
cluster centroids with points from the data set (Anderberg,
1973). However, when the α(t)’s are sub-optimal, this
method prevents tasks 2–k from leveraging information
from the earlier tasks, impeding them from achieving poten-
tially higher performance. Moreover, several tasks might
rediscover information, leading to wasted resources in terms
of both learning and capacity of L.

We propose an initialization method (Algorithm 2) that en-
ables early tasks to leverage knowledge from previous tasks
and prevents the discovery of redundant information. The
algorithm starts from an empty dictionary and adds error
vectors ε(t) for the initial k tasks. For each task t, we
modify the optimization in Equation 1 for learning s(t) by
adding ε(t) as additional learnable parameters, which will
find knowledge of task t not contained in L and then will
be incorporated as a column of L:

s(t), ε(t) = arg max
s,ε

J (t)(Lt−1s+ ε)− µ‖s‖1 − λ‖ε‖22 .

5.2. Base Policy Gradient Algorithms

Now, we show how two STL PG learning algorithms can be
used as the base learner of LPG-FTW.

5.2.1. EPISODIC REINFORCE

Episodic REINFORCE updates parameters as:

θj ← θj−1 + ηjgθj−1 ,

where gθ is the policy gradient, given by:

gθ = ∇θJ (θ) = E

[ ∞∑
i=0

∇θ log πθ(xi,ui)A(xi,ui)

]
,

and A(x,u) is the advantage function.

In order to incorporate REINFORCE into LPG-FTW, we
would update the s(t)’s as:

s
(t)
j ← s

(t)
j−1 + αj∇s

[
J (t)(Lt−1s)− µ‖s‖1

] ∣∣∣∣
s=s

(t)
j

,
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with the gradient given by :

∇s
[
J (t)(Lt−1s)− µ‖s‖1

]
= L>t−1gLt−1s−µ sign(s) .

The Hessian for the update of L in Equation 2 is
given byH = 1

2E
[∑∞

i=0∇θ,θ> log πθ(xi,ui)A(xi,ui)
]
,

which evaluates to H = − 1
2σ2E

[∑∞
i=0 xx

>A(xi,ui)
]

in the case where the policy is a linear Gaussian (i.e.,
πθ = N (θ>x, σ)). One major drawback of this is that the
Hessian is not negative definite, so Equation 2 might move
the policy arbitrarily far from the original policy used for
sampling trajectories.

5.2.2. NATURAL POLICY GRADIENT

The natural PG (NPG) algorithm allows us to get
around this issue. We use the formulation followed
by Rajeswaran et al. (2017), which at each itera-
tion optimizes maxθ g

>
θj−1

(θ − θj−1) subject to the
quadratic constraint ‖θ − θj−1‖2Fθj−1

≤ δ, where

Fθ = E
[
∇θ log πθ(x,u)∇θ log πθ(x,u)>

]
is the approx-

imate Fisher information of πθ (Kakade, 2002). The base
learner would then update the policy parameters at each
iteration as:

θj ← θj−1 + ηθF
−1
θj−1

gθj−1
,

with ηθ =
√
δ/(g>θj−1

F−1θj−1
gθj−1

).

To incorporate NPG as the base learner in LPG-FTW,
at each step we solve maxs g

>
s
(t)
j−1

(s− s(t)j−1) subject to

‖s− s(t)j−1‖2F
s
(t)
j−1

≤ δ, which gives us the update:

s
(t)
j ← s

(t)
j−1 + ηs(t)F

−1
s
(t)
j−1

g
s
(t)
j−1

.

We compute the Hessian for Equation 2 asH = − 1
ηθ
Fθj−1

by using the equivalent soft-constrained problem:

Ĵ (θ) =g>θj−1
(θ − θj−1) +

‖θ − θj−1‖2Fθj−1
− δ

2ηθ
.

This Hessian is negative definite, and thus encourages the
parameters to stay close to the original ones, where the
approximation is valid.

