
Modeling and Learning User Preferences Over Sets
Kiri L. Wagstaff1 (kiri.wagstaff@jpl.nasa.gov)a, Marie desJardins (mariedj@cs.umbc.edu)b, and

Eric Eaton (eeaton1@umbc.edu)b

aJet Propulsion Laboratory, California Institute of Technology, Mail Stop 306-463, 4800 Oak
Grove Drive, Pasadena, CA 91109, (818) 393-6393 (voice), (818) 393-5244 (fax)

bMulti-Agent Planning and Learning (MAPLE) Laboratory, Department of Computer Science,
University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, (410)

455-3967 (voice); (410) 455-3969 (fax)

Published in the Journal of Experimental & Theoretical Artificial Intelligence,
volume 22, issue 3, pages 237–268, September 2010.

1. Corresponding Author. Email: kiri.wagstaff@jpl.nasa.gov



Journal of Experimental & Theoretical Artificial Intelligence 1

Abstract
Although there has been significant research on modeling and learning user preferences for

various types of objects, there has been relatively little work on the problem of representing and
learning preferences over sets of objects. We introduce a representation language, DD-PREF, that
balances preferences for particular objects with preferences about the properties of the set. Specifi-
cally, we focus on the depth of objects (i.e., preferences for specific attribute values over others) and
on the diversity of sets (i.e., preferences for broad vs. narrow distributions of attribute values). The
DD-PREF framework is general and can incorporate additional object- and set-based preferences.
We describe a greedy algorithm, DD-Select, for selecting satisfying sets from a collection of new
objects, given a preference in this language. We show how preferences represented in DD-PREF
can be learned from training data. Experimental results are given for three domains: a blocks world
domain with several different task-based preferences; a real-world music playlist collection; and
rover image data gathered in desert training exercises.

Keywords: Set-based preferences; user preferences; preference learning.

1. Introduction

Many interactions between humans and computers involve a search for information or items that
the user specifies and the computer executes. For example, a World Wide Web search engine can
produce a list of web pages that are ranked by their relevance to a specified search query. The
underlying assumption is that the user is searching for a specific piece of information, and that the
pages can be ranked in terms of their likelihood of containing the desired information. The optimal
search engine would place the page that the user is presumably most interested in at the top of the
results.

In contrast, there are many applications in which the user instead wishes to obtain an optimal
set of items. Examples include building a music playlist or selecting an incoming class of students
from a pool of college applicants. The obvious approach, of ranking all items and then picking the
top k, does not always yield the optimal subset (desJardins & Wagstaff, 2005). Items in a set can
interact in ways that increase, or decrease, the overall value of the set. For example, while a user
may have a favorite music artist, he or she may not want a party music playlist composed solely of
that artist’s work. In this case, while having one song by the artist is valuable, additional songs by
the same artist are less desirable than they would be independently, due to redundancy. In this case,
the joint utility is sub-additive. Conversely, it is possible to have two complementary items with
super-additive utility, which means that they are more valuable together than alone. In the music
arena, “We Will Rock You” and “We Are the Champions,” by the group Queen, are two such songs.
Because they are nearly always played together, the “value” of playing only one would be greatly
reduced.

Previous work on preference modeling for sets of objects has focused on capturing interactions
between individual, predefined propositional objects. That is, the objects are not represented by any
features. While this framework is useful for resolving combinatorial auctions (e.g., Nisan, 2000;
Boutilier, 2002), it precludes the possibility of generalization to new objects and sets. Preference
modeling that does account for feature values has focused on ranking the individual items in a list,
rather than selecting the optimal subset of items (e.g., Crammer & Singer, 2001). Our work seeks
to address the gap between these two areas by developing a method for modeling, applying, and
learning feature-based preferences over sets of objects.
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This paper offers two major contributions.2 First, we propose a language, DD-PREF (“Diversity
and Depth PREFerences”), for encoding feature-based user preferences over sets. To constrain the
membership of the set, users can specify the desired attribute values via a depth preference. To
prevent undesired redundancy in a set, users can also specify the amount of diversity they wish
the set to contain. DD-PREF is a framework that can incorporate additional set-based criteria, such
as coverage and complementarity. Second, we present methods for learning user preferences via
observation of user behavior. This frees the user from the necessity of explicitly specifying pref-
erence functions, which would require a deep understanding of the underlying interpretation of the
preferences.

We make two major claims about DD-PREF and our learning methods. First, we claim that DD-
PREF can capture a variety of interesting and meaningful preferences across a range of application
domains. Second, the learned preferences closely match the true preferences. We evaluate these
claims experimentally using three data sets: (1) four separate tasks in an artificial blocks world
domain, (2) a music playlist creation task, and (3) a Mars rover image selection task.

2. Related Work

In this section, we survey existing work on representing, learning, and applying user preferences.
Most existing work has focused on preferences over items, rather than sets. We conclude our dis-
cussion of each of these areas with a focused statement about the limitations of existing work and
how we intend to contribute.

2.1 Representing Preferences

Preference modeling has been widely studied in decision theory, machine learning, and multi-agent
systems. We first review existing work on modeling preferences over objects, features, and sets,
which motivates the need for a new preference representation language that specifically operates
over sets and permits generalization to new data (learning).

Preferences Over Objects. Most of the work in this area has focused on specifying relative
judgments about individual objects, such as “I prefer object di to object dj” (Herbrich, Graepel,
Bollmann-Sdorra, & Obermayer, 1998; Cohen, Schapire, & Singer, 1999; Freund, Iyer, Schapire, &
Singer, 2003; Crammer & Singer, 2001). The emphasis is on learning preferences for the purpose
of ranking objects by their desirability. Recommender systems have a similar goal, and some work
in this area has noted that interactions between items in a set of recommendations may be important
to model (Burke, 2002; Ali & van Stam, 2004; Ziegler, McNee, Konstan, & Lausen, 2005). We
seek methods that explicitly operate one level higher and can capture preferences such as “I prefer
set si to set sj ,” where si and sj may each contain several objects, and the assignment of relative
value to individual objects is not straightforward.

Preferences Over Feature Values. CP-Nets (Boutilier, Brafman, Geib, & Poole, 1997; Boutilier,
Brafman, Domshlak, Hoos, & Poole, 2004), which capture preferential independence and condi-
tional independence relationships among object features in a graphical representation, have been

2. We include results from two earlier conference papers: desJardins and Wagstaff (2005) introduced the original ver-
sion of the DD-PREF language and the search methods for selecting subsets, and desJardins, Eaton, and Wagstaff
(2006) presented an approach for learning DD-PREF preferences from training data. This paper presents the most
recent version of the learning algorithm, investigates new music and rover image data, and presents a new evaluation
methodology.
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applied to a number of different domains, including web page configuration (Domshlak, Brafman,
& Shimony, 2001). However, CP-Nets capture only interactions among features, not among objects
in a set (Boutilier et al., 1997). Reilly et al. (2004) describe an approach called dynamic critiquing
that allows a user to provide feedback about multiple features simultaneously. Like the work on
CP-Nets, this research focuses on the interactions between features, not among multiple objects.

Preferences Over Sets. Most of the previous research on set-based preferences has been in the
area of combinatorial auctions, in which assessing the value of a set of objects is essential (Nisan,
2000; Boutilier, 2002; Cramton, Shoham, & Steinberg, 2005). However, these objects are generally
assumed to be propositional: items have distinct identities but no descriptive features. Preference
statements tend to be in the form “I prefer the set {d2, d7, d9} to the set {d1, d2, d3, d5}.” While it
is useful in a combinatorial auction to be able to assess the impact on a set’s valuation as auctioned
objects are added or subtracted, it is not possible to generalize beyond the list of objects participating
in the auction (nor is there any need to do so in this setting). Therefore, the combinatorial auction,
as it has traditionally been studied, does not provide a good setting for modeling and learning more
general set-based preferences. However, our models for general set-based preferences could be
applied to develop a more general combinatorial auction setting, in which the set of objects could
be determined dynamically at runtime.

