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Abstract

This paper develops an efficient online al-
gorithm based on K-SVD for learning mul-
tiple consecutive tasks. We first derive a
batch multi-task learning method that builds
upon the K-SVD algorithm, and then extend
the batch algorithm to train models online
in a lifelong learning setting. The result-
ing method has lower computational com-
plexity than other current lifelong learning
algorithms while maintaining nearly identi-
cal performance. Additionally, the proposed
method offers an alternate formulation for
lifelong learning that supports both task and
feature similarity matrices.

1. Introduction

With the increasing interest in big data and deployed
machine learning software, it is essential to develop
systems that are capable of learning multiple, consec-
utive tasks over an extended time period. The idea of
learning and sharing knowledge between multiple tasks
to improve collective performance has been studied
extensively (Kumar & Daumé III, 2012; Kang et al.,
2011; Zhang et al., 2008; Caruana, 1997) from a batch
learning perspective, in which all models are trained si-
multaneously. Recent work in online multi-task learn-
ing (MTL) (Ruvolo & Eaton, 2013; Saha et al., 2011)
has shown that it is possible to learn tasks sequen-
tially and achieve nearly identical accuracy to batch
MTL methods while dramatically reducing the compu-
tational requirements. These capabilities are essential
to the development of lifelong learning algorithms that
continually accumulate and refine knowledge of multi-
ple tasks over an unbounded stream of experience.

To facilitate knowledge transfer between task mod-
els, one common technique used by MTL algorithms
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is to learn and maintain a shared repository of la-
tent model components; each task model is then given
as a weighted combination of these latent compo-
nents. This technique is used successfully by several
current MTL methods, including various batch algo-
rithms (Kumar & Daumé III, 2012; Zhang et al., 2008)
and the online Efficient Lifelong Learning Algorithm
(ELLA) (Ruvolo & Eaton, 2013). In batch MTL al-
gorithms, the latent model components are learned si-
multaneously with the task models in an expensive
joint optimization. ELLA employs several simplifica-
tions to eliminate the expensive optimization in sup-
port of online learning while minimizing the adverse
effect on the performance of the resulting task mod-
els. Most notably, ELLA requires that each model,
once learned, be based on fixed weights over the latent
components. This may adversely affect performance
by not permitting task models to adjust the weighting
of individual latent components as these components
become more refined due to additional training.

In this paper, we investigate an alternate formulation
of online multi-task learning based on the K-SVD algo-
rithm (Aharon et al., 2006) that provides a reduction
in computational complexity over ELLA, providing
improved support for the rapid learning of consecutive
tasks. This K-SVD formulation also eliminates one of
ELLA’s simplifications, enabling task models to flexi-
bly adjust their weights over model components during
learning. We compare this formulation to the origi-
nal ELLA, a new version of ELLA that incorporates
an iterative update step with a similar computational
complexity to our K-SVD based algorithm, and a hy-
brid approach that blends these two approaches. We
show that in some situations our K-SVD based algo-
rithm exhibits similar learning performance to ELLA
while allowing continual refinement of all models and
latent components. We also show that the hybrid ap-
proach yields a robust algorithm that exhibits high
performance across a range of learning domains.

We begin by providing an overview of the K-SVD al-
gorithm, and then adapt K-SVD to learn task models
in a batch MTL setting, yielding a new algorithm we
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call MTL-SVD. We then modify the batch MTL-SVD
algorithm to operate online, making it suitable for ap-
plication to lifelong learning settings.

2. The K-SVD Algorithm

This section reviews the K-SVD algorithm of Aharon
et al. (2006) for learning dictionaries for sparse coding,
which forms the foundation of our approach. Suppose
we are designing a dictionary consisting of k vectors to
sparsely code a set of points {x1, . . . ,xn} ⊂ Rd. We
would like to compute a dictionary L ∈ Rd×k such that
each input point can be coded with a minimal number
of dictionary elements. This objective can be realized
by solving the following optimization problem:

arg min
L

n∑
i=1

min
s(i)

{∥∥Ls(i) − xi

∥∥2
2

+ µ
∥∥s(i)∥∥

0

}
, (1)

where s(i) is the vector of coefficients over the columns
of L to encode xi and µ is a positive constant that
defines the tradeoff between accurate reconstruction
of the input points and the sparsity of the coefficient
vectors. This objective is computationally hard to op-
timize due to the cross terms between the dictionary
L and coefficients S =

[
s(1) · · · s(n)

]
as well as the

presence of the L0 norm ‖ · ‖0, which both make the
objective non-convex. Some approaches for solving
Equation 1 alternately optimize L and S until a lo-
cal minima is reached.1

Like other approaches for dictionary learning, K-SVD
alternates two optimization steps.

