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Abstract

Data-driven classification algorithms based on deep

convolutional neural networks have reached human-level

performance for many tasks within Electro-Optical (EO)

computer vision. Despite being the prevailing visual sen-

sory data, EO imaging is not effective in applications such

as environmental monitoring at extended periods, where

data collection at occluded weather is necessary. Synthetic

Aperture Radar (SAR) is an effective imaging tool to cir-

cumvent these limitations and collect visual sensory infor-

mation continually. However, replicating the success of

deep learning on SAR domains is not straightforward. This

is mainly because training deep networks requires huge la-

beled datasets and data labeling is a lot more challenging in

SAR domains. We develop an algorithm to transfer knowl-

edge from EO domains to SAR domains to eliminate the

need for huge labeled data points in the SAR domains. Our

idea is to learn a shared domain-invariant embedding for

cross-domain knowledge transfer such that the embedding

is discriminative for two related EO and SAR tasks, while

the latent data distributions for both domains remain simi-

lar. As a result, a classifier learned using mostly EO data

can generalize well on the related task for the SAR domain.

1. Introduction

Electro-Optical (EO) images are the dominant visual

data that are collected and processed as input sensory data

in computer vision applications for supervised learning.

With the emergence of deep convolutional neural networks

(CNNs), autonomous systems can now rely on classifica-

tion and detection algorithms that process and learn from

EO data with human-level performance. This success stems

from the fact that deep nets can be trained in a data-driven

scheme using a huge labeled dataset of images to automat-

ically extract abstract and high-quality features for a given

task. This possibility has helped to bypass feature engineer-

ing, which was a major bottleneck in vision applications.

Despite wide range of applicability of EO imaging, in

applications such as continuous environmental monitoring

and large-scale surveillance [18] and earth remote sens-

ing [21] which require imaging at extended time periods,

EO imaging is not feasible. In these applications, using

SAR imaging is inevitable, since SAR imaging can pro-

vide high-resolution images using the radar signals that can

propagate in occluded weather. While both the EO and the

SAR domain images describe the common physical world,

processing EO and SAR data and developing suitable learn-

ing algorithms can be quite different. In particular, as op-

posed to EO domains, training and using CNNs in SAR do-

mains is more challenging. This is because training CNNs

depends on the availability of huge labeled datasets to su-

pervise learning. Generating such datasets can be challeng-

ing. This challenge is currently tackled through crowd-

sourcing labeling platforms such as Amazon Mechanical

Turk for EO domain tasks, e.g. ImageNet [8]. In a crowd-

sourcing platform, EO data points, i.e. images, are pre-

sented to a pool of participants with common basic knowl-

edge for labeling. Each participant selects a label for each

given image. Upon collecting labels from the pool of ap-

plicants, collected labels are aggregated to increase labeling

accuracy [29]. Despite being very effective for EO domains,

crowdsourcing platforms are not suitable for SAR domains:

• Preparing devices for collecting SAR data, solely for

generating training datasets is much more expensive

compared to EO datasets [22].

• SAR images are often classified data, making access

to SAR data heavily regulated and limited. This limits

the number of participants who can be hired to help

with processing and labeling.

• Labeling SAR images needs trained experts, as op-

posed to tasks within the EO domain images [31]. This
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makes labeling SAR data more expensive.

• Continuous collection of SAR data is common in SAR

applications. This can make the labeled data unrepre-

sentative of the current distribution, obligating persis-

tent labeling for model retraining [12].

As a result, generating labeled datasets for the SAR do-

main data is challenging. Additionally, training a CNN

using most existing SAR datasets leads to overfit models

that do not generalize well on test sets [3, 32]. In other

words, we face situations in which the amount of accessi-

ble SAR data is not sufficient for training deep neural net-

works. Learning is these scenarios has been investigated

within transfer learning [25]. Building upon prior works in

the area of transfer learning, several recent works have used

the idea of knowledge transfer to address challenges of SAR

domains [12, 22, 35, 34, 19, 32]. The common idea in these

works is to transfer knowledge from a secondary related do-

main, where labeled data is easy and cheap to obtain. Fol-

lowing this line of work, we focus on addressing scarcity of

labeled data in SAR domains through cross-domain knowl-

edge transfer from a related task in EO domains.