Barbera, Bossert, and Pattanaik examined methods for modeling preferences over opportunity
sets, where the important issue is freedom of choice within mutually exclusive alternatives (Barbera
et al., 2004). Barbera et al. used the term joint alternatives for the problem in which we are
interested (collections of objects that may all be useful or relevant). Again, current research in
this area has focused strictly on propositional domains, precluding any notion of generalization or
learning.

Some work has been done with symbolic features and preferences over sets. Brafman et al. (2005)
proposed the use of two specific classes of preference statements, of the form “I would like a set
containing at least one object with a given value for feature f” and “I would like a set for which the
number of items with value v for feature f is {≤,=,≥} k.” These set-based preferences are in a
sense complementary to DD-PREF, since they do not support preferences about the diversity of sets.
Their approach uses TCP-nets to graphically encode the conditional preferences over other feature
values. However, because of the ceteris paribus semantics of TCP-nets, two sets are directly compa-
rable only if their descriptions differ on exactly one of the set-based attributes. These comparisons
are transitive, so the TCP-net does encode a partial order over sets, but our goal is to provide a total
order: that is, to support comparisons between arbitrary sets.

Our Goal: Feature-Based Preferences over Sets. Given that existing work does not accom-
modate preferences that are sensitive both to feature values and to interactions among objects in
a set, we propose a new line of research that focuses on feature-based preferences over sets. In
Section 3.1, we present DD-PREF as an initial step in this direction.

2.2 Learning Preferences

To our knowledge, no methods currently exist for learning user preferences over sets. This capability
is critical for generalizing the user’s preferences to a new pool to select satisfying subsets. Methods
do exist, however, for learning preferences for individual items (based on feature values) and for
ranking items according to a user’s preferences.
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Pairwise Judgments. Most of this work has focused on a training paradigm in which pairwise
judgments (“I prefer object i to object j.”) are available. RankNet (Burges, Shaked, Renshaw,
Lazier, Deeds, Hamilton, & Hullender, 2005) uses a neural network to learn and model object pref-
erences, while Chu and Ghahramani (2005) used a Gaussian process approach. Ensemble methods
for training a set of learners on this kind of data include Hedge (Cohen et al., 1999) and Rank-
Boost (Freund et al., 2003). Each of these methods can then be applied to a new pair of objects to
obtain a judgment about which one is more highly preferred.

Direct Rank Assignment. Ordinal regression methods have been used to directly assign a
rank to every item in a collection, including neural networks such as RankProp (Caruana, Baluja, &
Mitchell, 1996), structural risk minimization (Herbrich et al., 1998), support vector regression (Her-
brich, Graepel, & Obermayer, 1999), support vector ordinal regression (Chu & Keerthi, 2007), and
perceptrons such as PRank (Crammer & Singer, 2001). Most of these methods use pairs of objects
to train but can predict ordinal ranks directly for new objects.

Our Goal: Learning Preferences over Sets. In Section 4, we present an approach for learning
preferences from user-provided examples of preferred sets. Such a learning setting is more realistic
for set-based preference modeling, where it is unlikely that the user will provide a ranked list of
sets, or even a number of pairwise judgments between sets.

2.3 Applying Preferences

Once the user’s preferences have been specified (or learned), a method is needed for applying those
preferences to find a satisfying solution. As mentioned in the previous section, a significant amount
of work has been done on how to apply individual object-based preferences, learned from pairwise
judgments, to select preferred objects. Less work has been devoted to applying preferences for the
purpose of finding a desirable set of objects.

Finding a Satisfying Subset. The naive approach to obtaining a good subset of size k is to
rank all of the candidate objects by their degree of desirability and then return the subset composed
of the top k items (the “Top-K” approach). Several studies have shown that this approach does
not perform well, on a variety of data sets (Ali & van Stam, 2004; desJardins & Wagstaff, 2005;
Ziegler et al., 2005; Brafman, Domshlak, Shimony, & Silver, 2006). Barbera et al. referred to
the problem of ranking all subsets of size k as “fixed-cardinality ranking.” They discussed the
problem of computing a ranking over sets, given only pairwise judgments between items. In this
case, finding the single best set is straightforward, but ranking the suboptimal subsets can be hard.
Cohen et al. (1999) showed that given a pairwise preference function, finding the top k items is
an NP-complete problem. Price and Messinger (2005) gave a similar result for finding an optimal
subset. The most common approach for addressing this intractability is to use a greedy heuristic that
incrementally adds items to the subset (Cohen et al., 1999; Bradley & Smyth, 2001; Zhai, Cohen,
& Lafferty, 2003; desJardins & Wagstaff, 2005; Price & Messinger, 2005).

Finding a Salient Subset. Price and Messinger (2005) tackled a slightly different problem: the
user is assumed to be interested in one specific item, and the goal is to return the subset of items
most likely to contain the desired item. In contrast, our focus is on situations in which the user
wishes to obtain a specific kind of subset, where all of the component items (and their interactions)
are important.

Finding a Collection of Solutions (Recommender Systems). Many recommender systems
seek to return a set of (recommended) items based on a user-specified query, and significant work
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has been done to increase the diversity of the returned set of recommendations (Bradley & Smyth,
2001; Bridge & Ferguson, 2002; McSherry, 2002; Zhang, Coenen, & Leng, 2002). In contrast, we
are interested in finding a set of items that collectively satisfy similarity to known sets (not a single
query item) as well as matching the desired diversity of that set. Further, we wish to model the
individual user’s desire for diversity, not just maximize it for all users. Coyle and Cunningham
(2004) proposed learning user-specific feature weights for use in ranking a list of recommended
options. We also use individual feature weights, but for the purpose of selecting a subset, rather
than ranking individual items.

Our Goal: Finding the Most Preferred Set. In Section 3.2, we present a greedy method for
applying a learned preference to identify the most satisfying set of objects. This approach examines
the relevance of individual items (depth) as well as the set as a whole (diversity). To our knowledge,
it is the first such solution to naturally accommodate both factors.

3. Representing and Applying Set-Based Preferences

This section presents our methods for modeling user preferences and for applying those preferences
to new collections to select highly desired subsets.

3.1 The DD-PREF Language

It is important to establish the aspects of user preferences that we wish to capture. In this work, we
argue that there are two important, sometimes competing components: the quality of the individual
objects in the set, and the distribution of the objects in the set. Quality is clearly relevant, but we
also claim that the distribution—specifically, the diversity—of the objects in the set is an equally
important aspect of user preferences. This claim merits some justification.

The Portfolio Effect and Diversity. An important concept that has arisen from set-based stud-
ies is the portfolio effect, which occurs when the valuation of a set is not equal to the sum of its
component item valuations. This effect can be modeled in various ways, such as trading off “rele-
vance” against “novelty” for the subtopic retrieval problem (Zhai et al., 2003) or by measuring the
“marginal relevance” of each new item to be added to a set of results (Carbonell & Goldstein, 1998).
In a survey of hybrid recommender systems, Burke (2002) briefly mentioned the portfolio effect;
the only suggestion given is to avoid objects that the user has already seen. Ali and van Stam (2004)
indicated that the portfolio effect is a major concern in the domain of TV show recommendations;
they mentioned a domain-specific set reduction technique (use only the next episode of a TV show
to represent that series), and suggested that one should avoid “imbalance” in a recommendation set,
but did not give specific methods for doing so.

Often, the portfolio effect boils down to a need for diversity to be explicitly accounted for in
item selection and subset selection. Ziegler, McNee, Konstan, and Lausen (2005) performed an
extensive user study to examine the effects of a technique they call topic diversification on book
recommendations. They found that by balancing a recommendation list using a user’s interests,
although accuracy is reduced, user satisfaction is increased. Their technique is domain-specific,
and treats objects as having only a single relevant attribute. However, their findings underscore the
importance of capturing the user’s desired level of diversity in a set of results. Other studies have
shown that recommender systems can benefit by placing an equal emphasis on similarity to the
query item and diversity of the collection of results that is returned (Bradley & Smyth, 2001). The
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Order-Based Retrieval approach encodes a generic (not user-specific) bias towards recommended
sets that contain a “spread” of options around the user’s query (Bridge & Ferguson, 2002). The
DCR-1 and DCR-2 algorithms explicitly seek to increase diversity while maintaining retrieval ac-
curacy (McSherry, 2002). A study on increasing diversity found that an emphasis on diversity can
actually increase the retrieval accuracy (Zhang et al., 2002). However, to date, these approaches
have only been applied to find subsets that contain the (assumed) single item desired by the user,
as opposed to the domains we focus on, in which the goal is to select a subset that is desirable as a
whole.