1. Optimize S in Equation 1 given the current L.
2. For a particular dictionary element (i.e., the jth

column of L), jointly optimize the element as well
as its corresponding coefficient for each data point
currently encoded by the dictionary element (i.e.,
the non-zero entries in the jth row of S).

We next describe each of these steps of K-SVD; the
complete K-SVD algorithm is given as Algorithm 1.

Step 1: Optimizing S

Given a fixed value of L, Equation 1 decomposes into
n independent optimization problems of the form:

s(i) ← arg min
s

{
‖Ls− xi‖22 + µ‖s‖0

}
. (2)

Equation 2 is known as the sparse coding problem, and
can be solved (approximately) using numerous tech-

1Optimizing L given a fixed S is a convex optimization
problem, whereas optimizing the columns of S with fixed L,
while not convex, can be relaxed into a convex optimization
problem by replacing the L0 norm with the L1 norm.

Algorithm 1 K-SVD (Aharon et al., 2006)

input data points {x1, . . . ,xn}, dictionary size k
init L using random column vectors of unit length
loop until convergence do

for i ∈ {1, . . . , n}, perform update in Eqn. 2
for j ∈ {1, . . . , k}, perform updates in Eqns. 4–6

end loop
return L

niques (e.g., Matching Pursuit, Orthogonal Matching
Pursuit, or the Lasso (Tibshirani, 1996)).

Step 2: Optimizing a Dictionary Element and
its Corresponding Non-Zero Coefficients

This step updates a particular dictionary element as
well as the corresponding coefficients for data points
that are encoded using the element (i.e., have a non-
zero coefficient value). Let lj indicate the particular
column of L to optimize. First, we form the matrix
E representing the residual for each data point given
that lj is zeroed out. The ith column of E is given by:

ei = xi −
∑
r 6=j

s(i)r lr , (3)

where s
(i)
r is the rth entry of s(i). Next, we perform

a singular value decomposition (SVD) on E. The first
left singular vector provides the updated value for lj
and the corresponding right singular vector scaled by
the corresponding singular value yields the updated
coefficients for each data point (i.e., the jth row of S).

We would like both steps (1) and (2) to either maintain
or improve the quality of our solution to Equation 1.
Unfortunately, using the SVD of E will cause some
coefficients in S that were previously zero to become
non-zero, eliminating the guarantee that the quality of
our solution cannot become worse. To eliminate this
possibility, we take the SVD of the subset A of the

columns of E such m ∈ A ⇔ s
(m)
j 6= 0:

(U,Σ,V) = svd (EA) (4)

lj ← u1 (5)

s
(A)
j ← σ1,1v1 , (6)

where EA denotes the matrix formed from the subset
of columns in A, the singular values are assumed to all
be positive (this is possible for any real matrix) and

sorted in descending order, and s
(A)
j denotes the vec-

tor formed from the columns in A of the jth row of S.
It is well-known that this optimization procedure min-

imizes ‖EA−B‖22 for all rank-1 matrices B = ljs
(A)>
j .
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This implies that the resulting lj and s
(A)
j also mini-

mize
∑n

i=1 ‖Ls(i) − xi‖22, which shows that quality of
the solution to Equation 1 cannot have worsened.

3. Multi-Task Learning Using K-SVD

This section extends the K-SVD algorithm to batch
multi-task learning. The key step of our approach is
to adapt the K-SVD algorithm from the objective of
learning a dictionary for sparse coding a set of input
data points to learning a dictionary for sparse coding
a set of parameter vectors for individual task models.
We begin by describing the multi-task learning setting,
and then describe how to adapt K-SVD to this setting.
We call our resulting algorithm MTL-SVD.