A common technique for cross-domain knowledge trans-

fer is to map or encode data points of the two related do-

mains to a domain-invariant embedding space such that

knowledge can be transferred across the domains via the

embedding space. Consider a classification task in two do-

mains, e.g. SAR and EO, where we have sufficient labeled

data points in the source domain, i.e. EO, but only few

labeled data points in the target domain, i.e. SAR. This

setting is called semi-supervised domain adaptation in the

computer vision literature [24]. If we can train two deep

encoders to map the data points from both domains into

a shared embedding space such that both domains would

have similar class-conditioned probability distributions in

the embedding space, then a classifier trained using the

source-domain data points in the shared embedding, would

generalize well to the target domain [28]. This goal can be

achieved by training the deep encoders such that the em-

pirical distribution discrepancy between the two domains is

minimized in the shared output of the deep encoders with

respect to some probability distribution metric[33, 10].

In this paper, our contribution is to propose a novel semi-

supervised domain adaptation algorithm to transfer knowl-

edge from the EO domain to the SAR domain using the

above explained procedure. We use the Sliced-Wasserstein

Distance (SWD) [26] to measure and minimize the discrep-

ancy between the source and the target domain distributions

in order to supervise training of domain-specific encoders.

SWD is an effective metric for the space of probability dis-

tributions that can be computed efficiently. More impor-

tantly, it is a differentiable metric with non-vanishing gradi-

ents, which make it a suitable objective function for training

deep networks using gradient-based optimization [17, 28].

This is important as most optimization problems for train-

ing deep neural networks are solved using gradient-based

methods, e.g. stochastic gradient descent (SGD). This strat-

egy on its own might not succeed because distributions may

not be aligned class-conditionally. We use the few accessi-

ble labeled data points in the SAR domain to align both dis-

tributions class-conditionally to tackle the class matching

challenge [14]. We provide experimental results to validate

our approach in the area of maritime domain awareness,

where the goal is to understand activities that could impact

the safety and the environment. Our results demonstrate our

approach is effective and leads to SOA performance.

2. Related Work

Several prior works have applied the idea of transfer

learning to the SAR domain. Huang et al. [12] address the

problem of labeled data scarcity in the SAR domain via un-

supervised learning. The idea is to use a large pool of unla-

beled SAR data to train an autoencoder. As a result, the em-

bedding space learned by the autoencoder is discriminative

and can be used as a mean for better feature extraction to

benefit from knowledge transfer. The trained encoder sub-

network can be concatenated with a classifier network and

both would be fine-tuned using the labeled portion of data

to map the data points to the label space. Hansen et al. [22]

proposed to transfer knowledge using synthetic SAR im-

ages which are easy to generate. Their major novelty is

to demonstrate how to generate a simulated dataset for a

given SAR problem based on simulated object radar reflec-

tivity. A CNN is then pretrained on the synthetic dataset

and then used as an initialization for the real SAR domain

problem. Due to the pretraining stage, the model can be

fine-tuned using fewer real labeled data points. Zhang et

al. [35] propose to transfer knowledge from a secondary

source SAR task, where labeled data is available. Their idea

is to pretrain a CNN on the task with labeled data and then

fine-tune it on the target task. Lang et al. [19] use auto-

matic identification system (AIS) as the secondary domain

for knowledge transfer. AIS is a tracking system for mon-

itoring movement of ships that can provide labeling infor-

mation. Shang et al. [32] amend a CNN with an information

recorder. The recorder is used to store spatial features of la-

beled samples and the recorded features are used to predict

labels of unlabeled data points based on spatial similarity

to increase the number of labeled samples. Finally, Weng

et al. [34] use an approach more similar to our framework.

Their proposal is to transfer knowledge using VGGNet as

a feature extractor in the learning pipeline, which itself has

been trained on a large EO dataset. Despite being novel,

these past works mostly use a pretrained deep network that

is trained using a secondary source of knowledge, which is

then fine-tuned using few labeled data points on the target



SAR task. Hence, knowledge transfer occurs as a result of

selecting a better initial point using the secondary source.

We follow a different approach by recasting the problem as

a domain adaptation (DA) problem [10], where the goal is

to adapt a model trained on the source domain to generalize

well in the target domain. Our contribution is to demon-

strate how to transfer knowledge from EO imaging domain

in order to train a deep network for the SAR domain. The

idea is to train a deep network on a related EO problem with

abundant labeled data and adapt the model using only few

labeled SAR data points such that the distributions of both

domains become similar within a mid-layer of the network.