The DD-PREF Language. To jointly address both quality (depth) and diversity, we present
the DD-PREF language for capturing feature-based preferences over sets of objects. We assume a
scenario in which a user wishes to select a subset s of k objects from U , the universe of n objects,
where each object is represented by a vector of m feature values. The user’s depth preference
specifies the preferred values for each feature, while the diversity preference specifies the desired
amount of variability of the values for each feature among the objects in the selected subset.

We will use the term candidate subsets to refer to all
(
n
k

)
possible subsets of size k that can

be constructed from n objects; selected subset to refer to the subset of k objects that is returned
by an algorithm; and optimal subset to refer to the best available subset. The optimal subset is the
candidate subset that maximizes the DD-PREF valuation function, as defined in the next subsection
(Equation 10). Each object xi is represented as a feature vector, (x1

i , . . . , x
m
i ), where xf

i ∈ Df , and
Df is the domain of feature f . In this paper, we focus on continuous (real-valued and integer-valued)
features; we are currently generalizing the methods to categorical (discrete) and text features.

In DD-PREF, a preference statement P is a collection of individual feature-based preferences
{Pf}m

f=1. Each preference Pf is expressed as a tuple 〈qf , df , wf 〉, indicating a preference for
subsets that exhibit a diversity of df ∈ [0, 1], subject to a quality function qf : Df → [0, 1], with
a feature weight of wf ∈ [0, 1]. The weight wf indicates the relative importance of the feature
and is applied to both the depth (quality) and diversity. For example, a Mars rover scientist might
identify “percent of image that contains rocks” as an important feature (wf = 1.0), preferring
sets containing images that are 50-80% rock (qf ), with high diversity (df = 0.8). In this work,
we examine preferences that are explicitly specified by a user as well as preferences learned from
example subsets provided by the user.

Since preferences are specified on a per-feature basis, dependencies between features cannot
currently be captured by DD-PREF. For example, we cannot express a preference for red blocks
(color feature) that applies only if they are also small (size feature). In the domains that we have
investigated to date, the independence assumption appears to be reasonable (both intuitively and
empirically). Nevertheless, in some domains, feature interactions are clearly important to capture.
Our learning methods could be extended in fairly straightforward ways to capture some kinds of
interactions between features; however, this increased expressivity comes with a significant cost in
terms of training complexity (number of instances) and computational complexity (time required
to learn the models) (see Section 4). In future work, we plan to investigate ways to model inter-
feature dependencies, perhaps by using modified CP-Nets (Boutilier et al., 2004). CP-Nets capture
preferential independence and conditional independence relationships among features in a graphical
representation, but they have not yet been applied to object sets; in addition, general methods for
learning CP-Nets have not been developed.
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User User PreferencesSample Subset

Healthy Steak, salad, muffin

Steak and cheeseAtkins

Junk food
Candy bar and 

doughnut

Protein Fat Carbs
0.1 0.3 0.1

Protein Fat Carbs
0.1 0.2 0.3

Protein Fat Carbs
0.8 0.8 0.5

Figure 1: Three examples of user preferences when selecting foods for a meal. Each user’s abstract
preference (left) is specified quantitatively (right). The quality functions (qf ) for each
feature (protein, fat, and carbohydrates) are shown as small graphs, with the preferred
diversities (df ) below each one. Highly weighted features are underlined.

Depth. The quality functions qf specify the preferred depth of the optimal subset by indicating the
desirability of each feature value. Figure 1 shows a simple illustrative example of food preferences
for three different users. The first user, who prefers healthy food, has a quality function with a
bimodal distribution for protein: some desired items are high in protein, and some are low. This
individual also prefers foods that are low in fat. In contrast, the “Atkins” user prefers high-protein
and low-carb foods, and the “Junk food” user prefers low-protein and high-carb (sugar) foods.

In the simplest case, the quality function can be represented as a step function, where values
in a desired range [vmin, vmax] are mapped to quality 1 and all other values are mapped to 0. This
preferred range can also be interpreted as a soft constraint on the feature values by penalizing val-
ues outside the range to varying degrees. Other examples of quality functions include a bimodal
preference, indicating that very large and very small values are preferred to medium values, or a
monotonic preference, indicating that larger values are preferred to smaller ones.

In this work, we represent quality using a linear additive model. Specifically, given individual
features’ quality functions qf and feature weights wf , we define the depth-match (overall quality
with respect to preference P) of an object as the weighted average quality of its feature values:

depth-match(x,P) =
1∑
f wf

m∑
f=1

wfqf

(
xf

)
. (1)

(See Section 3.2 for more detail.)

Diversity. Interactions between objects are modeled as diversity preferences. Diversity is a set-
based property that captures the degree to which values for a particular feature are evenly dispersed
across the range of possible values. In DD-PREF, diversity preferences range from 0 to 1, where 0
corresponds to a preference for minimal diversity (all objects have the same value for that feature)
and 1 represents a maximal diversity preference (objects have values that are maximally distinct and
spread evenly across the desired range). In Figure 1, the “Atkins” user desires very little diversity in
the amount of protein or carbs present, while the “healthy” user wants high diversity in the amount
of protein present: the steak is high in protein, but the salad and muffin are low. In this case (for
a feature with high diversity and a multimodal distribution), the preference will be best satisfied
by a collection of foods at different peaks in the quality function. For a feature with a multimodal
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distribution but low diversity, such as the “junk food” user’s fat preference, the preference would be
best satisfied by a collection of foods at any single peak in the quality function. The candy bar and
doughnut are high in fat, but this user would be equally pleased with jelly beans and soda, which
have none.

We define diversity in terms of a complementary notion we call skew.3 Skew quantifies the
amount by which a set of real values diverges from an even distribution of values over the range.4

A low skew value means a very even distribution, corresponding to high diversity; high skew corre-
sponds to low diversity.

Suppose we have a list V of r > 1 sorted values: V = 〈v1, . . . , vr〉, where vi ≥ vi−1 for
i = 2, . . . , r. Then we calculate the skew σ(V ) as the normalized squared loss for a linear fit through
v1 and vr. This loss function is normalized by the maximum possible squared loss. Specifically,

σ(V ) =
∑r

i=1(vi − v′i)
2

M(V )
, (2)

where v′i, the ith value in an evenly distributed list of r values bounded by v1 and vr, is computed
by:

v′i = v1 + (vr − v1)
i− 1
r − 1

, (3)

and M(V ), the maximum squared loss for a list with the same v1, vr, and length as V , is:

M(V ) =
r−1∑
i=1

(v′i − v1)2. (4)

The maximum squared loss occurs when there are only two distinct values (equal to v1 and vr) in
the list, and the values are distributed in a maximally uneven fashion. Without loss of generality,
we let there be one value at vr and the remaining r − 1 values at v1, yielding Equation 4. By this
definition, skew is undefined for a list composed of only one distinct value (i.e., when r = 1 or
when vi = v1 for all i); for completeness, we set σ(V ) = 0 in this case.

Figure 2 shows three different sets of r = 10 values, all with the same minimum (v1 = 1) and
maximum (v10 = 10) values. The linear fit through 1 and 10 is shown by a solid line. Figure 2(a)
matches this distribution exactly and has a skew of 0.0. Figure 2(b) has ten values at 1 and one value
at 10, so it is maximally divergent from the constrained linear fit and has a skew of 1.0. Figure 2(c)
has all eight intermediate values set to 5.5; the resulting skew is 0.21.

