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Abstract: The reemergence of Deep Neural Networks (DNNs) has lead to high-performance
supervised learning algorithms for the Electro-Optical (EO) domain classification and detection
problems. This success is because generating huge labeled datasets has become possible using
modern crowdsourcing labeling platforms such as Amazon’s Mechanical Turk that recruit ordinary
people to label data. Unlike the EO domain, labeling the Synthetic Aperture Radar (SAR) domain data
can be much more challenging, and for various reasons, using crowdsourcing platforms is not feasible
for labeling the SAR domain data. As a result, training deep networks using supervised learning is
more challenging in the SAR domain. In the paper, we present a new framework to train a deep neural
network for classifying Synthetic Aperture Radar (SAR) images by eliminating the need for a huge
labeled dataset. Our idea is based on transferring knowledge from a related EO domain problem,
where labeled data are easy to obtain. We transfer knowledge from the EO domain through learning
a shared invariant cross-domain embedding space that is also discriminative for classification. To this
end, we train two deep encoders that are coupled through their last year to map data points from
the EO and the SAR domains to the shared embedding space such that the distance between the
distributions of the two domains is minimized in the latent embedding space. We use the Sliced
Wasserstein Distance (SWD) to measure and minimize the distance between these two distributions
and use a limited number of SAR label data points to match the distributions class-conditionally. As a
result of this training procedure, a classifier trained from the embedding space to the label space using
mostly the EO data would generalize well on the SAR domain. We provide a theoretical analysis
to demonstrate why our approach is effective and validate our algorithm on the problem of ship
classification in the SAR domain by comparing against several other competing learning approaches.

Keywords: transfer learning; convolutional neural network; electro-optical imaging; Synthetic
Aperture Radar (SAR) imaging; optimal transport metric

1. Introduction

Historically and prior to the emergence of machine learning, most imaging devices were designed
first to generate outputs that were interpretable by humans, mostly natural images. As a result, the
dominant visual data that are collected even currently are the Electro-Optical (EO) domain data.
Digital EO images are generated by a planner grid of sensors that detect and record the magnitude
and the color of reflected visible light from the surface of an object in the from of a planner array of
pixels. Naturally, most machine learning algorithms that are developed for automation also process EO
domain data as their input. Recently, the area of EO-based machine learning and computer vision has
been successful in developing classification and detection algorithms with human-level performance
for many applications. In particular, reemergence of neural networks in the form deep Convolutional
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Neural Networks (CNNs) has been crucial for this success. The major reason for the outperformance
of CNNs over many prior classic learning methods is that the time-consuming and unclear procedure
of feature engineering in classic machine learning and computer vision can be bypassed when CNNs
are trained. CNNs are able to extract abstract and high-quality discriminative features for a given
task automatically in a blind end-to-end supervised training scheme, where CNNs are trained using a
huge labeled dataset of images. Since the learned features are task-dependent, this often leads to better
performance compared to engineered features that are usually defined for a broad range of tasks, e.g.,
wavelet, DFT, SIFT, etc. Partial early results of this work will be presented at the 2019 CVPR workshop
on Perception Beyond the Visible Spectrum [1].

Despite wide range of applicability of EO imaging, it is also naturally constrained by the
limitations of the human visual sensory system. In particular, in applications such as continuous
environmental monitoring and large-scale surveillance [2] and Earth remote sensing [3], continuous
imaging for extended time periods and independent of the weather conditions is necessary. EO imaging
is not suitable for such applications because imaging during night and cloudy weather is not feasible.
In these applications, using other imaging techniques that are designed for imaging beyond the visible
spectrum is inevitable. Synthetic Aperture Radar (SAR) imaging is a major technique in this area
that is highly effective for remote sensing applications. SAR imaging benefits from radar signals
that can propagate in occluded weather and at night. Radar signals are emitted sequentially from a
moving antenna, and the reflected signals are collected for subsequent signal processing to generate
high-resolution images irrespective of the weather conditions and occlusions. While both the EO and
the SAR domain images describe the same physical world and often SAR data are represented in a
planner array form similar to an EO image, processing EO and SAR data and developing suitable
learning algorithms for these domains can be quite different. In particular, replicating the success
of CNNs in supervised learning problems of the SAR domain is more challenging. This is because
training CNNs is conditioned on the availability of huge labeled datasets to supervise blind end-to-end
learning. Until quite recently, generating such datasets was challenging and expensive. Currently,
labeled datasets for the EO domain tasks are generated using crowdsourcing labeling platforms such
as Amazon’s Mechanical Turk, e.g., ImageNet [4]. In a crowdsourcing platform, a pool of participants
with common basic knowledge for labeling EO data points, i.e., natural images, is recruited. These
participants need minimal training and in many cases are not even compensated for their time and
effort. Unlabeled images are presented to each participant independently, and each participant selects
a label for each given image. Upon collecting labels from several people from the pool of participants,
the collected labels are aggregated according to the skills and reliability of each participant to increase
labeling accuracy [5]. Despite being very effective at generating high quality labeled datasets for EO
domains, for various reasons, crowdsourcing platforms are not suitable for SAR domains:

• Preparing devices for collecting SAR data, solely for generating training datasets, is much more
expensive compared to EO datasets [6]. In many cases, EO datasets can even be generated from
the Internet using existing images that are taken by commercial cameras. In contrast, SAR imaging
devices are not commercial and usually are expensive to operate, e.g., satellites.

• SAR images are often classified data because for many applications, the goal is surveillance and
target detection. This issue makes access to SAR data heavily regulated and limited to certified
people. Even for research purposes, only a few datasets are publicly available. This limits the
number of participants who can be hired to help with processing and labeling.

• Despite similarities, SAR images are not easy to interpret by an average person. For this reason,
labeling SAR images requires trained experts who know how to interpret SAR data. This is in
contrast with tasks within the EO domain images, where ordinary people can label images with
minimal training and guidance [7]. This challenge makes labeling SAR data more expensive, as
only professional trained people can perform labeling of SAR data.
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• Continuous collection of SAR data is common in SAR applications. As a result, the distribution of
data is likely to be non-stationery. As a result, even a high-quality labeled dataset is generated,
and the data would become unrepresentative of the current distribution over extended time
intervals. This would obligate persistent data labeling to updated a trained model [8].