Domain adaptation has been investigated in the computer

vision literature for a broad range of scenarios. The goal is

to learn a model on a source data distribution with sufficient

data such that it generalizes well on a different, but related

target data distribution with insufficient labeled data. Early

DA algorithms either develop domain invariant and stable

features which can be used on both domains [6] or learn a

function to map the target data points into the source do-

main [30]. Despite being very different solutions, both ap-

proaches try to preprocess data such that the distributions

of both domains become similar after preprocessing. As a

result, a classifier trained using the source data, can also be

used on the target domain. In this paper, we consider that

two deep convolutional neural networks with a shared out-

put space, i.e. deep encoders, preprocess data to enforce

both EO and SAR domains data to have similar probabil-

ity distributions in their shared output. This space can be

considered as an intermediate embedding space between the

input space from each domain and label space of a shared

classifier network between the two domains. These deep

encoders are trained such that the discrepancy between the

source and the target domain distributions is minimized in

the shared embedding space, while overall classification is

supervised via the EO domain labeled data. This procedure

has been done via both adversarial learning [9] and as an op-

timization problem with probability matching objective [4].

In order to minimize the distance between two probabil-

ity distributions, we minimize with respect to a measure of

distance between two empirical distributions. Early works

in domain adaptation used the Maximum Mean Discrep-

ancy (MMD) metric for this purpose [10]. MMD measures

the distance between two distribution as the Euclidean dis-

tance between their means. However, MMD might not be an

accurate measure when the distributions are multi-modal.

Other common discrepancy measures such as KL diver-

gence and Jensen-Shannon divergence can be used for a

broader range of domain adaptation problems [7]. But these

measures have vanishing gradients when the distributions

are too distant, which makes them inappropriate for deep

learning as deep networks are trained using gradient-based

first-order optimization [16]. For this reason, recent works

in deep learning use the Wasserstein Distance (WD) metric

as an objective function to match distributions [33]. WD

has non-vanishing gradient but it does not have a closed-

form definition and is defined as a linear programming (LP)

problem. Solving the LP problem can be computation-

ally expensive for high-dimensional distributions. To cir-

cumvent this challenge, we use the Sliced Wasserstein Dis-

tance (SWD). SWD approximates WD as sum of multi-

ple Wasserstein distances of one-dimensional distributions

which possess a closed-form solution [26, 1, 2, 16].

3. Problem Formulation and Rationale

Let X ⊂ R
d denote the domain space of SAR data.

Consider a multiclass SAR classification problem with k

classes in this domain, where i.i.d data pairs are drawn from

the joint probability distribution, i.e. (xt
i,y

t
i) ∼ qT (x,y)

which has the marginal distribution pT (x) over X . Here,

a label yt
i identifies the class membership of the vectorized

SAR image xi
t to one of the k classes. We have access to

M ≫ 1 unlabeled images DT = (XT = [xt
1, . . . ,x

t
M ]) ∈

R
d×M in this target domain. Additionally, we have have ac-

cess to O labeled images D′
T = (X′

T
,Y ′

T
), where X′

S
=

[x
′t
1 , . . . ,x

′t
O] ∈ R

d×O and Y ′

S
= [y

′t
1 , . . . ,y

′t
O] ⊂ R

k×O

contains the corresponding one-hot labels. Our goal is to

train a parameterized classifier fθ : Rd → Y ⊂ Rk, i.e. a

deep neural network with weight parameters θ, on this do-

main. Given that we have access to only few labeled data

points and considering model complexity of deep neural

networks, training the deep network such that it general-

izes well using solely the SAR labeled data is not feasible

and would lead to overfitting on the few labeled data points

such that the trained network would generalize poorly.

To tackle the problem of label scarcity, we consider a

domain adaptation scenario, where we have access to suf-

ficient labeled data points in a related source EO domain

problem. Let DS = (XS ,YS) denote the dataset in the EO

domain, with XS ∈ X ⊂ R
d′
×N and YS ∈ Y ⊂ R

k×N (

N ≫ 1). Note that we are considering the same classifica-

tion problem in two domains, i.e. the same classes similar

to the target domain exist in the source domain. We assume

the source samples are drawn i.i.d. from the source joint

probability distribution qS(x,y), which has the marginal

distribution pS . Given that extensive research and investi-

gation has been done in EO domains, we hypothesize that

finding such a labeled dataset is likely feasible and is easier

than labeling more SAR data points. Our goal is to use the

similarity between the EO and the SAR domains to train a

model for classifying SAR images using the knowledge that

can be learned from the EO domain.