3.1. Problem Setting

In the batch multi-task learning setting, the agent
simultaneously learns models for a set of supervised
learning tasks {Z(1),Z(2), . . . ,Z(T )}. Each learning

task Z(t) =
(
f̂ (t),X(t),y(t)

)
is defined by a (hid-

den) mapping f̂ (t) : X (t) 7→ Y(t) from an instance
space X (t) ⊆ Rd to a set of labels Y(t) (typically
Y(t) = {−1,+1} for classification tasks and Y(t) = R
for regression tasks). Task t has nt training instances
X(t) ∈ Rd×nt with corresponding labels y(t) ∈ Y(t)nt

given by f̂ (t). We assume that the learner is given
all training data (instances and labels) for all learning
tasks in a single batch. The agent’s goal is to construct
task models f (1), . . . , f (T ) where each f (t) : Rd 7→ Y(t)

such that each f (t) will approximate f̂ (t) to enable the
accurate prediction of labels for new instances.

3.2. Model of Task Structure

Our model of latent task structure is based on the GO-
MTL model proposed by Kumar & Daumé III (2012),
which allows for learning of overlap and grouping be-
tween tasks. Kumar & Daumé III showed that their
model performs well on a range of multi-task problems.

We assume a parametric framework in which each task
model f (t)(x) = f(x,θ(t)) is specified by a task-specific
parameter vector θ(t) ∈ Rd. To facilitate transfer be-
tween tasks, we maintain a library of k latent model
components L ∈ Rd×k that are shared between task
models. Each task parameter vector θ(t) can be rep-
resented as a linear combination of the columns of
L according to the coefficient vector s(t) ∈ Rk (i.e.,
θ(t) = Ls(t)). We encourage the s(t)’s to be sparse
(i.e., use few latent components) to ensure that each
learned latent model component captures a maximal
reusable chunk of knowledge.

Given the labeled training data for each task, we op-
timize the task models to minimize the predictive loss
over all tasks while encouraging the models to share
structure through L. This optimization problem is re-
alized by the objective function:

eT (L) =

T∑
t=1

min
s(t)

{
1

nt

nt∑
i=1

L
(
f
(
x
(t)
i ; Ls(t)

)
, y

(t)
i

)
+ λ
∥∥Ls(t)

∥∥2
2

+ µ
∥∥s(t)∥∥

0

}
, (7)

where (x
(t)
i , y

(t)
i ) is the ith labeled training instance for

task t, L is a known loss function for fitting the task
models, and λ and µ are non-negative constants that
define the amount of ridge-regression on the models
and the penalty for non-sparse solutions, respectively.

In earlier work (Ruvolo & Eaton, 2013), we proposed a
method for optimizing Equation 7 efficiently. In part,
we achieve this by recasting the objective function in
Equation 7 as a problem of learning a dictionary for
sparse-coding task models learned on the training data
for each task in isolation. We accomplish this by tak-
ing the second-order Taylor expansion of Equation 7
about Ls(t) = θ(t), where θ(t) is an optimal predictor
for task t learned on only that task’s training data.
We apply a similar technique to arrive at a simplified
form of the original objective:

gT (L)=

T∑
t=1

min
s(t)

{
1

nt

∥∥θ(t) − Ls(t)
∥∥2
D(t) + µ

∥∥s(t)∥∥
0

}
(8)

where

D(t) = λI +∇2
θ,θ

1

2nt

nt∑
i=1

L
(
f
(
x
(t)
i ;θ

)
, y

(t)
i

) ∣∣∣∣∣
θ=θ(t)

θ(t) = arg min
θ

1

nt

nt∑
i=1

L
(
f
(
x
(t)
i ;θ

)
, y

(t)
i

)
+ λ‖θ‖22 ,

and ‖v‖2A = v>Av. Note that Equation 8 is identical
to Equation 1 except that we use the norm ‖ · ‖2

D(t)

as opposed to ‖ · ‖22. Therefore, we could ignore the
difference in the objective functions and apply the un-
modified K-SVD algorithm to the θ(t)’s to arrive at a
sensible multi-task learning algorithm. However, our
goal will be to improve upon this näıve approach.