6. Experimental Evaluation
We evaluated our method on a range of complex continuous
control domains, showing that LPG-FTW achieves a sub-
stantial increase in learning speed and a dramatic reduction
in catastrophic forgetting.

Baselines We compared against STL, which does not
transfer knowledge across tasks, using NPG as described in
Section 5.2.2. We then chose EWC (Kirkpatrick et al., 2017)
from the single-model family, which places a quadratic
penalty for deviating from earlier tasks’ parameters. Finally,
we compared against PG-ELLA (Bou Ammar et al., 2014),
which factorizes the policy parameters like LPG-FTW, but
first uses STL to search for the policy parameters of each
task and subsequently factorizes the learned parameters,
limiting PG-ELLA’s speed to that of STL. All lifelong algo-
rithms used NPG as the base learning method.

Evaluation procedure We chose the hyper-parameters of
NPG to maximize the performance of STL on a single task,
and used those hyper-parameters for all agents. For EWC,
we searched for the regularization parameter over five tasks
on each domain. For LPG-FTW and PG-ELLA, we fixed
all regularization parameters to 10−5 and the number of
columns in L to k=5, unless otherwise noted. In LPG-
FTW, we used the simplest setting for the update schedule
of L, M=N . All experiments were repeated over five trials
with different random seeds for parameter initialization and
task ordering.

6.1. Empirical Evaluation on
OpenAI Gym MuJoCo Domains

We first evaluated LPG-FTW on simple MuJoCo environ-
ments from OpenAI Gym. We selected the HalfCheetah,
Hopper, and Walker-2D environments, and created two dif-
ferent evaluation domains for each: a gravity domain, where
each task corresponded to a random gravity value between
0.5g and 1.5g, and a body-parts domain, where the size and
mass of each of four parts of the body (head, torso, thigh,
and leg) was randomly set to a value between 0.5× and 1.5×
its nominal value. These choices led to highly diverse tasks,
as we show in our evaluation. We generated tasks using the
gym-extensions (Henderson et al., 2017) package, but
modified it so each body part was scaled independently.

We created Tmax = 20 tasks for HalfCheetah and Hopper
domains, and Tmax = 50 for Walker-2D domains. The
agents were allowed to train on each task for a fixed number
of iterations before moving on to the next. For these simple
experiments, all agents used linear policies. For the Walker-
2D body-parts domain, we set the capacity of L to k = 10,
since we found empirically that it required a higher capacity.

The hyper-parameters for NPG were manually selected by
running an evaluation on the nominal task for each domain
(without gravity or body part modifications). We tried var-
ious combinations of the number of iterations, number of
trajectories per iteration, and step size, until we reached a
learning curve that was fast and reached proficiency. Once
these hyper-parameters were found, they were used all life-
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Figure 1: Average performance during training across all tasks for six MuJoCo domains. LPG-FTW is consistently faster
than STL and PG-ELLA (which by definition learn at the same pace) in achieving proficiency, and achieves better final
performance in five domains and equivalent performance in the remaining one. EWC is faster and converges to higher
performance than LPG-FTW in some domains, but completely fails to learn in others. Shaded error bars denote standard
error over five random task orderings and parameter initializations.
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Figure 2: Average performance at the beginning of training (start), after all training iterations (tune), after the update step for
PG-ELLA and LPG-FTW (update), and after all tasks have been trained (final). The update step in LPG-FTW never hinders
performance, and even after all tasks have been trained performance is maintained. PG-ELLA always performed worse than
STL. EWC suffered from catastrophic forgetting in five domains, in two resulting in degradation below initial performance.
Error bars denote standard error over five random task orderings and parameter initializations.