Since low skew corresponds to high diversity and vice versa, we define the diversity of feature
f over a candidate subset s = {x1, . . . , xk} as 1 minus the skew of that feature’s values in s:

divf (s) = 1− σ
(

sort
(
〈xf

i |i = 1, . . . , k〉
))

. (5)

3. We use this term for its intuitive meaning of bias or unevenness, not in the statistical sense of skewness.
4. Although we only have real-valued features in the domains we study here, a similar notion of skew can be defined

for integer, categorical, and text values. For integer values, the same basic formula can be used, but the normalizing
term would be computed as the closest possible integer approximation to a linear fit. For categorical features, an
information-theoretic approach would be appropriate; in this case, skew is essentially equivalent to the statistical
entropy of the distribution. For text domains, we have developed a diversity measure based on the average cosine
similarity (distance) between documents in a set (Montminy, 2008).
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(c) Skew 0.21

Figure 2: Sets with different skew values.

The diversity of a set is then the weighted average of the diversity values for each feature:

div(s) =
1∑
f wf

m∑
f=1

wf divf (s). (6)

Just as other classes of quality measures are possible, other diversity measures could be intro-
duced by modifying this loss function or defining new loss functions. The function above models
diversity as the evenness of the value distribution over the observed range. This definition could be
modified to use the evenness of the value distribution over the entire possible range of a variable (by
using Dmin

f and Dmax
f rather than v1 and vr in Equation 3), or to use full linear regression rather

than “pinning” the endpoints at the minimum and maximum values. An alternative loss function for
diversity could be defined in terms of the statistical entropy of the value distribution, or how closely
the distribution matches a uniform one. The subset selection and learning methods that we describe
would apply equally well for other such diversity measures. Our general framework could also
potentially be extended to handle other types of set-based preferences than diversity: for example,
the “at least one object with property P ” and “k of n” preferences used by Brafman et al. (2006).
Which measure to use depends on the application domain, and it seems obvious that no one measure
is likely to work equally well for all domains.

3.2 Subset Selection: The DD-Select Method

Given a preference expressed in DD-PREF, we require a method for applying it to a new collection to
identify good subsets. We first define how to calculate the value of a candidate subset, with respect
to a given preference, and then describe the DD-Select algorithm.

As mentioned earlier, we define the depth-match of an object x ∈ subset s as the weighted
average quality of its feature values:

depth-match(x,P) =
1∑
f wf

m∑
f=1

wfqf

(
xf

)
, (7)

where xf is the value of feature f for object x. The depth-match of a set s is the average depth-match
of the objects in the set:

depth-match(s,P) =
1
|s|

∑
x∈s

depth-match (x,P) . (8)



10 Kiri L. Wagstaff et al.

Algorithm 1 The DD-Select(P, U, k, α) algorithm
1: Inputs: preference P , data set U , number of items to select k, diversity weight α
2: Output: best subset sbest of size k
3: Initialize sbest = {xi}, i = 1 . . . k // first k items
4: for x ∈ U do
5: s = {x} // Initialize candidate set s with seed item {x}
6: for j = 2 to k do
7: y′ = argmaxy∈(U−s)VP (s ∪ {y}) // Select the best next item y′

8: s = s ∪ {y′}
9: end for

10: if VP (s) > VP (sbest) then
11: sbest = s
12: end if
13: end for
14: Return sbest

The depth-match of a set will always be in the range [0, 1].
To capture the degree to which a subset’s diversity matches the desired diversity, df , we calculate

the average (weighted) diversity match, which is 1 minus the squared diversity error:

div-match(s,P) =
1∑
f wf

m∑
f=1

wf

(
1− (df − divf (s))2

)
. (9)

The diversity-match of a set will always be in the range [0, 1].

Subset Valuation. Finally, we define the valuation of a subset s, with respect to preference P , as

VP(s) = (1− α) depth-match(s,P) + α div-match(s,P). (10)

The parameter α encodes the relative importance of diversity and depth in the user’s overall set
preference. If α = 0, then the user is only concerned with depth, and doesn’t care about diversity.
If α = 1, then the user is only concerned with diversity; the user has no preference for specific
items, but prefers to see certain distributions of values (evenly spread out for high-diversity features
and clustered together for low-diversity features). If α = 0.5, then depth and diversity are equally
important.

DD-Select Algorithm. We have devised a greedy algorithm, DD-Select, for selecting a subset
of k items, given a preference statement P (desJardins & Wagstaff, 2005). This algorithm (see
Algorithm 1) takes as input the preference, P; the universe of items, U ; the number of items to
select, k; and the diversity weight, α. It initializes sbest (the best set found so far) with the first k
items in U . Next, it greedily constructs the best set of k items, starting with each xi ∈ U as the
“seed item.” This is necessary because diversity is not defined for a set with only one member. We
have shown that DD-Select (referred to as “Wrapper-Greedy”in our previous work) yields close to
optimal performance in practice (desJardins & Wagstaff, 2005).

The complexity of calculating the depth or diversity of a set of k items is O(mk). Therefore,
the cost of computing VP is also O(mk). We assume that, in general, n � k, where n = |U |. The
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inner loop in DD-Select (lines 6-9) evaluates n− 1 subsets of size 2, . . . , and (n− k +1) subsets of
size k, so it is O(

∑k
i=1 m (n − i + 1) (i)) = O(mk2n). The DD-Select algorithm applies this step

for each of n seed items, yielding an overall runtime of O(mk2n2).

4. Learning User Preferences

This work is motivated by the observation is that it is often much easier for users to specify exam-
ples of their preferences than it is for them to convert an abstract concept, such as “healthy” food,
into quantitative preferences. In this section, we present a machine learning method to infer user
preferences from a series of example subsets provided by the user.

Problem definition: Given a data collection S consisting of one or more training sets si, learn
a preference L that approximates the (implicit) true preference T that was used to generate S.

Approach: To learn preference L for data collection S = {s1, . . . , sn}, we first estimate the
desired depth and diversity for each feature, and then we estimate the optimal feature weights. We
currently assume that α is known; in the experimental results, we analyze the effect of varying α on
performance.

Learning Depth Preferences, ~q. We treat the problem of learning the quality functions as one
of probability density estimation. Specifically, we assume that the frequency with which a feature
value appears in the training data is proportional to its quality to the user.

We estimate the quality functions ~q = {qf} using kernel density estimation (KDE) (Duda,
Hart, & Stork, 2001), a well established method for estimating probability density functions. KDE
models each observed value with a Gaussian distribution, then sums the Gaussians generated by
all of the data items to produce a single, smoothed estimate of the distribution. Given samples
V = {v1, . . . , vn}, KDE estimates the probability of v as

PKDE (v) =
1

hn

n∑
i=1

ϕ

(
v − vi

h

)
, (11)

where ϕ(·) is the univariate Gaussian function with mean 0 and variance 1:

ϕ(x) =
1√
2π

exp
(
−x2

2

)
. (12)

The bandwidth h in Equation 11 determines the width of the Gaussians; the optimal bandwidth
minimizes the expected error of the estimate on the underlying distribution. We use a heuristic
approach for estimating the optimal bandwidth, as described by Lowthian and Thompson (2001):

h = 0.9 n−1/5 min
(

stddev(V ),
iqr(V )
1.34

)
, (13)

where stddev(·) is the standard deviation and iqr(·) is the interquartile range. In our experience,
this estimation of h provides good approximations to the quality functions.

We obtain qf by normalizing the estimated density function PKDE by the likelihood of the most
likely value, so that this most likely value will have quality 1:

qf (v) =
PKDE (v)

max
v′

PKDE (v′)
. (14)
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As mentioned earlier, this learning method assumes that the value functions for each feature
is independent of the other features. This approach could be extended by using multidimensional
kernel density estimation (Scott, 1992), although this method is not practical for more than a few
dimensions because of the difficulty in selecting an appropriate form for the kernel and an appro-
priate bandwidth vector. The training complexity is also increased (i.e., more training instances are
required as the number of dimensions increases). Using multidimensional KDE to model interac-
tions between pairs, or possibly even triples, of features seems likely to suffice for most domains;
we leave this possibility as future work.