Since we have access to sufficient labeled data points in

the EO domain, training a deep network in this domain is

straightforward. Following the standard supervised learning

setting, we can use empirical risk minimization (ERM) to



learn the network optimal weight parameters:

θ̂ = argmin
θ
êθ = argmin

θ

1

N

N
∑

i=1

L(fθ(x
s
i ),y

s
i ) , (1)

where L is a proper loss function (e.g., cross entropy loss).

Given enough training data points, the empirical risk is a

suitable surrogate for the real risk function:

e = E(x,y)∼pS(x,y)(L(fθ(x),y)) , (2)

which is the objective function for Bayes optimal inference.

This means that the learned classifier would generalize well

on data points if they are drawn from pS . A naive approach

to transfer knowledge from the EO domain to the SAR do-

main is to use the classifier that is trained on the EO domain

directly in the target domain. However, since distribution

discrepancy exists between the two domains, i.e. pS 6= pT ,

the trained classifier on the source domain f
θ̂
, might not

generalize well on the target domain. Therefore, there is a

need for adapting the training procedure for f
θ̂
. The sim-

plest approach which has been used in most prior works

is to fine-tune the EO classifier using the few labeled tar-

get data points to employ the model in the target domain.

But we want to use a more principled approach and take

advantage of the unlabeled SAR data points which are ac-

cessible and provide additional information about the SAR

domain marginal distribution. Additionally, fine tuning re-

quires d = d′ which might not always be the case.

In our approach, we consider the EO deep network fθ(·)
to be formed by a feature extractor φv(·), i.e. convolutional

layers of the network, which is followed by a classifier sub-

network hw(·), i.e. fully connected layers of the network,

that inputs the extracted feature and maps them to the la-

bel space. Here, w and v denote the corresponding learn-

able parameters for these sub-networks, i.e. θ = (w,v). In

other words, the feature extractor sub-network φv : X → Z
maps the data points into a discriminative embedding space

Z ⊂ R
f , where classification can be done easily by the

classifier sub-network hw : Z → Y . The success of deep

learning stems from optimal feature extraction which con-

verts the data distribution into a multimodal distribution

which allows for class separation. Following the above, we

can consider a second encoder network ψu(·) : R
d → R

f ,

which maps the SAR data points to the same target embed-

ding space at its output. The idea that we want to explore is

based on training φv and ψu such that the discrepancy be-

tween the source distribution pS(φ(x)) and target distribu-

tion pT (φ(x)) is minimized in the shared embedding space.

As a result of matching the two distributions, the embedding

space becomes invariant with respect to the domain. Con-

sequently, even if we train the classifier sub-network using

solely the source labeled data points, it will still generalize

well when target data points are used for testing. The key

Figure 1: Block diagram architecture of the proposed

framework for transferring knowledge from the EO to the

SAR domain.

question is how to train the encoder sub-networks such that

the embedding space becomes invariant. Figure 1 presents a

block diagram visualization of our framework. In the figure,

we have visualized images from two related real world SAR

and EO datasets. Notice that SAR images are confusing for

the untrained human eye, compared to EO ship/no-ship im-

ages which suggests that as we discussed SAR labeling is

more challenging and requires expertise.

4. Proposed Optimization Solution

In our solution, the encoder sub-networks need to be

learned such that the extracted features in the encoder out-

put are discriminative. Only then, the classes become sep-

arable for the classifier sub-network (see Figure 1). This is

a direct result of supervised learning for EO encoder. Addi-

tionally, the encoders should mix the SAR and the EO do-

mains such that the embedding becomes domain-invariant.

Hence, the SAR encoder indirectly is enforced to be dis-

criminative for the SAR domain. Domain invariance can be

enforced by minimizing the discrepancy between the distri-

butions of both domains in the embedding space. Follow-

ing the above, we can formulate the following optimization

problem for computing optimal values for v,u and w:

min
v,u,w

1

N

N
∑

i=1

L
(

hw(φv(x
s
i )),y

s
i

)

+
1

O

O
∑

i=1

L
(

hw(ψu(x
′t
i )),y

′t
i

)

+ λD
(

φv(pS(XS)), ψu(pT (XT ))
)

+ η

k
∑

j=1

D
(

φv(pS(XS)|Cj), ψu(pT (X
′

T )|Cj)
)

,

(3)



where D(·, ·) is a discrepancy measure between the proba-

bilities and λ and η are trade-off parameters. The first two

terms in Eq. (3) are empirical risks for classifying the EO

and SAR labeled data points, respectively. The third term is

the cross-domain unconditional probability matching loss.