As a result of the above challenges, generating labeled detests for the SAR domain data is in
general difficult. In particular, given the size of most existing SAR datasets, training a CNN leads to
overfit models, as the number of data points is considerably less than the required sample complexity
of training a deep network [9,10]. When the model is overfit, naturally, it will not generalize well
on test sets. In other words, we face situations in which the amount of accessible labeled SAR
data is not sufficient for training deep neural networks that extract useful features. In the machine
learning literature, the challenges of learning in this scenario have been investigated within transfer
learning [11]. The general idea that we focus on is to transfer knowledge from a secondary domain
to reduce the amount labeled data that are necessary to train a model. Building upon prior works
in the area of transfer learning, several recent works have used the idea of knowledge transfer to
address the challenges of SAR domains [6,8,10,12–14]. The common idea in these works is to transfer
knowledge from a secondary related problem, where labeled data are easy and inexpensive to obtain.
For example, the second domain can be a related task in the EO domain or a task generated by synthetic
data. Following this line of work, our goal in this paper is to tackle the challenges of learning in SAR
domains when the labeled data are scarce. This particular setting of transfer learning is also called
domain adaptation in the machine learning literature. In this setting, the domain with labeled data
scarcity is called the source domain, and the domain with sufficient labeled data is called the target
domain. We develop a method that benefits from cross-domain knowledge transfer from a related task
in EO domains as the source domain to address a task in SAR domains as the target domain. More
specifically, we consider a classification task with the same classes in two domains, i.e., SAR and EO.
This is a typical situation for many applications, as it is common to use both SAR and EO imaging.
We consider a domain adaptation setting, where we have sufficient labeled data points in the source
domain, i.e., EO. We also have access to abundant data points in the target domain, i.e., EO, but only a
few labeled data points are labeled. This setting is called semi-supervised domain adaptation in the
machine learning literature [15].

Several approaches have been developed to address the problem of domain adaptation.
A common technique for cross-domain knowledge transfer is to encode the data points of the two
related domains in a domain-invariant embedding space such that similarities between the tasks can
be identified and captured in the shared space. As a result, knowledge can be transferred across the
domains in the embedding space through correspondences that are captured between the domains in
the shared space. The key challenge is how to find such an embedding space. In this paper, we model
the shared embedding space as the output space of deep encoders. We couple two deep encoders to
map the data points from the EO and the SAR domains into a shared embedding space as their outputs
such that both domains would have similar distributions in this space. If both domains have similar
class-conditional probability distributions in the embedding space, then if we train a classifier network
using only the source domain labeled data points from the shared embedding to the label space, it
will also generalize well on the target domain test data points [16]. This goal can be achieved by
training the deep encoders as two deterministic functions using training data such that the empirical
distribution discrepancy between the two domains is minimized in the shared output of the deep
encoders with respect to some probability distribution metric [17,18].

Our contribution is to propose a novel semi-supervised domain adaptation algorithm to transfer
knowledge from the EO domain to the SAR domain using the above explained procedure. We train
the encoder networks by using the Sliced Wasserstein Distance (SWD) [19] to measure and then
minimize the discrepancy between the source and the target domain distributions. There are two
majors reasons for using SWD. First, SWD is an effective metric for the space of probability distributions
that can be computed efficiently. Second, SWD is non-zero even for two probability distributions with
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non-overlapping supports. As a result, it has non-vanishing gradients, and first-order gradient-based
optimization algorithms can be used to solve optimization problems involving SWD terms [16,20].
This is important, as most optimization problems for training deep neural networks are solved using
gradient-based methods, e.g., Stochastic Gradient Descent (SGD). The above procedure might not
succeed because, while the distance between distributions may be minimized, they may not be
aligned class-conditionally. We use the few accessible labeled data points in the SAR domain to align
both distribution’s class-conditionally to tackle the class matching challenge [21]. We demonstrate
theoretically why our approach is able to train a classifier with generalizability on the target SAR
domain. We also provide experimental results to validate our approach in the area of maritime domain
awareness, where the goal is to understand activities that could impact the safety and the environment.
Our results demonstrate that our approach is effective and leads to state-of-the-art performance.