As with any machine learning approach, this approach makes an implicit assumption that the
set of features used to represent the domain is appropriate and sufficient. In addition, this learning
model infers preferences from a collection of user-provided subsets S without considering the larger
pool S∗ from which those subsets were selected. That is, in calculating qf (v), we are effectively
estimating the conditional quality qf (v|S∗) rather than the “universal” quality of v given an infinite
pool U . If the distribution of values in S∗ is the same as in the universe U , then qf (v|S∗) =
qf (v|U). However, if S∗ is skewed, so that high-value items are over- or underrepresented in S,
then the learned quality functions will be affected. If high-value items are overrepresented in S∗,
then lower-value items may never be chosen for S. As a result, the user-provided subsets will tend
to overrepresent high-valued items, and they will seem to be more valuable than they actually are.
On the other hand, if high-value items are underrepresented in S∗, then they can only rarely appear
in the selected subsets S, and the learner may infer that the items are not desirable, as opposed to
realizing that they are simply rare. This effect is a direct result of our assumption that the quality
of a value correlates with frequency of its occurrence in the example subsets. In future work, we
intend to generalize this solution to account for skewed S∗ distributions.

Learning Diversity Preferences, ~d. Given a uniform prior over target diversities, the maximum a
posteriori (MAP) estimate of the desired diversity ~d = {df} is the same as the maximum-likelihood
estimate, which is the average observed diversity for each feature f over the sets in collection S:

df =
1
|S|

∑
si∈S

divf (si). (15)

As with value-function learning, this approach rests on the assumption that is implicit in the
DD-PREF representation, that the diversity and depth preferences of each feature are independent
of each other. Although it is relatively easy to imagine situations (such as disjunctions or parity
functions) where the value functions are not independent, it is somewhat more difficult to identify
situations where a user’s diversity preferences along different features would interact. One slightly
contrived example might be a painting domain, in which objects vary by hue and brightness. A
painter might select a “palette” of a given hue (say, blue) in varying brightnesses, as the main color
theme, along with a “rainbow” of hues of fixed brightness, to provide splashes of color. In such a
case, domain-specific knowledge might be needed—for example, in the painting case, if the user
explicitly identified that they needed two separate sets (palette and rainbow), then within each of
those sets, the diversity preference could be modeled without difficulty using the current form of
DD-PREF.

Learning Feature Weights, ~w. As a final step, we (locally) optimize the feature weights ~w using
BFGS bounded optimization (Gill, Murray, & Wright, 1981; Gill & Murray, 1976), as provided in
the Weka machine learning toolkit (Witten & Frank, 2005). BFGS is a quasi-Newton algorithm for
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locally minimizing an objective function; the bounded-optimization form of the algorithm provided
with Weka adds bounds constraints on the variables. We assume that the training sets si are all
positive instances—that is, highly desirable sets—and therefore we set the target valuation VT (si)
for each of these training sets to 1.0. We then use BFGS to find the weights ~w = {wf} that
minimize the objective function:∑

si∈S

(VT (si)− VL(si))2 =
∑
si∈S

(1− VL(si))2. (16)

The learned preference L is then the tuple composed of the quality functions, diversity functions,
and weights:

L =< ~q, ~d, ~w > .

5. Data Sets, Metrics, and Methodology

In this section, we provide a description of the data sets that we used in our experiments. Given
the novelty of the problem of learning set-based preferences, we also define and discuss appropriate
evaluation metrics. Finally, we outline the methodology used in each of the experiments for learning
and evaluating preferences.

5.1 Data Sets and Preferences

We have collected data sets in three different application domains: blocks world, music, and rover
images. These domains include both preferences that we explicitly encoded (for the blocks world
domain) and observed preferences of users (from music playlists and user-selected rover image
subsets).

5.1.1 BLOCKS WORLD.

To test our ability to learn user preferences in a simple domain, we used synthetic, randomly gener-
ated “blocks world” data sets, in which each item is represented by four features:

• size: a real value from 0 to 100

• color: an integer from 0 to 6

• number of sides: an integer from 3 to 20

• bin: sequential locations in a storage area; an integer from 0 to 100

Blocks World Preferences. We tested four different preferences for our experiments, based on
four different intuitive blocks world tasks. Because we explicitly expressed these preferences, we
know what the true preference should be and can compare the learned preference directly to it. We
experimented with qf specifications that range from simple range constraints (shown as [minval,
maxval]) to more complicated functions (linear or bimodal distributions). A value of 1.0 for qf

means that all values for feature f are equally desirable. In each case, we specify Pf = 〈qf , df , wf 〉;
see Table 1 for full details on the Castle, Child, Mosaic, and Tower preferences.
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Table 1: Preferences used for the blocks world data.
Castle: We want blocks to build a castle.
We need large blocks for structure and small
blocks for decoration. We want blocks of
similar colors, although we do not care which
color is chosen, and the blocks should have
few sides. Location does not matter.

Child: We are choosing blocks for a child.
We want a variety of multi-colored, medium-
sized blocks for grasping, with few sides, lo-
cated fairly close together.

Pf qf df wf qf df wf

Psize max
(

100−v
100 , v

100

)2 1.0 1.00 [10, 50] 1.0 1.0
Pcolor 1.0 0.2 0.50 1.0 1.0 0.8

Psides [3, 8] 1.0 0.75 [3, 6] 1.0 0.8
Pbin 1.0 1.0 0.00 1.0 0.2 0.4

Mosaic: We want to create a mosaic with the
blocks. We want a variety of blocks of var-
ious shapes, with an emphasis on small sim-
ple blocks. We want similar but non-identical
colors, and the location of the blocks is not
important. The values of size and num-sides
decrease linearly from 1 to 0 across the range
of values. Size is the most important, then
color, and finally number of sides.

Tower: We want to build a uniform tower.
We want large similar-sided blocks of uni-
form color with a limited number of sides; the
location of the blocks is not important.

Psize
100−v
100 0.80 1.0 [50, 100] 0.1 1.0

Pcolor 1.0 0.75 0.8 1.0 0.0 1.0

Psides
17−(v−3)

17 1.00 0.6 [4, 8] 0.0 1.0
Pbin 1.0 1.00 0.0 1.0 1.0 0.0

5.1.2 MUSIC

DJs at radio stations, clubs, and parties frequently perform subset selection to assemble playlists that
capture the preferences of the audience, radio show theme, or party attendees. We collected a data
set that consists of 1021 distinct songs from six sources. Each song in the data set is represented by
four features:

• composition date: year (integer)

• composer birthdate: year (integer)

• duration: minutes (real value)

• tempo: beats per minute (real value)

The songs are taken from six sources: daily playlists in September and October 2005 from three
radio stations (All Classical (AC),5 Colorado Public Radio (CPR),6 and MPR Classical Music7);
playlists for All Classical from three weeks before Christmas 2005; playlists for All Classical during

5. http://www.allclassical.org/
6. http://www.cpr.org/
7. http://minnesota.publicradio.org/
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Table 2: Music playlist data. The first three data sets are all composed of classical music, while the
last three are “themed” data sets.

Data Set AC CPR MPR Christmas Mozart Rock
# playlists 15 31 22 21 14 28

Mozart’s birthday week in January 2006; and rock songs from a student’s personal CD collection.
The dates and durations were obtained by looking up each song in the online “allmusic” database,8

or on the CD jacket. The tempo value was obtained using a public-domain acoustic analysis pro-
gram, BpmDJ.9

Music Preferences. To test our ability to learn preferences from example subsets, we used each
source’s daily playlists as subsets from the song database. To facilitate comparisons across the col-
lections, we defined each playlist as ten songs that were played in sequence, breaking a single day’s
list of songs into multiple 10-song playlists and discarding extra songs when necessary. Individual
songs may have been played multiple times, or may have been played by multiple sources. Songs
from the Rock collection are an exception: each song is included only once in one playlist and
was not played by any other source. Table 2 shows the number of playlists we obtained from each
source.

5.1.3 ROVER IMAGES

The instruments used by remote spacecraft to collect data can invariably obtain more data than can
be transmitted to Earth, given bandwidth constraints. It is important to make the best use of the
bandwidth available, by identifying the most relevant and important observations. In the normal,
fully targeted, operational mode, scientists must determine ahead of time which observations should
be collected and transmitted. Our goal is to enable an opportunistic mode, in which the spacecraft
would collect several times the bandwidth allocation, and would then use onboard analysis to de-
termine which subset of images should be transmitted. In support of this goal, we have conducted
experiments with automatically selecting subsets of Mars rover images, based on per-user prefer-
ences.