long learning algorithms. For LPG-FTW, we chose typical
hyper-parameters and held them fixed through all experi-
ments, forgoing potential additional benefits from a hyper-
parameter search. The only exception was the number of
latent components used for the Walker-2D body-parts do-
main, as we found empirically that k = 5 led to saturation

of the learning process early on. For PG-ELLA, we kept the
same hyper-parameters as used for LPG-FTW, since they
are used in exactly the same way for both methods. Finally,
for EWC, we ran a grid search over the value of the regular-
ization term, λ, among {1e−7, 1e−6, 1e−5, 1e−4, 1e−3}.
The search was done by running five consecutive tasks for
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Figure 3: Performance with the true policy vs other policies.
Percent gap (∆) indicates task diversity. Body parts (BP)
domains are more diverse than gravity (G) domains, and
Walker-2D (W) and Hopper (Ho) domains are more varied
than HalfCheetah (HC) domains.

fifty iterations over five trials with different random seeds.
We chose λ independently for each domain to maximize the
average performance after all tasks had been trained. To
make comparisons fair, EWC used the full Hessian instead
of the diagonal Hessian proposed by the authors.

Figure 1 shows the average performance over all tasks as
a function of the NPG training iterations. LPG-FTW con-
sistently learned faster than STL, and obtained higher final
performance on five out of the six domains. Learning the
task-specific coefficients s(t) directly via policy search in-
creases the learning speed of LPG-FTW, whereas PG-ELLA
is limited to the learning speed of STL, as shown by the
shared learning curves. EWC was faster than LPG-FTW in
reaching high-performing policies in four domains, primar-
ily due to the fact that the policies are completely shared
across tasks, which enables EWC to have starting policies
with high performance. However, EWC failed to even match
the STL performance in two of the domains. We hypothe-
size that this is due to the fact that the tasks are highly varied
(particularly in the body-parts domains, since there are four
different axes of variation), and the single shared policy is
unable to capture a policy that works in all domains.

Results in Figure 1 consider only how fast the agent learns
a new task using information from earlier tasks. PG-ELLA
and LPG-FTW then perform an update step (Equation 2
for LPG-FTW) where they incorporate knowledge from the
current task into L. The third bar from the left per each
algorithm in Figure 2 shows the average performance after
this step, revealing that LPG-FTW maintained performance,

whereas PG-ELLA’s performance decreased. This is be-
cause LPG-FTW ensures that the approximate objective is
computed near points in the parameter space that the cur-
rent basis L can generate, by finding α(t) via a search over
the span of L. A critical component of lifelong learning
algorithms is their ability to avoid catastrophic forgetting.
To evaluate the capacity of LPG-FTW to retain knowledge
from earlier tasks, we evaluated the policies obtained from
the knowledge base L trained on all tasks, without mod-
ifying the s(t)’s. The rightmost bar in each algorithm in
Figure 2 shows the average final performance across all
tasks. LPG-FTW successfully retained knowledge of all
tasks, showing no signs of catastrophic forgetting on any of
the domains. The PG-ELLA baseline suffered from forget-
ting in all domains, and EWC in all but one of the domains.
Moreover, the final performance of LPG-FTW was the best
among all baselines in all but one domain.

One important question in the study of lifelong RL is how
diverse the tasks used for evaluation are. To measure this
in the OpenAI Gym MuJoCo domains, we evaluated each
task’s performance using the final policy trained by LPG-
FTW on the correct task and compared it to the average
performance using the policies trained on all other tasks.
Figure 3 shows that the policies do not work well across
different tasks, demonstrating that the tasks are diverse.
Moreover, the most highly-varying domains, Hopper and
Walker-2D body-parts, are precisely those for which EWC
struggled the most, suffering from catastrophic forgetting,
as shown in Figure 2 in the paper. This is consistent with the
fact that a single policy does not work across various tasks.
In those domains, LPG-FTW reached the performance of
STL with a high speedup while retaining knowledge from
early tasks.