2. Related Work

Recently, several prior works have addressed classification in the SAR domain in a label-scarce
regime. Huang et al. [8] used an unsupervised learning approach to generate discriminative features.
Given that generating unlabeled SAR data is easier, their idea was to train a deep autoencoder using a
large pool of unlabeled SAR data. Upon training the autoencoder, features extracted in the middle-layer
of the autoencoder captured difference across different classes and could be used for classification.
For example, the trained encoder sub-network of the autoencoder can be concatenated with a classifier
network, and both would be fine-tuned using the labeled portion of data to map the data points
to the label space. In other words, the deep encoder is used as a task-dependent feature extractor.
Hansen et al. [6] proposed to transfer knowledge using synthetic SAR images, which are easy to
generate and are similar to real images. Their idea was to to generate a simulated dataset for a given
SAR problem based on simulated object radar reflectivity. Upon generating the synthetic labeled
dataset, it could be used to pretrain a CNN network prior to presenting the real data. The pretrained
CNN then could be used as an initialization for the real SAR domain problem. Due to the pretraining
stage and similarities between the synthetic and the read data, the model can be thought of as a better
initial point and hence fine-tuned using fewer real labeled data points. Zhang et al. [12] proposed to
transfer knowledge from a secondary source SAR task, where labeled data are available. Similarly,
a CNN network can be pretrained on the task with labeled data and then fine-tuned on the target
task. Lang et al. [14] used the Automatic Identification System (AIS) as the secondary domain for
knowledge transfer. AIS is a tracking system for monitoring movement of ships that can provide
labeling information. Shang et al. [10] amended a CNN with an information recorder. The recorder
was used to store spatial features of labeled samples, and the recorded features were used to predict the
labels of unlabeled data points based on spatial similarity to increase the number of labeled samples.
Finally, Weng et al. [13] used an approach more similar to our framework. Their proposal was to
transfer knowledge from the EO domain using VGGNet as a feature extractor in the learning pipeline,
which itself has been pretrained on a large EO dataset. Despite being effective, the common idea
of these past works is mostly using a deep network that is pretrained using a secondary source of
knowledge, which is then fine-tuned using a few labeled data points on the target SAR task. Hence,
knowledge transfer occurs as a result of selecting a better initial point for the optimization problem
using the secondary source. We follow a different approach by recasting the problem as a Domain
Adaptation (DA) problem [18], where the goal is to adapt a model trained on the source domain to
generalize well in the target domain. Our contribution is to demonstrate how to transfer knowledge
from the EO imaging domain in order to train a deep network for the SAR domain. The idea is to use a
related EO domain problem with abundant labeled data when training a deep network on a related
EO problem with abundant labeled data and simultaneously adapting the model considering that only
a few labeled SAR data points are accessible. In our training scheme, we enforce the distributions of
both domains to become similar within a middle layer of the deep network.
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Domain adaptation has been investigated in the computer vision literature for a broad range of
applications for EO domain problems. The goal in domain adaptation is to train a model on a source
data distribution with sufficient labeled data such that it generalizes well on a different, but related
target data distribution, where labeling data is challenging. Despite being different, the common idea
of DA approaches is to preprocess data from both domains or at least the target domain such that the
distributions of both domains become similar after preprocessing. A classifier that is trained using the
source data can also be used on the target domain due to post-processing similar distributions. In this
paper, we consider that two deep convolutional neural networks preprocess data to enforce both the
EO and SAR domains’ data to have similar probability distributions. To this end, we couple two deep
encoder sub-networks with a shared output space to model the embedding space. This space can be
considered as an intermediate embedding space between the input space from each domain and the
label space of a classifier network that is shared between the two domains. These deep encoders are
trained such that the discrepancy between the source and the target domain distributions is minimized
in the shared embedding space, while overall classification is supervised mostly via the EO domain
labeled data. This procedure can be done via adversarial learning [22], where the distributions are
matched indirectly. We can also formulate an optimization problem with a probability matching
objective to match the distributions directly [23]. We use the latter approach in this paper.

In order to minimize the distance between two probability distributions, we need to select a
measure of distance between two empirical distributions and then minimize it using the training
data from both domains. Early works in domain adaptation used the Maximum Mean Discrepancy
(MMD) metric for this purpose [18]. MMD measures the distance between two distributions as the
Euclidean distance between their means. However, MMD might not be an accurate measure when the
distributions are multi-modal. While other well-studied discrepancy measures such as KL-divergence
and Jensen–Shannon divergence have been used for a broad range of domain adaptation problems [24],
these measures have vanishing gradients when the distributions have non-overlapping support.
This situation can occur in initial iterations of training when the distributions are still distant. This
problem makes KL-divergence and Jensen–Shannon divergence inappropriate for deep learning, as
deep networks are trained using gradient-based first-order optimization techniques, which require
gradient information [25]. For this reason, in recent works, the Wasserstein Distance (WD) metric [17]
has gained interest as an objective function to match distributions in the deep learning community.
WD has a non-vanishing gradient, but it does not have a closed-form definition and is defined as a
Linear Programming (LP) problem. Solving the LP problem can be computationally expensive for
high-dimensional distributions. For this reason, there is also interest in computing or approximating
WD to reduce the computational burden. In this paper, we use the Sliced Wasserstein Distance
(SWD) to circumvent this challenge. SWD approximates WD as the sum of multiple Wasserstein
distances of one-dimensional distributions that possess a closed-form solution and can be computed
efficiently [19,25–27].

3. Problem Formulation and Rationale

Let X (t) ⊂ Rd denote the domain space of SAR data. Consider a multiclass SAR classification
problem with k classes in this domain, where i.i.d. data pairs are drawn from the joint probability
distribution, i.e., (xt

i , yt
i ) ∼ qT(x, y), which has the marginal distribution pT(x) over X (t). Here,

a label yt
i ∈ Y identifies the class membership of the vectorized SAR image xi

t to one of the k
classes. We have access to M � 1 unlabeled images DT = (XT = [xt

1, . . . , xt
M]) ∈ Rd×M in this

target domain. Additionally, we have have access to O labeled images D′T = (X ′
T , Y ′

T ), where
X ′
S = [x

′t
1 , . . . , x

′t
O] ∈ Rd×O and Y ′

S = [y
′t
1 , . . . , y

′t
O] ⊂ Rk×O contains the corresponding one-hot labels.

The goal is to train a parameterized classifier fθ : Rd → Y ⊂ Rk, i.e., a deep neural network with
weight parameters θ, on this domain. Given that we have access to only a few labeled data points
and considering the model complexity of deep neural networks, training the deep network such
that it generalizes well using solely the SAR labeled data is not feasible, as training would lead to
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overfitting on the few labeled data points such that the trained network would generalize poorly on
test data points.

To tackle the problem of label scarcity, we considered a domain adaptation scenario. We assumed
that a related source EO domain problem exists, were we have access to sufficient labeled data points
such that training a generalizable model is feasible. Let X (s) ⊂ Rd′ denote the EO domain DS = (XS
and YS ) denote the dataset in the EO domain, with XS ∈ X ⊂ Rd′×N and YS ∈ Y ⊂ Rk×N (N � 1),
which is drawn from the marginal distribution pS . Note that since we consider the same cross-domain
classes, we are considering the same classification problem in two domains. This cross-domain
similarity is necessary for making knowledge transfer feasible. In other words, we have a classification
problem with bi-modal data, but there is no point-wise correspondence across the data modals; and
most data points in one of them are unlabeled. We assumed the source samples were drawn i.i.d.
from the source joint probability distribution qS (x, y), which has the marginal distribution pS. Note
that despite similarities between the domains, the marginal distributions of the domains are different.
Given that extensive research and investigation has been done in EO domains, we hypothesized that
finding such a labeled dataset was likely feasible or labeling such EO data was easier than labeling
more SAR data points. Our goal was to use the similarity between the EO and the SAR domains and
benefit from the unlabeled SAR data to train a model for classifying SAR images using the knowledge
that can be learned from the EO domain.