The matching loss is computed using all available data

points from both domains to learn the learnable parame-

ters of encoder sub-networks and the classifier sub-network

is simultaneously learned using the labeled data from both

domains. Finally, the last term is Eq. (3) is added to en-

force semantic consistency between the two domains. This

term is important for knowledge transfer. To clarify this

point, note that the domains might be aligned such that their

marginal distributions φ(pS(XS)) and ψ(pT (XT )) have

minimal discrepancy, while the distance between φ(qS(·, ·))
and ψ(qT (·, ·)) is not minimized. This means that the

classes may not have been aligned correctly, e.g. images

belonging to a class in the target domain may be matched to

a wrong class in the source domain or, even worse, images

from multiple classes in the target domain may be matched

to the cluster of another class of the source domain. In such

cases, the classifier will not generalize well on the target

domain as it has been trained to be consistent with spatial

arrangement of the source domain in the embedding space.

This means that if we merely minimize the distance between

φ(pS(XS)) and ψ(pT (XT )), the shared embedding space

might not be a consistently discriminative space for both

domains domain in terms of classes. The challenge of class-

matching is a known problem in domain adaptation and sev-

eral approaches have been developed to address this chal-

lenge [20]. In our framework, the few labeled data points

in the target SAR domain can be used to match the classes

consistently across both domains. We use these data points

to computer the fourth term in Eq. (3). This term is added

to match class-conditional probabilities of both domains in

the embedding space, i.e. φ(pS(xS)|Cj) ≈ ψ(pT (x|Cj),
where Cj denotes a particular class.

The final key question is to select a proper metric to

compute D(·, ·) in the last two terms of Eq 1. KL diver-

gence and Jensen-Shannon divergence have been used ex-

tensively to measure closeness of probability distributions

as maximizing the log-likelihood is equivalent to minimiz-

ing the KL-divergence between two distributions but note

that since we will use SGD to solve the optimization prob-

lem in Eq 1, they are not suitable. This is a major rea-

son for success of adversarial learning [9]. Additionally,

the distributions φ(pS(x) and ψ(pT (x) are unknown and

we can rely only on observed samples from these distribu-

tions. Therefore, we should be able to compute the dis-

crepancy measure, D(·, ·) using only on the drawn sam-

ples. Optimal transport [33] is a suitable metric to deal

with the above issues and due to be an effective metric,

it has been used extensively in deep learning literature re-

Algorithm 1 FCS (L, η, λ)

1: Input: data

2: DS = (XS ,YS);DT = (XT , ,YT ),D′
T = (X′

T ),
3: Pre-training: initialization

4: θ̂0 = (w0,v0) = argminθ 1/N
∑N

i=1 L(fθ(x
s
i ),y

s
i )

5: for itr = 1, . . . , ITR do

6: Update encoder parameters using:

7: v̂, û = λD
(

φv(pS(XS)), ψu(pT (XT ))
)

8: +η
∑

j
D
(

φv(pS(XS)|Cj), ψv(pSL(X
′

T )|Cj)
)

9: Update entire parameters:

10: v̂, û, ŵ = argminw,v,u 1/N
∑N

i=1 L
(

hw(φ̂̂
v
(xs

i )),y
s
i

)

11: +1/O
∑O

i=1 L
(

hw(ψ̂̂
u
(x

′t
i )),y

′t
i

)

12: end for

cently [5, 4, 15, 28]. In this paper, we use the Sliced Wasser-

stein Distance (SWD) [27] is a good approximate of optimal

transport [17] and can be computed more efficiently.

The Wasserstein distance is defined as the solution to

a linear programming problem. However, for the case of

one-dimensional probability distributions, this problem has

a closed form solution which can be computed efficiently.

The solution is equal to the ℓp-distance between the inverse

of the cumulative distribution functions of the two distribu-

tions. SWD has been proposed to benefit from this property.

The idea is to decompose a d-dimensional distributions into

one-dimension marginal distributions by projecting the dis-

tribution along all possible hyperplanes that cover the space.

This process is called slicing the high-dimensional distribu-

tions. For a distribution pS , a one-dimensional slice of the

distribution along the projection direction γ is defined as:

RpS(t; γ) =

∫

S

pS(x)δ(t− 〈γ,x〉)dx , (4)

where δ(·) denotes the Kronecker delta function, 〈·, ·〉 de-

notes the vector dot product, and S
d−1 is the d-dimensional

unit sphere. We can see that RpS(·; γ) is computed via in-

tegrating pS over the hyperplanes which are orthogonal to

the projection directions γ that cover the space.