Our principal modification to the original K-SVD al-
gorithm is to replace the SVD in Equation 4 with a
generalized SVD:2

(U,Σ,V) = gsvd (EA,M,W) , (9)

2Note that computing the GSVD is not more compu-
tationally expensive than computing the SVD, with the
exception that we must first compute the matrix square
roots of M and W.
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where M is a symmetric positive semidefinite (PSD)
matrix in Rd×d and W is a symmetric PSD matrix in
RT×T . Later we will discuss how to choose M and W;
however, for now we assume they are given. In this
case, the GSVD step defined in Equation 9 along with
the updates in Equations 5 and 6 yield the values of

lj and s
(A)
j that minimize:

|A|∑
t1=1

|A|∑
t2=1

wt1,t2

(
eAt1
− ljs

(At1
)

j

)>
M
(
eAt2
− ljs

(At2
)

j

)
. (10)

This formulation adjusts a particular column of L and
all non-zero corresponding entries of the s(t)’s. Addi-
tionally, instead of using squared-loss as our objective,
we are free to choose M and W in a manner to weight
certain errors, either between different features or be-
tween different tasks, more heavily. We can think of
M as analogous to D(t) in Equation 7, except that M
must be shared among all tasks that share a particular
latent model component and cannot be set indepen-
dently for each task as in Equation 7. Additionally,
the off-diagonal terms of the matrix W correspond to
extra terms that do not appear in Equation 7; these
additional terms enforce relationships between tasks.
Essentially, we can think of M as a feature relationship
matrix and W as a task relationship matrix.

While there are many ways to choose M and W (we
leave an exploration of these other options as future
work), here we begin by setting all off-diagonal ele-
ments of W to 0 in order to remove the inter-task
penalty terms. We set M as a consensus of each of the
D(t)’s by computing their mean: M = 1

|A|
∑

t∈AD(t).

Next, we set the value of the diagonal entries of W
such that for each task we rescale M to closely ap-
proximate the corresponding D(t). Specifically, we set
the tth diagonal element of W as:

wt,t =
1>D(At)1∑
t′∈A 1>D(t′)1

, (11)

where 1 is the vector of all 1’s of the appropriate di-
mensionality (i.e., 1>D(t)1 sums all entries of D(t)).

To be suitable for use with GSVD, both M and W
must be PSD. M is guaranteed to be PSD since it is an
average of PSD matrices (the individual D(t)’s). W is
PSD since it is a diagonal matrix with all non-negative
diagonal entries (the diagonal entries are non-negative
since they are each a summation of the elements of a
PSD matrix which is guaranteed to be positive).

Now that we have presented the modifications related
to the dictionary update step of K-SVD, we write the
updated method for computing s(t) (originally defined

Algorithm 2 MTL-SVD

input training data (X(1),y(1)), . . . , (X(T ),y(T ));
dictionary size k

init L using random column vectors of unit length
for i ∈ {t, . . . , T} do

(θ(t),D(t))← singleTaskLearner(X(t),y(t))
end for
loop until convergence do

for t ∈ {1, . . . , T}, perform update in Eqn. 12
for j ∈ {1, . . . , k}, perform update in Eqn. 9

end loop
return L

in Equation 2) as:

s(i) ← arg min
s

{
‖Ls− xi‖2D(t) + µ‖s‖0

}
, (12)

which we solve using the Lasso (Tibshirani, 1996). The
complete MTL-SVD algorithm is given in Algorithm 2.

3.3. Computational Complexity

First, MTL-SVD uses a single task learner to com-
pute the tuples (θ(t),D(t)) for all tasks. We use the
function ξ(d, nt) to represent the computational com-
plexity of the base learning algorithm on a problem
of dimensionality d with nt training instances. Next,
the update of s(t) given in Equation 12 can be solved
using the LASSO algorithm in time O(d3 +d2k+k2d).
Each update of a particular latent basis component
and the corresponding entries in S (i.e., Equations 9,
5, and 6) involves computing the square root of a
d × d dimensional matrix as well as taking the SVD
of a d × r dimensional matrix (where r is the max-
imum number of tasks that use a single latent ba-
sis vector). These two steps yield a complexity of
O(d3 + r2d). We must repeat the updates in Equa-
tions 9, 5, and 6 for each entry of s(t). After an
initial startup cost to compute the single task mod-
els of O(

∑T
t=1 ξ(d, nt)), the per-iteration complexity

of MTL-SVD is O(d2k + k2d + kd3 + kr2d). In com-
parison, GO-MTL (Kumar & Daumé III, 2012), a cur-
rent state-of-the-art multi-task learning algorithm, has
a per iteration computational complexity of O(d3k3).

4. Lifelong Learning Using K-SVD

Next, we show how to adapt the MTL-SVD algorithm
to a lifelong learning setting in which new tasks arrive
in an online fashion. We call our new algorithm ELLA-
SVD, since it is an alternate formulation of ELLA.
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Figure 1. An illustration of the lifelong learning process.