Since we had access to sufficient labeled source data, training a parametric classifier for the
source domain was a straightforward supervised learning problem. Usually, we solved for an optimal
parameter to select the best model from the family of parametric functions fθ . We can solve for an
optimal parameter by minimizing the average empirical risk on the training labeled data points, i.e.,
Empirical Risk Minimization (ERM):

θ̂ = arg min
θ

êθ = arg min
θ

1
N

N

∑
i=1
L( fθ(xs

i ), ys
i ) , (1)

where L is a proper loss function (e.g., cross-entropy loss). Given enough training data points, the
empirical risk is a suitable surrogate for the real risk function:

e = E(x,y)∼pS (x,y)(L( fθ(x), y)) , (2)

which is the objective function for the Bayes optimal inference. This means that the trained classifier
would generalize well on data points if they are drawn from pS. A naive approach to transfer
knowledge from the EO domain to the SAR domain is to use of the classifier that is trained on the EO
domain directly in the target domain. However, since distribution discrepancy exists between the two
domains, i.e., pS 6= pT , the trained classifier on the source domain fθ̂ might not generalize well on the
target domain. Therefore, there is a need to adapt the training procedure for fθ̂ . The simplest approach
that has been used in most prior works is to fine-tune the EO classifier using the few labeled target data
points to employ the model in the target domain. This approach would add the constraint of d = d′,
as the same input space is required to use the same network across the domains. Usually, it is easy
to use image interpolation to enforce this condition, but information may be lost after interpolation.
We wanted to use a more principled approach and remove the condition of d = d′. More importantly,
when fine-tuning is used, unlabeled data are not used. We wanted to take advantage and benefit from
the unlabeled SAR data points that are accessible and provide additional information about the SAR
domain marginal distribution.

Figure 1 presents a block diagram visualization of our framework. In the figure, we have
visualized images from two related real-world SAR and EO datasets that we have used in the
experimental section of the paper. The task is to classify ship images. Notice that SAR images
are confusing for the untrained human eye, while EO ship/no-ship images can be distinguished by
minimal inspection. This suggests that, as we discussed before, SAR labeling is more challenging
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and requires expertise. In our approach, we considered the EO deep network fθ(·) to be formed by a
feature extractor φv(·), i.e., convolutional layers of the network, which was followed by a classifier
sub-network hw(·), i.e., fully-connected layers of the network, that inputs the extracted feature and
maps them to the label space. Here, w and v denote the corresponding learnable parameters for
these sub-networks, i.e., θ = (w, v). This decomposition is synthetic, but helps to understand our
approach. In other words, the feature extractor sub-network φv : X → Z maps the data points into
a discriminative embedding space Z ⊂ R f , where classification can be done easily by the classifier
sub-network hw : Z → Y . The success of deep learning stems from optimal feature extraction, which
converts the data distribution into a multimodal distribution, which makes class separation feasible.
Following the above, we can consider a second encoder network ψu(·) : Rd → R f , which maps the
SAR data points to the same target embedding space at its output. The idea that we want to explore
is based on training φv and ψu such that the discrepancy between the source distribution pS (φ(x))
and target distribution pT (φ(x)) is minimized in the shared embedding space, modeled as the shared
output space of these two encoders. As a result of matching the two distributions, the embedding
space becomes invariant with respect to the domain. In other words, data points from the two domains
become indistinguishable in the embedding space, e.g., data points belonging to the same class are
mapped into the same geometric cluster in the shared embedding space, as depicted in Figure 1.
Consequently, even if we trained the classifier sub-network using solely the source labeled data points,
it would still generalize well when target data points are used for testing. The key question is how to
train the encoder sub-networks such that the embedding space becomes invariant. We need to adapt
the standard supervised learning in Equation (1) by adding additional terms that enforce cross-domain
distribution matching.

Figure 1. Block diagram architecture of the proposed framework for transferring knowledge from the
Electro-Optical (EO) to the SAR domain.

4. Proposed Solution

In our solution, the encoder sub-networks need to be trained such that the extracted features
in the encoder output are discriminative. Only then, the classes become separable for the
classifier sub-network (see Figure 1). This is a direct result of supervised learning for EO encoder.
Additionally, the encoders should mix the SAR and the EO domains such that the embedding becomes
domain-invariant. As a result, the SAR encoder is indirectly enforced to be discriminative for the SAR
domain. We enforced the embedding to be domain-invariant by minimizing the discrepancy between
the distributions of both domains in the embedding space. Following the above, we can formulate the
following optimization problem for computing the optimal values for v, u, and w:
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min
v,u,w

1
N

N

∑
i=1
L
(
hw(φv(xs

i )), ys
i
)
+

1
O

O

∑
i=1
L
(
hw(ψu(x

′t
i )), y

′t
i
)

+ λD
(
φv(pS (XS )), ψu(pT (XT ))

)
+ η

k

∑
j=1

D
(
φv(pS (XS )|Cj), ψu(pT (X ′

T )|Cj)
)

,

(3)

where D(·, ·) is the discrepancy measure between the probabilities and λ and η are trade-off parameters.
The first two terms in Equation (3) are standard empirical risks for classifying the EO and SAR labeled
data points, respectively. The third term is the cross-domain unconditional probability matching loss.
We matched the unconditional distributions, as the SAR data were mostly unlabeled. The matching
loss was computed using all available data points from both domains to learn the learnable parameters
of encoder sub-networks, and the classifier sub-network was simultaneously trained using the labeled
data from both domains. Finally, the last term is Equation (3), which was added to enforce semantic
consistency between the two domains by matching the distributions class-conditionally. This term
is important for knowledge transfer. To clarify this point, note that the domains might be aligned
such that their marginal distributions φ(pS (XS )) and ψ(pT (XT )) have minimal discrepancy, while
the distance between φ(qS (·, ·)) and ψ(qT (·, ·)) is not minimized. This means that the classes may not
have been aligned correctly, e.g., images belonging to a class in the target domain may be matched to
the wrong class in the source domain or, even worse, images from multiple classes in the target domain
may be matched to the cluster of another class of the source domain. In such cases, the classifier
will not generalize well on the target domain, as it has been trained to be consistent with the spatial
arrangement of the source domain in the embedding space. This means that if we merely minimize the
distance between φ(pS (XS )) and ψ(pT (XT )), the shared embedding space might not be a consistently
discriminative space for both domains in terms of classes. The challenge of class-matching is a
known problem in domain adaptation, and several approaches have been developed to address this
challenge [28]. In our framework, the few labeled data points in the target SAR domain can be used to
match the classes consistently across both domains. We used these data points to compute the fourth
term in Equation (3). This term was added to match the class-conditional probabilities of both domains
in the embedding space, i.e., φ(pS (xS )|Cj) ≈ ψ(pT (x|Cj), where Cj denotes a particular class.