The SWD is computed by integrating the Wasserstein

distance between sliced distributions over all γ:

SW (pS , pT ) =

∫

Sd−1

W (RpS(·; γ),RpT (·; γ))dγ , (5)

where W (·, ·) denotes the Wasserstein distance. Comput-

ing the above integral directly, is computationally expen-

sive. But, we can approximate the integral in Eq. (5) us-

ing a Monte Carlo style integration by choosing L number

of random projection directions γ and after computing the

Wasserstein distance, average along the random directions.
In our problem, we have access only to samples from

the two source and target distributions, so we approximate
the one-dimensional Wasserstein distance as the ℓp-distance
between the sorted samples, as the empirical commutative



probability distributions. Following the above procedure,
the SWD between f -dimensional samples {φ(xS

i ) ∈ R
f ∼

pS}
M
i=1 and {φ(xT

i ) ∈ R
f ∼ pT }

M
j=1 can be approximated

as the following sum:

SW 2(pS , pT ) ≈
1

L

L
∑

l=1

M
∑

i=1

|〈γl, φ(x
S

sl[i]
〉)− 〈γl, φ(x

T

tl[i]
)〉|2 ,

(6)

where γl ∈ S
f−1 is uniformly drawn random sample from

the unit f -dimensional ball S
f−1, and sl[i] and tl[i] are

the sorted indices of {γl · φ(xi)}
M
i=1 for source and tar-

get domains, respectively. We utilize the SWD as the dis-

crepancy measure between the probability distributions to

match them in the embedding space. Our proposed algo-

rithm for few-shot SAR image classification (FSC) using

cross-domain knowledge transfer is summarized in Algo-

rithm 1. Note that we have added a pretraining step which

trains the EO encoder and the shared classifier sub-network

solely on the EO domain for better initialization.

5. Experimental Validation

We demonstrated effectiveness of our method in the area

of maritime domain awareness on SAR ship detection.

5.1. Ship detection dataset

We tested our approach in the binary problem of ship

detection using SAR images [31]. This problem arises

within maritime domain awareness (MDA) where the goal

is monitoring large areas of ocean to decipher maritime ac-

tivities that could impact the safety and the environment.

Ships are important object in this application as the major-

ity of important activities is related to ships. To reach this

end, SAR imaging is highly effective because monitoring

is done continually over extended time intervals. In order

to automize the monitoring process, classic image process-

ing techniques are used to determine regions of interest in

aerial SAR images. First, land areas are removed and then

ships, ship-like, and ocean regions are identified and then

extracted as square image patches. These image patches are

then fed into a classification algorithm to determine whether

the region corresponds to a ship or not.

The dataset that we have used is obtained from aerial

SAR images of the South African Exclusive Economic

Zone. The dataset is preprocessed into 51 × 51 pixels sub-

images [31]. Each instance either contains ships (positive

data points), or no-ship (negative data points). The dataset

contains 1436 positive examples and 1436 negative sub-

images. The labels are provided by experts. We recast

the problem as a few-shot learning problem. To solve this

problem using knowledge transfer, we use the “EO Ships in

Satellite Imagery” dataset [11]. The dataset is prepared to

automate monitoring port activity levels and supply chain

analysis and contains images extracted from Planet satellite

imagery over the San Francisco Bay area with 4000 RGB

80× 80 images. Again, each instance is either a ship image

(a positive data point), or no-ship (a negative data point).

The dataset is split evenly into positive and negative sam-

ples. Instances from both datasets are visualized in Figure 1

(left).

5.2. Methodology

We consider a deep CNN with 2 layers of convolutional

filters for the SAR domain, with 16, and 32 filters in these

layers respectively. We have used both maxpool and batch

normalization layers in these convolutional layers. These

layers are used as the SAR encoder sub-network in our

framework, φ. These layers are followed by a flattening

layer and a subsequent layer dense layer as the embedding

space with dimension f which potentially can be tuned as a

parameter. After the embedding space layer, we have used

a shallow two-layer classifier based on Eq. (3). The EO

encoder has similar structure with the exception of using

three convolutional layers. We have used three layers as

EO dataset seems to have more details and more complex

model can be helpful. We used TensorFlow for implemen-

tation and the Adam optimizer [13].