To perform this study, we obtained a set of 100 grayscale images taken on Earth by a Mars field
test rover. Each image is represented by six features: the percent of the image composed of sky,
rock, rock layers, dark soil, light soil, and shadow. These feature values were obtained by training
a support vector machine (SVM) to classify individual pixels into one of these six classes, then
calculating the overall fraction of the image classified as each type of pixel (Mazzoni, Wagstaff, &
Castano, 2004). Figure 3 shows one of the images and its corresponding feature values.

Rover Image Preferences. To determine user preferences over rover images, we asked six users
to select their most preferred subset of images using a graphical interface. Two of the users (C and
W) are trained geologists, and four (K, L, M, and T) are non-experts. The users reviewed collections

8. http://www.allmusic.com/
9. http://bpmdj.sourceforge.net/
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Sky Rock Layers Light soil Dark soil Shadow
32.6 10.1 2.0 4.9 47.1 0.8

Figure 3: Rover image 9 of 100 and its feature values: percent of the image pixels assigned to each
category.

of 20 images, selecting the best subset of five images from each collection. Each user performed this
task five times, thereby encountering all 100 images in the data set, yielding five selected subsets
per user. The same subset divisions were provided to all users.

5.2 Evaluation Metrics and Methodology

For the task of learning preferences over sets, the metrics and methodology must enable the evalu-
ation of two claims: first, that a learned preference L accurately recognizes subsets that are highly
valued by T (recall); and second, that learned preferences are distinct in that data gathered from
different tasks yield qualitatively different preferences (precision).

5.2.1 RECALL.

We define two measures that can be used to estimate how accurately the learned valuations approx-
imate the true ones: retrieval similarity and overlap of selected subsets with the true subsets.

Retrieval Similarity. This measure is applicable only in the blocks world domain, where we
know the true preference. We compute VT (sT ) and VT (sL), the value ascribed by the true prefer-
ence to the best set chosen by DD-Select using the true and learned preferences, respectively. We
also compute VL(sT ) and VL(sL), the value ascribed by the learned preference to these two sets.
Comparing these values gives an indication of how close we are to retrieving the optimal subset
with the learned preference. Rather than computing a similarity measure, we plot these two values
on the same graph, which gives a visual sense of how close the learned preference comes to the true
preference.

Overlap. Another measure of similarity between the true and learned preferences is the amount
of overlap between the selected subset sL and the optimal subset sT . This measure provides an
intuitive sense of accuracy, but it can underestimate retrieval quality, because there may be several
subsets that have little or no overlap, but are nearly equal in value.
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5.2.2 PRECISION.

While it is important that L assigns high values to subsets that are highly valued by T , we do not
want L to assign high values to everything else. Preferences learned from different users or different
sources should be qualitatively different.

Correlation of Learned Preferences. We compute the correlation between two preferences
based on the valuations they assign to a large collection of random subsets. Let ~vL1 and ~vL2 be the
vector of values assigned by L1 and L2, respectively, to each s in a collection of subsets S. We use
the standard correlation formula between two vectors x and y of length n,

r(x, y) =
n

∑
xy −

∑
x

∑
y√

(n
∑

(x2)− (
∑

x)2)(n
∑

(y2)− (
∑

y)2)
, (17)

to compute the correlation r( ~vL1 , ~vL2). The two preferences are distinct (have high precision relative
to each other) if they have low correlation. This computation yields a t× t symmetric matrix.

5.2.3 EXPERIMENTAL METHODOLOGY.

For each trial, we divided the available data into nf disjoint collections (folds) of a uniform size.
In the blocks domain, each fold is simply a collection of random blocks. In the music domain,
each playlist provides the basis for a fold, so each data set has a different number of folds. Each
playlist contains 10 songs, and we added 40 randomly selected songs not in the playlist to create
folds of a standard size (50 songs). In the rover image domain, the five folds correspond to the five
collections of 20 images that were shown to the users.

In the blocks world, where we know the true preference T , we used the DD-Select method to
extract the best subset of items sT from each fold, yielding nf example subsets for each T . In the
music domain, sT is the true playlist associated with each fold. In the rover domain, sT is the user’s
selected subset from the set of images associated with each fold. For each experiment, the number
of items in the underlying data set (n), number of items in the training and test subsets (k), number
of folds (nf ), and fold size are shown below.

Domain n k nf fold size
Blocks 4100 10 20 100
Music 1021 10 14-31 50
Rover 100 5 5 20

6. Experimental Results

We have evaluated the preferences learned by DD-PREF using each of the above metrics. In this
section, we present visualizations of the learned preferences as well as quantitative performance
results.

6.1 Blocks World Results

We first show examples of the depth preferences learned from the blocks world data and compare
these preferences to the known true preferences. We then report and discuss quantitative results.
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Feature Name
Size Color Sides Bin
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0
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0 0.5 1
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1
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0 0.5 1
0
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1
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wL = 0.4
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0
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Mosaic
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0

0.5

1
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wL = 0.0
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0.5

1
wT = 1.0
wL = 0.2

0 0.5 1
0

0.5

1
wT = 0.6
wL = 1.0

Tower
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Figure 4: Blocks world: Visualization of depth preferences (quality functions qf , on the y-axis)
learned for four tasks. Each feature’s range (x-axis) was normalized to [0,1] for this
display. The solid lines indicate the learned preferences and the dashed lines indicate the
true preferences. True (wT ) and learned (wL) weights for each feature preference are also
indicated.

6.1.1 LEARNED PREFERENCE VISUALIZATION

Figure 4 shows a visualization of the depth preferences that were learned on a sample run in the
blocks domain for each of the four tasks (castle, child, mosaic, and tower). The dotted line in each
figure indicates the quality function associated with the true preference. Qualitatively, the learned
preferences generally represent a good approximation to the true preferences.

As discussed in Section 4, however, the learned preferences are often “skewed” towards the
higher-valued items. This is most apparent in the Size and Sides features on the Mosaic task: the
kernel density estimate tends to over-value the relatively high-valued items, and under-value the
relatively low-valued items. Another effect of the kernel density estimation process is that because
a Gaussian kernel is used, extreme feature values tend to be under-valued. This can be seen, for
example, in the Size feature of the Tower task: all values for this feature between 0.5 and 1 are
equally good, but the learned preference has a peak around 0.75.

The true and learned feature weights are also indicated in each graph. In general, weight learning
is not as effective as quality function learning. For example, features with a true weight of 0 (wT =
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0) have no effect on the subset selection process. Two of the three irrelevant features are identified
as such by the learner (the Bin feature for Castle and Mosaic). Unfortunately, in the case of the third
such feature (the Bin feature for the Tower task), the learner infers that this feature is as important
as the other three features.

For high-valued features, the results vary. In some cases (Castle–Size, Child–Sides, Tower–Size,
Tower–Color), a high-valued feature is identified as such by the learner. In most of these cases, the
quality function is a very close match to the true quality function. The most interesting behavior
happens in cases like Tower–Color, where the feature is important, but the value doesn’t matter
(only diversity is important for this particular feature). Here, the feature is identified as important,
but the value function has a peak around 0.6, reflecting the distribution of values that were actually
seen in the training subsets. In a few cases (e.g., Mosaic–Size, Child–Bin), a highly relevant feature
has a very low learned weight.

From these results, we conclude that the kernel density estimation works well, although the
“sampling pool” issue still needs to be addressed, as discussed earlier. The weight estimation
process would likely improve if the training subsets were larger, to better constrain the weights.
Empirically, however, we found that the performance of the learned preferences was quite good.

6.1.2 BLOCKS WORLD: RECALL RESULTS.

In this experiment, we compared (for each of the four blocks world tasks) the true preference T to
the learned preference L, in terms of their retrieval similarity and overlap between their selected
subsets.

Retrieval Similarity. The valuation that T assigned to the subsets sL selected by L tended
to increase as more training data was available (Figure 5). The upper line in these graphs is the
valuation given by the true preference T to sT , the best set according to T . The lower baseline is
the average valuation given by T to sR, a random set of blocks. Note that these baselines do not
change with learning, since they are not dependent on the learned preference L.