The remaining key question is selecting a proper metric to compute D(·, ·) in the last two terms of
Equation (1). KL-divergence and Jensen–Shannon divergence have been used extensively to measure
the closeness of probability distributions, as maximizing the log-likelihood is equivalent to minimizing
the KL-divergence between two distributions, but as we discussed, since stochastic gradient descent
is the standard technique to solve the optimization problem in Equation (1), KL-divergence and
Jensen–Shannon divergence are not suitable for deep learning applications. This is a major reason
for the success of adversarial learning, as the discrepancy between two distributions is minimized
indirectly without requiring minimization of a metric [22]. Additionally, the distributions φ(pS (x) and
ψ(pT (x) are unknown, and we can rely only on observed samples from these distributions. Therefore,
we should be able to compute the discrepancy measure D(·, ·) using only the drawn samples. Optimal
transport [17] is a suitable metric to deal with the above issues. For this reason, it has been found to be
an effective metric and has been used extensively in the deep learning literature recently [16,23,29,30].
Wasserstein distance is defined in terms of an optimization problem, which can be computationally
expensive to solve for high-dimensional data. For this reason, efficient approximations and variants
for it have been an active research area. In this paper, we used the Sliced Wasserstein Distance
(SWD) [19], which is a good approximate of optimal transport [20] and additionally can be computed
more efficiently.

Although the Wasserstein distance is defined as the solution to a linear programming problem,
for the case of one-dimensional probability distributions, this problem has a closed form solution,
which can be computed efficiently. The solution is equal to the `p-distance between the inverse of the
cumulative distribution functions of the two distributions. SWD has been proposed to benefit from
this property to simplify the computation of the Wasserstein distance. The idea is to decompose a
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d-dimensional distribution into one-dimension marginal distributions by projecting the distribution
along all possible hyperplanes that cover the space. This process is called slicing the high-dimensional
distributions. For a distribution pS , a one-dimensional slice of the distribution along the projection
direction γ is defined as:

RpS (t; γ) =
∫
S

pS (x)δ(t− 〈γ, x〉)dx , (4)

where δ(·) denotes the Kronecker delta function, 〈·, ·〉 denotes the vector dot product, and Sd−1 is
the d-dimensional unit sphere. We can see that RpS (·; γ) is computed via integrating pS over the
hyperplanes, which are orthogonal to the projection directions γ that cover the space.

The SWD is computed by integrating the Wasserstein distance between sliced distributions over all γ:

SW(pS , pT ) =
∫
Sd−1

W(RpS (·; γ),RpT (·; γ))dγ , (5)

where W(·, ·) denotes the Wasserstein distance. Computing the above integral directly is
computationally expensive. However, we can approximate the integral in Equation (5) using a Monte
Carlo-style integration by choosing L number of random projection directions γ and after computing
the Wasserstein distance, the average along the random directions. Doing so, our approximation is
proportional to O( 1√

L
), and hence, we can get a good approximation using Monte Carlo approximation.

In our problem, since we had access only to samples from the two source and target distributions,
so we approximated the one-dimensional Wasserstein distance as the `p-distance between the sorted
samples, as the empirical commutative probability distributions. Following the above procedure, the
SWD between f -dimensional samples {φ(xSi ) ∈ R f ∼ pS}M

i=1 and {φ(xTi ) ∈ R f ∼ pT }M
j=1 can be

approximated as the following sum:

SW2(pS , pT ) ≈
1
L

L

∑
l=1

M

∑
i=1
|〈γl , φ(xSsl [i]

〉)− 〈γl , φ(xTtl [i]
)〉|2 , (6)

where γl ∈ S f−1 is a uniformly-drawn random sample from the unit f -dimensional ball S f−1 and
sl [i] and tl [i] are the sorted indices of {γl · φ(xi)}M

i=1 for source and target domains, respectively.
We utilized the SWD as the discrepancy measure between the probability distributions to match
them in the embedding space. Our proposed algorithm for Few-shot SAR image Classification (FSC)
using cross-domain knowledge transfer is summarized in Algorithm 1. Note that we have added a
pretraining step, which trains the EO encoder and the shared classifier sub-network solely on the EO
domain, to be used as a better initial point for the next steps of the optimization. Since our problem is
non-convex, a good initial point is critical for finding a good local solution.

Algorithm 1 FCS (L, η, λ)

1: Input: data
2:
3: DS = (XS , YS );DT = (XT , , YT ),D′T = (X ′

T ),4:
5: Pre-training: initialization
6:
7: θ̂0 = (w0, v0) = arg minθ 1/N ∑N

i=1 L( fθ(xs
i ), ys

i )8:
9: for itr = 1, . . . , ITR do

10:
11: Update encoder parameters using:
12:
13: v̂, û = λD

(
φv(pS (XS )), ψu(pT (XT ))

)
14:
15: +η ∑j D

(
φv(pS (XS )|Cj), ψv(pSL(X ′

T )|Cj)
)

16:
17: Update entire parameters:
18:
19: v̂, û, ŵ = arg minw,v,u 1/N ∑N

i=1 L
(
hw(φ̂̂v(xs

i )), ys
i
)

20:
21: +1/O ∑O

i=1 L
(
hw(ψ̂̂u(x

′t
i )), y

′t
i
)

22:
23: end for
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5. Theoretical Analysis

In order to demonstrate that our approach is effective, we show that transferring knowledge from
the EO domain can reduce the real task on the SAR domain. Our analysis is based on broad results for
domain adaptation and is not limited to the case of EO-to-SAR transfer. We relied on theoretical results
that demonstrated the true target risk for a model that is trained on a source domain is upper-bounded
by the discrepancy between the distributions of the source and the target domains. Various works have
used different discrepancy measures for this analysis, but we relied on a version for which optimal
transport was used as the discrepancy measure [16]. We used this result and demonstrated why the
training procedure of our algorithm can train models that generalize well on the target domain.