4.1. The Lifelong Learning Problem

We now consider a variant of the multi-task learn-
ing setting in which the agent faces a series of super-
vised learning tasks Z(1),Z(2), . . . ,Z(Tmax) (Figure 1).
In contrast to the MTL setting, we assume that the
learner receives the tasks in an online fashion and a
priori does not know the total number of tasks Tmax,
the distribution of these tasks, or their order.

Each time step, the agent receives a batch of labeled
training data for some task t, either a new task or as
additional training data for a previously learned task.
In the lifelong learning setting, we use T to denote the
number of tasks the agent has encountered so far, with
0 ≤ T ≤ Tmax. After receiving each batch, the agent
may be asked to make predictions on data instances of
any previous task. Its goal is to construct task models
f (1), . . . , f (T ) where each f (t) : Rd 7→ Y(t) such that:
(1) each f (t) will approximate f̂ (t) to enable the ac-
curate prediction of labels for new instances, (2) each
f (t) can be rapidly updated as the agent encounters
additional training data for known tasks, and (3) new
f (t)’s can be added efficiently as the agent encounters
new tasks. We assume that the total number of tasks
Tmax and the total number of data instances

∑Tmax

t=1 nt
will be large, and so a lifelong learning algorithm must
have a computational complexity to update the task
models that scales favorably with both quantities. Fig-
ure 1 illustrates the lifelong learning process.

4.2. Adaptions to MTL-SVD to Allow
Efficient Lifelong Learning

The proposed MTL-SVD algorithm is inapplicable to
the lifelong learning setting, since as each new task is
presented to the learner, MTL-SVD would need to be
rerun until convergence—a process could take arbitrar-
ily long. As in earlier work (Ruvolo & Eaton, 2013),

we employ an update strategy that, where upon receiv-
ing data for task t, only the corresponding entry s(t)

is updated. Following this update, L is then adapted
to optimize performance across all tasks seen so far;
however, in contrast to MTL-SVD these two steps are
not repeated until convergence. Instead, they are each
performed once for each new batch of training data.
Despite these simplifications, we show that there is
a small performance penalty incurred (both theoret-
ically and empirically). This allows us to make the
following modifications to the MTL-SVD algorithm to
enable it to operate in a lifelong learning setting:

1. When receiving training data for task t, the up-
date in Equation 12 (for updating the value of the
s(t)’s) is only performed for task t.

2. The updates in Equations 9, 5, and 6 are per-
formed only on the subset of columns of L corre-
sponding to the non-zero entries of s(t) (i.e., we
only update the latent basis vectors that are used
to construct the model for the current task).

3. The two steps of the K-SVD algorithm are not
repeated until convergence, but instead each per-
formed only once per new batch of training data.

These modifications provide large gains in efficiency
for three reasons. First, we do not need to update the
s(t)’s for all previous tasks (which becomes expensive
as T grows large). Second, the GSVD update step
only has to be performed a number of times equal to
the number of non-zero entries in s(t) (which is a large
savings when s(t) is sparse). Third, we do not iterate
updates of s(t) and L until convergence; instead we
only need to run each step once.

4.3. Computational Complexity

As in Section 3.3, we use the function ξ(d, nt) to rep-
resent the computational complexity of the base learn-
ing algorithm on a problem of dimensionality d with
nt training instances. Next, the update of s(t) given in
Equation 12 can be solved using the LASSO algorithm
in time O(d3 +d2k+k2d). Each update of a particular
latent basis component and the corresponding entries
in S (i.e., Equations 9, 5, and 6) involves computing
the square root of a d×d dimensional matrix as well as
taking the SVD of a d× r dimensional matrix (where
r is the number of tasks that utilize the latent basis
component being updated). These two steps yield a
complexity of O(d3 + r2d). We must repeat the up-
dates in Equations 9, 5, and 6 for each non-zero entry
of s(t). If we use q to indicate the number of such
non-zero entries, then we arrive at a total complex-
ity for incorporating a new batch of training data of
O(ξ(d, nt) + d2k + k2d + qd3 + qr2d). In comparison,
ELLA (Ruvolo & Eaton, 2013) has a computational
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complexity for incorporating a new batch of training
data of O(ξ(d, nt) + d3k2), which is significantly less
efficient than our proposed ELLA-SVD.