On all four tasks, retrieval similarity of the learned preference L was better than retrieval sim-
ilarity of random sets after only one training instance. Furthermore, as more training sets were
observed, retrieval similarity increased, nearly converging to the “upper baseline” (valuation of sT ).
The difference between VT (sT ) and VT (sL) was not statistically significant, as shown by the error
bars on VT (sL). (We have omitted the error bars on VT (sT ) and VT (sR) for visual clarity.)

Two interesting phenomena are worth noting. First, in three of the tasks (Child, Mosaic, and
Tower), retrieval similarity did not begin to show a noticeable increase until after 10 training sets;
after this point, performance increased roughly linearly until convergence, at 15 to 20 training sets.
We interpret this behavior as evidence that the initial KDE estimate identifies a “fairly good” part of
the space that lets the learner immediately pick “fairly good” sets, by simply trying to choose sets
that are just like the training sets. However, to get a more finely tuned estimate takes a larger sample
size. The Castle task, by contrast, showed a more steady (but still slow) increase in performance.

Second, the Tower task can be interpreted as “more difficult” than the other three tasks: the
upper baseline is only around 0.82, as opposed to the other three tasks (0.93, 0.95, and 0.945,
respectively). Since the pools from which the “best subsets” were chosen are the same size, this
indicates that it was more difficult to find a satisfying set for the tower tasks. The “learning gap”
was also larger for this task than for the other tasks (the difference between the upper baseline and
the middle curve is around 0.05, as compared to 0.02 or less for the other tasks). This residual
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(d) Tower

Figure 5: Blocks world: Valuation of subsets by the true preference T for each of the four tasks, av-
eraged over 1000 trials (each trial randomly generated a new pool of blocks from which to
choose). “True” and “Learned” subsets were chosen by DD-Select (α = 0.5); “Random”
subsets were selected randomly.

learning gap is of interest, since it indicates an upper limit in terms of what we are able to learn from
the training sets, with respect to the optimal performance when the true preference is known. One
reason for this gap arises from the fundamental limitations of the finite universe U from which the
subsets are chosen. Although the learning method assumes that each example subset has a maximal
valuation (1.0), it may be that some of the selected subsets satisfied the preference sub-optimally,
simply because the blocks that were available did not span all possibilities.

Overlap of Selected Subsets. We also evaluated the learned preferences in terms of their ability
to enable DD-Select to find the same items it selected when given the true preference. We conducted
20 trials, each time learning on 40 folds and testing on a held-out fold, in which we calculated the
overlap between subset sT chosen by DD-Select using the true preference and the subset sL selected
by DD-Select using the learned preference. Each fold contained 100 randomly generated blocks.
Figure 6 shows the average overlap obtained, across all trials and all folds, for a variety of values of
α, the diversity weight. The overlap expected by randomly selecting 10 items from a fold of 100 is



Journal of Experimental & Theoretical Artificial Intelligence 21

Figure 6: Blocks world: 40-fold cross-validated overlap between the actual block sets and those
selected using the learned preferences for different α (diversity) preferences. Results
were averaged over 20 trials.

Table 3: Functional similarity (SimF ) between blocks world preferences, assessed over 1000 ran-
domly selected subsets.

Castle Child Mosaic Tower
Castle 1.00±0.00 0.91±0.13 0.92±0.14 0.44±0.30
Child 0.91±0.13 1.00±0.00 0.95±0.13 0.25±0.36

Mosaic 0.92±0.14 0.95±0.13 1.00±0.00 0.35±0.33
Tower 0.44±0.30 0.25±0.36 0.35±0.33 1.00±0.00

10%. The overlap obtained greatly exceeds this baseline, achieving 67% for Tower, 75% for Castle,
77% for Mosaic, and 85% for Child.

One of the critical conclusions from this experiment is that the best results were obtained for
α values between the two extreme values, which can be considered additional baselines. Setting
α to 0.0 corresponds to the “Top-K” approach of ranking items independently according to their
depth (ignoring diversity) and selecting the top k. Tasks in which the value of a subset relies on
interactions between items, such as Castle and Tower, tend to have low performance with α = 0.0.
The Child and Mosaic tasks show higher Top-K performance, but this can be exceeded by selecting a
better α value. Setting α to 1.0 corresponds to ignoring the quality functions and randomly selecting
diverse subsets; all tasks experienced very low overlap with this setting. We found that the best α
value was 0.8 for three of the tasks, and 0.7 for the Castle task. These results underscore the utility
of our approach to preference modeling. We are able to model a spectrum of user preferences, from
Top-K to pure emphasis on preferred diversity, through the α parameter, and even in this simple
domain we find that all four tasks perform better with an intermediate α value than with one of the
extremes.
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(a) All Classical
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(b) Mozart
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(c) Rock

Figure 7: Music playlists: Visualization of learned depth preferences (quality functions qf ) learned
for three of the six music collections. Each feature’s range was normalized to [0,1] for
this display. The features shown are “duration” (dashed), “tempo” (solid), and “date of
composition” (dotted).

6.1.3 BLOCKS WORLD: PRECISION RESULTS.

The correlations of the learned preferences’ valuations (on randomly selected subsets) are shown in
Table 3. As expected, the learned preference for the tower task had little correlation with the other
learned preferences, with values ranging from 0.25 to 0.44. In contrast, the other three tasks were
all highly correlated, with inter-task correlations ranging from 0.91 to 0.95.

6.2 Music Playlist Results

Figure 7 shows a representative set of learned preferences for the music domain. The preferences
were fairly similar across all five of the classical data sets. The preferred duration (dashed line)
was typically short, but had a long tail. By contrast, the Rock playlists generated a strong (tight)
preference for short songs. Unsurprisingly, the preferred date of composition (dotted line) was
always quite recent (high values) in the Rock data set; perhaps more surprisingly, the classical
preferences also appear to be skewed towards later dates. This is an effect of the normalization of
feature values by the highest and lowest value in the data set; several very early Gregorian chants
dictated the minimum value of the dynamic range.

6.2.1 MUSIC PLAYLISTS: RECALL RESULTS.

In the music domain, we do not have access to a true preference T . Therefore, we cannot compare
VL to VT directly. However, we can assess the amount of overlap obtained between the true subset
sT and the one selected by the learned preference, sL. Figure 8 shows the overlap obtained for each
data set when using different values of α. The overlap expected by randomly selecting a playlist of
10 items from a fold of 50 is 20%.

We found that the performance of DD-Select correlates with the specificity of the preference.
The highest overlap was obtained on the Rock data set, where the playlist composition differed sig-
nificantly from the general composition of the music pool (which is dominated by classical songs).
The Mozart playlists also were more specific than those provided by All Classical, CPR, MPR, and
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Figure 8: Music playlists: cross-validated overlap between the actual playlists and those created
using the learned preferences for different α (diversity) preferences.

Table 4: Functional similarity (SimF ) between music preferences, assessed over 1000 randomly
selected subsets.

AC CPR MPR Christmas Mozart Rock
AC 1.00±0.00 0.98±0.01 0.94±0.03 0.97±0.01 0.94±0.05 0.86±0.05

CPR 0.98±0.01 1.00±0.00 0.99±0.01 0.91±0.03 0.89±0.06 0.80±0.05
MPR 0.94±0.03 0.99±0.01 1.00±0.00 0.84±0.06 0.82±0.09 0.73±0.05
Chr. 0.97±0.01 0.91±0.03 0.84±0.06 1.00±0.00 0.95±0.04 0.88±0.06
Moz. 0.94±0.05 0.89±0.06 0.82±0.09 0.95±0.04 1.00±0.00 0.89±0.06
Rock 0.86±0.05 0.80±0.05 0.73±0.05 0.88±0.06 0.89±0.05 1.00±0.00

the Christmas playlists. For these more generic playlists, many distinct song selections could satisfy
the learned preferences, so the overlap with the true playlist tended to be lower.