Redko et al. [16] analyzed a standard domain adaptation framework, where the same shared
classifier hw(·) was used on both the source and the target domain. This is analogous to our formulation,
as the classifier network is shared across the domains in our framework. They used a standard Probably
Approximately Correct (PAC) -learning formalism. Accordingly, the hypothesis class was the set of
all models hw(·) that were parameterized by θ, and the goal was to select the best model from the
hypothesis class. For any member of this hypothesis class, we denote the true risk on the source
domain by eS and the true risk on the target domain with eT . Analogously, µ̂S = 1

N ∑N
n=1 δ(xs

n) denote
the empirical marginal source distribution, which was computed using the training samples, and
µ̂T = 1

M ∑M
m=1 δ(xt

m) similarly denotes the empirical target distribution. In this setting, conditioned on
the availability of labeled data on both domains, we can train a model jointly on both distributions.
Let hw∗ denote such an ideal model that minimizes the combined source and target risks eC(w∗):

w∗ = arg min
w

eC(w) = arg min
w
{eS + eT } . (7)

If the hypothesis class is complex enough and given sufficient labeled target domain data, the joint
model can be trained such that it generalizes well on both domains. This term is to measure an
upper-bound for the target risk. Redko et al. [23] proved the following theorem in standard domain
adaptation, which provides an upper-bound on the target domain risk given the source domain risk
and the joint combined risk.

Theorem 1. [16] Under the assumptions described above for any d′ > d and ζ <
√

2, there exists a constant
number N0 depending on d′ such that for any ξ > 0 and min(N, M) ≥ max(ξ−(d

′+2),1) with probability at
least 1− ξ for all hw, the following holds:

eT ≤eS + W(µ̂T , µ̂S ) + eC(w∗) +

√(
2 log(

1
ξ
)/ζ
)(√ 1

N
+

√
1
M
)
. (8)

Note that although we used SWD in our approach, it has been theoretically demonstrated that SWD is a good
approximation for computing the Wasserstein distance [31]:

SW2(pX , pY) ≤W2(pX , pY) ≤ αSWβ
2 (pX , pY) (9)

where α is a constant and β = (2(d + 1))−1 (see [32] for more details). For this reasons, minimizing the SWD
metric enforces minimizing WD.

The proof for Theorem 1 are based on the fact that the Wasserstein distance between a distribution
µ and its empirical approximation µ̂ using N identically-drawn samples can be made small as desired
given the existence of a large enough number of samples N [16]. More specifically, in the setting of
Theorem 1, we have:

W(µ, µ̂) ≤

√(
2 log(

1
ξ
)/ζ
)√ 1

N
. (10)
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We need this property for our analysis. Additionally, we considered bounded loss functions and
considered the loss function to be normalized by its upper-bound. The interested reader may refer to
Redko et al. for more details about the derivation of this property [16].

Inspection of Theorem 1 might lead to the conclusion that if we minimize the Wasserstein distance
between the source and the target marginal distributions in the input space of the model, then we can
improve the generalization error on the target domain, as doing so, the upper-bound on the target
true risk will become tighter in Equation (8). Thus, the performance on the target domain will be
close to the performance on the source domain, which is small for a model with good performance on
the source domain. However, there is no guarantee that if we solely minimize the distance between
the marginal distributions, then a joint optimal model hw∗ with small joint error would exist. This is
important as the third term in the right-hand side of Equation (8) would become small only if such
a joint model exists. This conclusion might seem unintuitive, but consider a binary classification
problem. This situation can happen if the wrong classes are matched across the two domains. In other
words, we may minimize the distance between the marginal distribution, but data points from each
class are matched to the opposite class in the other domain. Then, training a joint model that performs
well for both classes is not possible. Hence, we need to minimize the Wasserstein distance between the
marginal distributions such that analogous classes across the domains align in the embedding space in
order to consider all terms in Theorem 1. In our algorithm, the few target labeled data points were
used to minimize the joint order. Building upon the above result, we provide the following lemma for
our algorithm.

Lemma 1. Consider that we use the target dataset labeled data in a semi-supervised domain adaptation scenario
in Algorithm 1. Then, the following inequality for the target true risk holds:

eT ≤eS + W(µ̂S , µ̂PL) + êC ′(w
∗) +

√(
2 log(

1
ξ
)/ζ
)(

2

√
1
N

+

√
1
M

+

√
1
O
)

, (11)

where êC ′(w∗) denote the empirical risk of the optimally joint model hw∗ on both the source domain and the
target labeled data points.

Proof. We use µTS to denote the combined distribution of both domains. The model parameter w∗

was trained for this distribution using ERM on the joint empirical distribution: µ̂TS = 1
N ∑N

n=1 δ(xs
n) +

1
O ∑O

n=1 δ(x
′t
n ). We note that given this definition and considering the corresponding joint empirical

distribution, pST(x, y), it is easy to show that eT̂S = êC ′(w∗). In other words, we can denote the
empirical risk for the model as the true risk for the empirical distribution.

eC ′(w
∗) = êC ′(w

∗) +
(
eC ′(w

∗)− êC ′(w
∗)
)
≤ êC ′(w

∗) + W(µTS, µ̂TS)

≤ êC ′(w
∗)) +

√(
2 log(

1
ξ
)/ζ
)(√ 1

N
+

√
1
O
)

.
(12)

We have used the definition of expectation and the Cauchy–Schwarz inequality to deduce the first
inequality in Equation (12). We have also used the above-mentioned property of the Wasserstein
distance in Equation (10) to deduce the second inequality. Now, combining Equation (12) and
Equation (8) completes our proof.