5. Extensions

In this section, we modify the original ELLA (Ru-
volo & Eaton, 2013) to include an incremental update,
which reduces its complexity to more closely match
ELLA-SVD. We also show that this incremental up-
date can be integrated into ELLA-SVD to yield a hy-
brid approach. In the next section, we show that this
hybrid approach has strong empirical performance.

5.1. ELLA with an Incremental Update

ELLA-SVD has a much lower computational complex-
ity than the original ELLA. To facilitate better empir-
ical comparison between the algorithms, we explore
a modified version of ELLA, which we call ELLA
Incremental, that closely matches the complexity of
ELLA-SVD. We incorporate an incremental update
into ELLA that updates each of the columns of L inde-
pendently when data for a new task is received. Fur-
ther, only the columns of L that are non-zero in the
current s(t) are updated and each column is updated
at most once per batch of training data. The cost in-
curred for this more efficient update to L is that ELLA
Incremental is not guaranteed to achieve the globally
optimal updated value of L (given a fixed values of S)
as can be guaranteed in the original ELLA.

5.2. Hybrid Approach

Our proposed ELLA-SVD can be combined with
ELLA Incremental into a hybrid approach. In this
hybrid, we first perform one update step of ELLA-
SVD and then one update step of ELLA Incremen-
tal. To guard against the two updates interfering with
each other, if the ELLA-SVD step degrades the qual-
ity of our solution to Equation 8, then we only use
the ELLA Incremental update for that iteration. We
call this hybrid approach ELLA Dual Update. This
approach maintains the strong advantage in computa-
tional complexity over ELLA of both ELLA-SVD and
ELLA Incremental. Additionally, as we show in the
next section, the hybrid approach performs much bet-
ter than ELLA-SVD in situations where the assump-
tions of the ELLA-SVD algorithm are inaccurate.

6. Experiments

We evaluated four different algorithms for lifelong
learning on four learning problems (one using synthetic
data and the other three using real data). The four al-

gorithms that we evaluated were: (1) ELLA, as defined
in (Ruvolo & Eaton, 2013), (2) ELLA-SVD, (3) ELLA
Incremental, and (4) ELLA Dual Update.

We are primarily interested in developing a technique
that closely approximates the accuracy of the ELLA
algorithm, but with better computational complexity.

6.1. Data Sets

We tested each algorithm on four multi-task data sets:
(1) synthetic regression tasks, (2) student exam score
prediction, (3) land mine detection from radar images,
and (4) facial expression recognition.

Synthetic Regression Tasks We created a set
of Tmax = 100 random tasks with d = 13 features
and nt = 100 instances per task. The task parameter
vectors θ(t) were generated as a linear combination of
k = 6 randomly generated latent components in R12.
The vectors s(t) had a sparsity level of 0.5 (i.e., half the
latent components were used to construct each θ(t)).
The training data X(t) was generated from a standard
normal distribution. The training labels for each task

were given as y(t) = X(t)>θ(t) + ε, where each element
of ε is independent noise generated from a standard
normal distribution. A bias term was added as the
13th feature prior to learning.

London School Data The London Schools data
set consists of exam scores from 15,362 students in
139 schools. We treat the data from each school as a
separate task. The goal is to predict the exam score
of each student. We use the same feature encoding as
used by Kumar & Daumé III (2012), where four school-
specific and three student-specific categorical variables
are encoded as a collection of binary features. We use
the exam year and a bias term as additional features,
giving each data instance d = 27 features.

Land Mine Detection In the land mine data
set (Xue et al., 2007), the goal is to detect whether
or not a land mine is present in an area based on
radar images. The input features are automatically
extracted from radar data and consist of four-moment
based features, three correlation-based features, one
energy-ratio feature, one spatial variance feature, and
a bias term; see (Xue et al., 2007) for more details. The
data set consists of a total of 14,820 data instances di-
vided into 29 different geographical regions. We treat
each geographical region as a different task.

Facial Expression Recognition This data set is
from a recent facial expression recognition challenge
(Valstar et al., 2011). Each task involves recognizing
one of three facial action units (#5: upper lid raiser,
#10: upper lip raiser, and #12: lip corner pull) from
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Figure 2. Learning curves for each of the four methods tested on four different datasets. Learning performance was
evaluated after learning each task on all tasks.

an image of one of seven subjects’ faces. There are a
total of 21 tasks, each with 450–999 images. We use
the same feature encoding as Ruvolo & Eaton (2013),
using a multi-scale Gabor pyramid to extract 2,880
Gabor features for each image, then reducing them to
100 dimensions using PCA, and adding a bias term.