For comparison purpose, we compared our results

against the following learning settings:

1) Supervised training on the SAR domain (ST): we just

trained a network directly in the SAR domain using the few

labeled SAR data points to generate a lower-bound for ap-

proach to demonstrate that knowledge transfer is effective.

2) Direct transfer (DT): we just directly used the network

that is trained on EO data directly in the SAR domain. In

order to do this end, we resized the EO domain to 51 ×
51 pixels so we can use the same shared encoder networks

for both domains. As a result, potentially helpful details

may be lost. This can be served as a second lower-bound to

demonstrate that we can benefit from unlabeled data.

3) Fine tuning (FT): we used the no transfer network

from previous method, and fine-tuned the network using the

few available SAR data points. As discussed before, this is

the main strategy that prior works have used in the literature

to transfer knowledge from the EO to the SAR domain and

is served to compare against previous methods.

In our experiments, we used a 90/10 % random split for

training the model and testing performance. In our experi-

ments, we report the performance on the SAR testing split

to compare the methods. We use the classification accu-

racy rate to measure performance and whenever necessary,

we used cross validation to tune the hyper parameters. We

have repeated each experiment 20 times and have reported

the average and the standard error bound to demonstrate sta-

tistical significance in the experiments.



Figure 2: The SAR test performance versus the number of

labeled data per class.

(a) EO Domain (real labels) (b) SAR Domain (real labels)

(c) EO Domain (predicted la-

bels)

(d) SAR Domain (labeled and

unlabeled data)

Figure 3: Umap visualization of the EO versus the SAR

dataset in the shared embedding space. (view in color.)

5.3. Results

Figure 2 presents the performance results on the data

test split for our method along with the three mentioned

methods above, versus the number of labeled data points

per class that has been used for the SAR domain. For each

curve, the solid line denotes the average performance over

all ten trials and the shaded region denotes the standard er-

ror deviation. These results accord with intuition. Super-

vised training on the SAR domain is not effective in few

shot learning regime, i.e. its performance is close to chance.

O 1 2 3 4 5 6 7

ST 58.5 74.0 79.2 84.1 85.2 84.9 87.2

FT 75.5 75.6 73.5 85.5 87.6 84.2 88.5

DT 71.5 67.6 71.4 68.5 71.4 71.0 73.1

FCS 86.3 86.3 82.8 94.2 87.8 96.0 91.1

Table 1: Comparison results for the SAR test performance.

Figure 4: The test performance versus the dimension of the

embedding space.

Direct transfer method boosts the performance in few-shot

regime considerably (about 20%) but after 2-3 labeled sam-

ples per class, as expected supervised training overtakes di-

rect transfer as task data is used. In other words, it only

helps to start learning from a better initial point. Fine tuning

can improve the DT performance, but only few-shot regime,

and beyond few-shot learning regime the performance is

similar to supervised training. Our method outperforms all

methods as we have benefited from SAR unlabeled data

points. As it can be seen, our approach is effective and leads

to 30% boost from almost no-learning baseline, i.e. 50%

performance, in few-shot learning regime. For a more clear

quantitative comparison, we have presented data in Figure 2

in Table 1 for different number of labeled SAR data points

per class (O).

For having better intuition, Figure 3 denotes the Umap

visualization [23] of the EO and SAR data points in the

learned embedding as the output of the feature extractor en-

coders. In this figure, we have used 5 labeled data points

per class in the SAR domain. In Figure 3, each color cor-

responds to one of the classes. In Figures 3a and 3b, we

have used real labels for visualization, and in Figures 3c and

3d, we have used the predicted labels by networks trained

using our method for visualization. In Figure 3, the points

with brighter red and darker blue colors are the SAR labeled

data points that has been used in training. By comparing

the top row with the bottom row, we see that the embed-

ding is discriminative for both domains. Additionally, by

comparing the left column with the right column, we see



(a) The EO Domain (real labels)

(b) The SAR Domain (real la-

bels)

(c) The EO Domain (predicted

labels)

(d) The SAR Domain (pre-

dicted labels)

Figure 5: Umap visualization of the EO versus the SAR

dataset for ablation study. (view in color.)

that the domain distributions are matched in the embedding

class conditionally, suggesting our framework formulated

is Eq. (3) is effective. This result suggests that learning an

invariant embedding space can be served as a helpful strat-

egy for transferring knowledge. Additionally, we see that

labeled data points are important to determine the boundary

between two classes which suggests that why part of one of

the classes (blue) is predicted mistakenly.