According to Lemma 1, the most important samples are the few labeled samples in the target
domain, as the corresponding term is dominant among the constant terms in Equation (11) (note
O� M and O� N). As we argued, these samples are important to circumvent the class matching
challenge across the two domains.
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6. Experimental Validation

In this section, we validate our approach empirically. We demonstrate the effectiveness of our
method in the area of maritime domain awareness on the SAR ship detection problem.

6.1. Ship Detection in the SAR Domain

We tested our approach in the binary problem of ship detection using SAR imaging [7]. This
problem arises within Maritime Domain Awareness (MDA), where the goal is monitoring the ocean
continually to decipher maritime activities that could impact the safety of the environment. Detecting
ships is important in this application as the majority of activities that are important are related to ships
and their movements. Traditionally, planes and patrol vessels have been used for monitoring, but
these methods are effective only for limited areas and time periods. As the regulated area expands
and the monitoring period becomes extended, these methods become time consuming and inefficient.
To circumvent these limitations, it is essential to make this process automatic such that it requires
minimal human intervention. To reach this goal, satellite imaging is highly effective because large areas
of ocean can be monitored. The generated satellite images can be processed using image processing
and machine learning techniques automatically. Satellite imaging has been performed using satellites
with both EO and SAR imaging devices. However, only SAR imaging allows continual monitoring for
a broad range of weather conditions and during the night. This property is important because illegal
activities are likely to happen during the night and during occluded weather, and human errors are
likely to occur. For these reasons, SAR imaging is very important in this area, and hence, we can test
our approach on this problem.

When satellite imaging is used, a huge amount of data is generated. However, a large portion of
the data is not informative because a huge portion of the images contains only the surface of ocean
with no important objects of interest or potentially land areas adjacent to the sea. In order to make
the monitoring process efficient, classic image processing techniques are used to determine regions of
interest in aerial SAR images. A region of interest is a limited surface area, where the existence of a ship
is probable. First, land areas are removed, and then ship, ship-like, and ocean regions are identified
and then extracted as square image patches. These image patches are then fed into a classification
algorithm to determine whether the region corresponds to a ship or not. If a ship is detected with
suspicious movement activity, then regulations can be enforced.

The dataset that we have used in our experiments was obtained from aerial SAR images of
the South African Exclusive Economic Zone. The dataset was preprocessed into 51 × 51 pixel
sub-images [7,33]. We defined a binary classification problem, where each image instance either
contained ships (positive data points) or no-ship (negative data points). The dataset contained 1436
positive examples and 1436 negative sub-images. The labels were provided by experts. We recast the
problem as a few-shot learning problem by assuming that only a few of the data points were labeled.
To solve this problem using knowledge transfer within our framework, we used the “EO Ships in
Satellite Imagery” dataset [34]. The dataset was prepared to automate monitoring port activity levels
and supply chain analysis and contained EO images extracted from planet satellite imagery over the
San Francisco Bay area with 4000 RGB 80× 80 images. Again, each instance was either a ship image
(a positive data point) or no-ship (a negative data point). The dataset was split evenly into positive
and negative samples. Instances from both datasets are visualized in Figure 1 (left).

6.2. Methodology

We considered a deep CNNs with two layers of convolutional 3× 3 filters as the SAR encoder.
We used NF and 2NF filters in these layers respectively, where NF is the parameter to be determined.
We have used both maxpool and batch normalization layers in these convolutional layers. These layers
were used as the SAR encoder sub-network in our framework, φ. We used a similar structure for the
EO domain encoder, ψ, with the exception of using a CNN with three convolutional layers. The reason
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was that the EO dataset seemed to have more details, and a more complex model can learn information
content better. The third convolutional layer had 2NF filters as well. The convolutional layers were
followed by a flattening layer and a subsequent shared dense layer as the embedding space with
dimension f , which can be tuned as a parameter. After the embedding space layer, we used a shallow
two-layer classifier based on Equation (3). We used TensorFlow for implementation and the Adam
optimizer [35].

For comparison purposes, we compared our results against the following learning settings:
(1) Supervised Training on the SAR domain (ST): we just trained a network directly in the

SAR domain using the few labeled SAR data points to generate a lower-bound for out approach
to demonstrate that knowledge transfer is effective. This approach is also a lower-bound because
unlabeled SAR data points and their information content were discarded.

(2) Direct Transfer (DT): we just directly used the network that was trained on EO data directly
in the SAR domain. To do this end, we resized the EO domain to 51× 51 pixels, so we could use the
same shared encoder networks for both domains. As a result, potentially helpful details may be lost.
This can serve as a second lower-bound to demonstrate that we can benefit from unlabeled SAR data.

(3) Fine-Tuning (FT): we used the no transfer network from the previous method and fine-tuned
the network using the few available SAR data points. As discussed before in the “Related Work”
section, this is the main strategy that several prior works have used in the literature to transfer
knowledge from the EO to the SAR domain and serves to compare against previous methods that used
knowledge transfer.

In our experiments, we used a 90/10% random split for training the model and testing
performance. For each experiment, we report the performance on the SAR testing split to compare the
methods. We used the classification accuracy rate to measure performance, and whenever necessary,
we used cross-validation to tune the hyperparameters. We repeated each experiment 20 times and
have reported the average and the standard error bound to demonstrate statistical significance in
the experiments.

In order to find the optimal parameters for the network structure, we used cross-validation.
We first preformed a set of experiments to study empirically the effect of the dimension size ( f ) of the
embedding space on the performance of our algorithm. Figure 2a presents the performance on the
SAR testing set versus the dimension of the embedding space when 10 SAR labeled data per class were
used for training. The solid line denotes the average performance over ten trials, and the shaded region
denotes the standard error deviation. We observed that the performance was quite stable when the
embedding space dimension changed. This result suggests that because convolutional layers served
to reduce the dimension of input data, if the learned embedding space were discriminative for the
source domain, then our method could successfully match the target domain distribution to the source
distribution in the embedding. We conclude that for computational efficiency, it is better to select
the embedding dimension to be as small as possible. We conclude from Figure 2a that increasing the
dimension beyond eight is not helpful. For this reason, we set the dimension of the embedding to be
eight for the rest of our experiments in this paper. We performed a similar experiment to investigate
the effect of the number of filters NF on performance. Figure 2b presents the performance on the SAR
testing set versus this parameter. We conclude from Figure 2b that NF = 16 is a good choice, as using
more filters is not helpful. We did not use a lesser value for NF to avoid underfitting when the number
of labeled data was less than 10.
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(a) Performance vs. Embedding Dimension (b) Performance vs. Number of Filters

Figure 2. The SAR test performance versus the dimension of the embedding space and the number
of filters.