6.2. Evaluation Procedure

Each task was presented sequentially to each algo-
rithm according to the lifelong learning framework
(Section 4.1) as a single batch of data that contained
all training instances for that task. For each task, the
training data was divided into both a training and a
test set (with 50% of the data designated for each).
The task order was also randomized. Each experiment
was repeated 100 times to smooth out variability.

We generated learning curves for each method on each
data set by averaging the performance across all tasks.
We used the area under the ROC (AROC) as our met-
ric for accuracy on classification tasks and negative
root mean-squared (-rMSE) as our metric for regres-
sion tasks. We chose to use AROC rather than accu-
racy due to the skewed class distribution for the land

mine detection and facial expression recognition tasks.
To evaluate the progress of learning performance as
new tasks were presented, we measured the average
task performance across all learned tasks. For tasks
that were already learned this was straightforward: we
simply evaluated how well the currently learned model
for that task generalized to the corresponding test set.
For tasks that had yet to be learned, we created a
model for the task by fitting the currently learned basis
L to the training data for the task (but did not modify
L). Therefore, the learning curves evaluate both how
well the current basis models previously learned tasks
as well as how well it generalizes to unseen tasks.

The λ and k parameters were independently selected
for each method to maximize the average (over all tri-
als) final performance (i.e., the rightmost value on
each learning curve). While fitting the parameters
to maximize performance on the test set inflates the
performance values compared to fitting these parame-
ters on a validation set, the relative performance lev-
els of the different algorithms (which is our principal
focus) can still be compared. We conducted the grid-
search over all combinations of λ ∈ {e−5, . . . , e5} and
k ∈ {1, . . . , 10}; µ was set to e−5 for all algorithms.
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6.3. Results

The results of our evaluation are given in Figure 2.
The proposed ELLA-SVD approach is better than all
other methods on the land mine task. Specifically,
the approach performs much better than the other ef-
ficient update approach, ELLA Incremental. On the
synthetic regression tasks, the original ELLA method
is clearly the best, with the ELLA-SVD and ELLA
Incremental approaches lagging behind.

In contrast to the strong performance of ELLA-SVD
on land mine and the synthetic tasks, ELLA-SVD does
not perform well on either facial expression recogni-
tion or student exam score prediction. In particular,
the performance of ELLA-SVD on student exam score
prediction actually declines as it learns more tasks.
Further investigation revealed that the cause of this
problem was that the matrix M formed as a consen-
sus of the D(t)’s (which is required for Equation 9) is
a poor approximation to the true objective function
we would like to minimize (Equation 8). The primary
reason for this poor approximation is that the input
distributions for each task (i.e., each school) are quite
different due to the school-specific features of each in-
stance. In this case, the ELLA-SVD updates turn out
to be counter-productive.

We proposed the ELLA Dual Update approach in or-
der to get the best of all worlds. That is, we seek to
achieve the high performance of ELLA-SVD on tasks
where it is appropriate for application (e.g., for land
mine detection), and to fallback to ELLA Incremen-
tal when ELLA-SVD performs poorly (e.g., for the
London schools data). The results for the Dual Up-
date version shown in Figure 2 suggest that this hy-
brid approach is successful. The performance of the
ELLA Dual Update approach clusters tightly with the
best performing algorithm for each learning problem
(with the exception of the synthetic regression tasks,
for which none of the more-efficient approaches does
as well as the original ELLA).

7. Conclusion

We explored the use of the K-SVD algorithm in the
lifelong machine learning setting. Adapting the ap-
proach of Aharon et al. (2006) to the lifelong learn-
ing setting required several key innovations including:
(1) replacing the SVD step in the original algorithm
with a generalized SVD, and (2) selectively updating
components of the model as new task data is presented
to the algorithm. We showed that this new algorithm,
called ELLA-SVD, performs well on problems where
the input distributions of the data are similar.

For domains where the input distributions are not sim-
ilar, we showed that a hybrid approach (in which we
interleave the ELLA-SVD update with another effi-
cient update step called ELLA Incremental) performs
robustly. In future work, we will conduct experiments
to better understand the tradeoffs between ELLA-
SVD and ELLA Incremental. Additionally, we plan
to test our more-efficient versions of ELLA in settings
where applying the original ELLA is computationally
intractable (e.g., when k and d are large).
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