6.2. Empirical Evaluation on
More Challenging Meta-World Domains

Results so far show that our method improves performance
and completely avoids forgetting in simple settings. To
showcase the flexibility of our framework, we evaluated
it on Meta-World (Yu et al., 2019), a substantially more
challenging benchmark, whose tasks involve using a simu-
lated Sawyer arm to manipulate various objects in diverse
ways, and have been shown to be notoriously difficult for
state-of-the-art multi-task and meta learning algorithms. We
added an experience replay (ER) baseline that uses impor-
tance sampling over a replay buffer from all previous tasks’
data to encourage knowledge retention, with a 50-50 replay
rate as suggested by Rolnick et al. (2019). We chose the
NPG hyper-parameters on the reach task, which is the
simplest task from the benchmark. For LPG-FTW and PG-
ELLA, we fixed the number of latent components as k = 3.
All algorithms used a Gaussian policy parameterized by a
multi-layer perceptron with two hidden layers of 32 units
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Figure 4: Performance on the Meta-World benchmark. Top: average performance during training across all tasks. Bottom:
average performance at the beginning of training (start), after all training iterations (tune), after the update step for PG-ELLA
and LPG-FTW (update), and after all tasks have been trained (final). In this notoriously challenging benchmark, LPG-FTW
still improves the performance of STL and all baselines, and suffers from no catastrophic forgetting.

and tanh activation. Given the high diversity of the tasks
considered in this evaluation, we allowed all algorithms to
use task-specific output layers, in order to specialize policies
to each individual task.

We chose typical values for LPG-FTW for k, λ, and µ, and
reused those for PG-ELLA. We used fewer latent compo-
nents (k = 3), since MT10 contains only Tmax = 10 tasks
and we considered that using more than three policy factors
would give our algorithm an unfair advantage over single-
model methods. For EWC, we ran a grid search for the
regularization hyper-parameter in the same way as for the
previous experiments. For ER, we used a 50-50 ratio of
experience replay as suggested by Rolnick et al. (2019), and
ensured that each batch sampled from the replay buffer had
the same number of trajectories from each previous task.
LPG-FTW, PG-ELLA, and EWC all had access to the full
Hessian, and we chose for EWC not to share the variance
across tasks since the outputs of the policies were task-
specific. We ran all Meta-World tasks on version 1.5 of the
MuJoCo physics simulator, to match the remainder of our
experimental setting. We used the robot hand and the object
location (6-D) as the observation space for all tasks. Note
that the goal, which was kept fixed for each task, was not
given to the agent. For this reason, we removed 2 tasks from
MT50 that use at least 9-D observations—stick pull
and stick push— for a total of Tmax = 48 tasks.

The top row of Figure 4 shows average learning curves
across tasks. LPG-FTW again was faster in training, show-

ing that the restriction that the agent only train the s(t)’s for
each new task does not harm its ability to solve complex,
highly diverse problems. The difference in learning speed
was particularly noticeable in MT50, where single-model
methods became saturated. To our knowledge, this is the
first time lifelong transfer has been shown on the challeng-
ing Meta-World benchmark. The bottom row of Figure 4
shows that LPG-FTW suffered from a small amount of for-
getting on MT10. However, on MT50, where L trained on
sufficient tasks for convergence, our method suffered from
no forgetting. In contrast, none of the baselines was capa-
ble of accelerating the learning, and they all suffered from
dramatic forgetting, particularly on MT50, when needing to
learn more tasks.

Conclusion
We proposed a method for lifelong PG learning that enables
RL learners to quickly learn to solve new tasks by leveraging
knowledge accumulated from earlier tasks. We showed
empirically that our method, LPG-FTW, does not suffer
from catastrophic forgetting, and therefore permits learning
a large number of tasks in sequence. Our proposed method
for lifelong PG learning enables RL learners to quickly learn
to solve new tasks by leveraging knowledge accumulated
from earlier tasks. Additionally, our algorithm, LPG-FTW,
does not suffer from catastrophic forgetting, and therefore
permits learning a large number of tasks in sequence.
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