We also preformed a set of experiments to empirically

study the effect of dimension of the embedding space on

performance of our algorithm. Figure 4 presents perfor-

mance on SAR testing set versus dimension of the embed-

ding space when 10 SAR labeled data per class is used for

training. The solid line denotes the average performance

over ten trials and the shaded region denotes the standard

error deviation. We observe that the performance is quite

stable when the embedding space dimension changes. This

result suggests that if the learned embedding space is dis-

criminative for the source domain, then our method can suc-

cessfully match the target domain distribution to the source

distribution in the embedding. We conclude that for com-

putational efficiency, it is better to select the embedding di-

mension to be as small as possible. For this reason, we set

the dimension of the embedding to be 8 for the other our

experiments in this paper as we conclude from Figure 4 that

increasing the dimension beyond 8 is not helpful.

Finally, we also performed an experiment to serve as

an ablation study for our framework. Our previous experi-

ments demonstrate that the first three terms in Eq. (3) are all

important for successful knowledge transfer. We explained

that the fourth term is important for class-conditional align-

ment. We solved Eq. (3) without considering the fourth term

to study its effect. We have presented the Umap visualiza-

tion of the datasets in the embedding space in Figure 5. We

observe that as expected the embedding is discriminative

for EO dataset and predicted labels are close to the real data

labels as the classes are separable. However, despite follow-

ing a similar marginal distribution in the embedding space,

the formed SAR clusters are not class-specific. We can see

that in each cluster, we have data points from both classes

and as a result the SAR classification rate is poor. This re-

sult demonstrates that all the terms in Eq. (3) are important

for the success of our algorithm.

6. Conclusions

In this paper, we developed a method to classify SAR

images using deep neural network when only few-labeled

samples are accessible. Our idea is tackle the problem of

label scarcity through transferring knowledge from EO do-

main, where sufficient labeled data is accessible. We map

the data samples from both domains to a shared embed-

ding space, such that the data distributions are matched, We

demonstrated that our approach is effective and competitive.

Future work extends to online domain adaptation scenar-

ios where the goal is to use sequential training, rather joint

training which can improve learning speed and the need to

store EO data. Choosing the proper source domain is an-

other area which requires more investigation.
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[27] J. Rabin, G. Peyré, J. Delon, and M. Bernot. Wasserstein

barycenter and its application to texture mixing. In Interna-

tional Conference on Scale Space and Variational Methods

in Computer Vision, pages 435–446. Springer, 2011. 5

[28] A. Redko, I.and Habrard and M. Sebban. Theoretical anal-

ysis of domain adaptation with optimal transport. In Joint

European Conference on Machine Learning and Knowledge

Discovery in Databases, pages 737–753. Springer, 2017. 2,

5

[29] M. Rostami, D. Huber, and T.-C. Lu. A crowdsourcing triage

algorithm for geopolitical event forecasting. In Proceed-

ings of the 12th ACM Conference on Recommender Systems,

pages 377–381. ACM, 2018. 1

[30] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting vi-

sual category models to new domains. In European confer-

ence on computer vision, pages 213–226. Springer, 2010. 3

[31] C. Schwegmann, W. Kleynhans, B. Salmon, L. Mdakane,

and R. Meyer. Very deep learning for ship discrimination in

synthetic aperture radar imagery. In IEEE International Geo.

and Remote Sensing Symposium, pages 104–107, 2016. 1, 6

[32] R. Shang, J. Wang, L. Jiao, R. Stolkin, B. Hou, and Y. Li.

Sar targets classification based on deep memory convolution

neural networks and transfer parameters. IEEE Journal of

Selected Topics in Applied Earth Observations and Remote

Sensing, 11(8):2834–2846, 2018. 2

[33] C. Villani. Optimal transport: old and new, volume 338.

Springer Science & Business Media, 2008. 2, 3, 5

[34] Z. Wang, L. Du, J. Mao, B. Liu, and D. Yang. Sar target

detection based on ssd with data augmentation and trans-

fer learning. IEEE Geoscience and Remote Sensing Letters,

2018. 2

[35] J. Zhang, D., W. Heng, K. Ren, and J. Song. Transfer learn-

ing with convolutional neural networks for sar ship recogni-

tion. In IOP Conference Series: Materials Science and En-

gineering, volume 322, page 072001. IOP Publishing, 2018.

2