6.3. Results

Figure 3 presents the performance results on the data test split for our method along with the
three mentioned methods above, versus the number of labeled data points per class that have been
used for the SAR domain. For each curve, the solid line denotes the average performance over all ten
trials and the shaded region denotes the standard error deviation. These results accord with intuition.
It can be seen that direct transfer is the least effective method, as it used no information from the
second domain. Supervised training on the SAR domain was not effective in the few-shot learning
regime, i.e., its performance was close to chance. The direct transfer method boosted the performance
of supervised training in the one-shot regime, but after 2–3 labeled samples per class, as expected,
supervised training overtook direct transfer. This was the consequence of using more target task data.
In other words, direct transfer only helped to test the network on a better initial point compared to
random initialization. Fine-tuning could improve the direct performance, but only for the few-shot
regime, and beyond the few-shot learning regime, the performance was similar to supervised training.
In comparison, our method outperformed these methods as we benefited from SAR unlabeled data
points. For a clearer quantitative comparison, we have presented the data in Figure 3 in Table 1 for
different numbers of labeled SAR data points per class (O/k). It is also important to note that in the
presence of enough labeled data in the target domain, supervised training would outperform our
method because the network was trained using solely the target domain data.
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Figure 3. The SAR test performance versus the number of labeled data per class. ST, Supervised
Training; FT, Fine-Tuning; DT, Direct Transfer.

Table 1. Comparison results for the SAR test performance.

O/k 1 2 3 4 5 6 7

ST 58.5 74.0 79.2 84.1 85.2 84.9 87.2
FT 75.5 75.6 73.5 85.5 87.6 84.2 88.5
DT 71.5 67.6 71.4 68.5 71.4 71.0 73.1
FCS 86.3 86.3 82.8 94.2 87.8 96.0 91.1

For a better intuition, Figure 4 denotes the Uniform Manifold Approximation and Projection
(Umap) visualization [36] of the EO and SAR data points in the learned embedding as the output of
the feature extractor encoders. Each point denotes one data point in the embedding that has been
mapped to the 2D plane for visualization. In this figure, we have used five labeled data points per
class in the SAR domain. In Figure 4, each color corresponds to one of the classes. In Figure 4a,b,
we have used real labels for visualization, and in Figure 4c,d, we have used the predicted labels by
networks trained using our method for visualization. In Figure 4, the points with brighter red and
darker blue colors are the SAR labeled data points that have been used in training. By comparing
the top row with the bottom row, we see that the embedding was discriminative for both domains.
Additionally, by comparing the left column with the right column, we see that the domain distributions
were matched in the embedding class conditionally, suggesting that our framework formulated in
Equation (3) was effective. This result suggests that learning an invariant embedding space can serve
as a helpful strategy for transferring knowledge. Additionally, we see that labeled data points are
important to determine the boundary between two classes, which suggests why part of one of the
classes (blue) was predicted mistakenly. This observation suggests that the boundary between classes
depends on the labeled target data as the network was certain about the labels of these data points.



Remote Sens. 2019, 11, 1374 16 of 19

(a) The EO domain (real labels) (b) The SAR domain (real labels)

(c) The EO domain (predicted labels) (d) The SAR domain (predicted labels)

Figure 4. Umapvisualization of the EO versus the SAR dataset in the shared embedding space
(view in color).

We also performed an experiment to serve as an ablation study for our framework. Our previous
experiments demonstrated that the first three terms in Equation (3) were all important for successful
knowledge transfer. We explained that the fourth term was important for class-conditional alignment.
We solved Equation (3) without considering the fourth term to study its effect. We have presented the
Umap visualization of the datasets in the embedding space for a particular experiment in Figure 5.
We observed that as expected, the embedding was discriminative for the EO dataset, and the predicted
labels were close to the real data labels, as the classes were separable. However, despite following a
similar marginal distribution in the embedding space, the formed SAR clusters were not class-specific.
We can see that in each cluster, we had data points from both classes, and as a result, the SAR
classification rate was poor. This result demonstrates that all the terms in Equation (3) were important
for the success of our algorithm. We highlight that Figure 5 visualizes the results of a particular
experiments, and we observed in some experiments that the classes were matched, even when no
labeled target data were used. However, this observations shows that the method is not stable. Using
the few labeled data helped to stabilize the algorithm.
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(a) The EO domain (real labels) (b) The SAR domain (real labels)

(c) The EO domain (predicted labels) (d) The SAR domain (predicted labels)

Figure 5. Umap visualization of the EO versus the SAR dataset for the ablation study (view in color).

7. Conclusions

In this paper, we addressed the problem of SAR image classification when only a few labeled data
are available. We formulated this problem as a semi-supervised domain adaption problem. Our idea
was based on transferring knowledge from a related electro-optical domain problem where it is easy
to generate labeled data. Our classification models were two deep convolutional neural networks that
shared their fully-connected layers. The networks were trained such that the convolutional layers
served as two deep encoders that matched the distributions of the two EO and SAR domains in an
embedding space, which was modeled as their shared output space. We provided a theoretical analysis
to explain why our algorithm minimized an upper-bound for the targeted real risk and demonstrated
the effectiveness and applicability of our approach for the problem of ship classification in the area of
maritime domain awareness. Despite being effective, a major restriction of our method is full overlap
between the existing classes across the EO and the SAR domain. A future research direction is to
remove this restriction by training the networks such that only the shared classes are matched in the
embedding space.
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