For the All Classical, CPR, and MPR music data sets, overlap was relatively insensitive to the
choice of α, although setting α = 1 tended to provide the lowest overlap. A pure preference for
diversity, ignoring any depth match, generally does not capture the preferences inherent in these
playlists well. For all other values of α, across all data sets, overlap was well above that expected
by random selection.

The Mozart and Rock data sets yielded the best overlap with α = 0, a pure preference for depth.
This corresponds to the Top-K approach to subset selection and reflects the fact that these data sets
have very strong preferences for a small fraction of the available songs. However, the Christmas
data set, despite also being more particular than the generic classical stations, did best with a higher
diversity weight (α = 0.6). This does not necessarily mean that there is more diversity in the
selected set, but that matching the desired diversity is more important for this data set.
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(a) User C (geologist)
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(b) User K (non-expert)

Figure 9: Rover images: Visualization of learned depth preferences (quality functions qf ) learned
for two representative users. Each feature’s range was normalized to [0,1] for this display.
The solid and dashed lines refer to the “sky” and “dark soil” features.

6.2.2 MUSIC PLAYLISTS: PRECISION RESULTS.

Table 4 shows the functional similarity between preferences over 1000 random subsets for the dif-
ferent music preferences. The preferences are quite similar for the three “regular” classical data
sets (All Classical, CPR, and MPR), with an average similarity of 0.97. Christmas and Mozart are
somewhat less correlated, but not significantly so. The Rock preference stands out in that it is much
less similar to any of the other preferences (average of 0.83).

6.3 Rover Image Results

Figure 9 shows the depth preferences learned for two representative users based on their selection of
rover images. Although the rover images are represented with six features, for clarity we only show
the quality functions learned for two features (“sky” and “dark soil”). Each user’s subset selections
resulted in different learned quality functions. For example, the two geologists showed a greater
preference for images with only a small amount of sky present than the non-expert users did (solid
lines in Figure 9). Since these two users are geologists, it is unsurprising that they would be more
interested in images focused on the ground. However, they did not entirely exclude horizon views
(intermediate amounts of sky pixels), supporting the claim that close-ups of interesting rocks or soils
are often preferred to be accompanied by wider-angle context shots. The non-expert users tended
to be more consistent in preferring images with intermediate amounts of sky present (e.g., context
or landscape shots). We also see variation in terms of the “dark soil” preferences (dashed line in
Figure 9). Most users showed a bimodal preference for high and intermediate amounts of dark soil.

6.3.1 ROVER IMAGES: SAMPLE SUBSETS.

The top row of Figure 10 shows the images selected by user C from a training fold (20 images).
The subset is composed of three close-ups of the ground and two images containing the horizon,
one with a large rock feature. The middle row shows the subset chosen by DD-Select from 20 new
images in the test fold. The distribution of image types is strikingly similar to those in the training
set, even though they were chosen from disjoint folds. The bottom row shows the subset actually
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User C:
training

sL from
DD-Select:
test fold

sT for User
C: test fold

Figure 10: Rover image subset selected by (geologist) user C for training (top) and the subsets
chosen by DD-Select (middle) and user C (bottom) from a test fold of 20 new images.

chosen by user C from the test fold, which has an overlap of 40% with sL. The overlap expected by
random chance is 25% when selecting 5 items from a pool of 20. In addition, although the fourth
and fifth images do not match, they are very similar in character (and feature space).

6.3.2 ROVER IMAGES: RECALL RESULTS.

We computed the overlap between sL and sT for each user, for a range of α (diversity weight) values
(Figure 11). By observing where overlap is highest, we can infer what tradeoff between depth and
diversity each user desired. Although the individual curves are somewhat noisy, due to the limited
size of the data set (results are averaged across five folds) and the greedy search for a satisfying
subset, several conclusions are clear. First, once again higher performance was usually obtained
with intermediate α values (a combination of depth and diversity) rather than the extremes. The
exception was user W, who had a stronger preference for depth than diversity. Second, the non-
expert users tended to place more emphasis on diversity than did the geologists. It is likely that the
geologists were more focused on images that captured rocks or other features related to their areas
of interest. Finally, we tended to achieve higher maximum performance, in terms of largest overlap
with the subset actually selected by the user, for the non-experts (40-60%) than for the geologists
(36-44%). These results were all above the baseline of 25%.

We conducted a follow-up user study one year after the initial user selections were collected. In
this study, we sought to obtain judgments from the users about the relative value of the subsets they
had manually selected, those chosen by DD-Select, and randomly selected subsets. We presented
each user with 15 pairs of subsets to compare. For each of the five folds, the user evaluated three
pairs: they compared the subset they had manually selected to the subsets selected by DD-Select
with α = 0.5, DD-Select with α = 0.0 (equivalent to a Top-K set), and a randomly selected subset.
Users were not told which subset was the manually selected one. The order of the subset pairs and
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(a) Non-experts (b) Geologists

Figure 11: Rover images: five-fold cross-validated overlap between subsets selected by the users
and those selected by the learned preferences for different α (diversity) preferences.

Figure 12: Relative value of rover image subsets selected randomly or by DD-Select, compared to
manually selected subsets, assessed in a follow-up user study one year later. Each bar is
the average result (over five folds) for a given user.

the order of presentation within a pair were randomized, but fixed to be the same for all users to
control for order bias. All users received the same randomly selected subset.

Users had five options for each pair: “I strongly prefer subset A to subset B,” “I somewhat prefer
subset A to subset B,” “I have no preference between subsets A and B,” “I somewhat prefer subset
B to subset A,” or “I strongly prefer subset B to subset A.” We mapped these responses to numeric
values 0, 0.5, 1, 1.5, and 2. A score of 1.0 meant that the two subsets were equally desirable; a score
greater than 1.0 meant that the subset being compared (e.g., DD-Select with α = 0.5) was preferred
to the manually selected subset; and a score less than 1.0 meant the opposite.

We found that, in general, user satisfaction with the subsets selected by DD-Select with α = 0.5
was highest, followed by DD-Select with α = 0.0, with the randomly selected subsets being least
preferred (see Figure 12). User W (brown bars) was a marked exception to this trend, preferring
the randomly selected subsets to all other choices, including his manually selected subsets. In
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Table 5: Functional similarity (SimF ) between rover image preferences, assessed over 1000 ran-
domly selected subsets.

C W K L M T
C 1.00±0.00 0.67±0.11 0.56±0.28 0.50±0.27 0.58±0.30 0.45±0.35
W 0.67±0.11 1.00±0.00 0.73±0.26 0.57±0.10 0.73±0.12 0.52±0.23
K 0.56±0.28 0.73±0.26 1.00±0.00 0.75±0.09 0.79±0.19 0.69±0.21
L 0.50±0.27 0.57±0.10 0.75±0.09 1.00±0.00 0.84±0.08 0.74±0.14
M 0.58±0.30 0.73±0.12 0.79±0.19 0.84±0.08 1.00±0.00 0.75±0.12
T 0.45±0.35 0.52±0.23 0.69±0.21 0.74±0.14 0.75±0.12 1.00±0.00

comments about the study, User W remarked, “These kinds of choices depend sensitively on the
context in which the images are taken. In the absence of additional information, my choices are
just informed by a preference for ‘the most complete context possible,’ and therefore some images
of the landscape, near and far field, plus some images of nearby soils and rocks.” Effectively, User
W cared more about diversity than about depth, so randomly selected subsets appealed to him.
However, since they were preferred over even his manually selected subsets, and because it directly
contradicts what was learned from his manually selected subsets (a preference for low diversity), this
is likely to be a case of preference drift happening in the year between the two studies. Considering
only the other users, we obtained average results as follows (the large standard deviation values are
due to the limited (discrete) set of possible responses: 0, 0.5, 1, 1.5, and 2):

Average value of DD-Select subsets with α = 0.0: 0.58 (std 0.47)
Average value of DD-Select subsets with α = 0.5: 0.52 (std 0.44)
Average value of randomly selected sets: 0.44 (std 0.46)

That is, most users preferred their own manually selected subsets to any of the automatically
generated subsets. The subsets chosen by DD-Select (either α setting) were preferred over those se-
lected randomly. This result provides additional confirmation that the system can accurately model
and apply preferences expressed in the subsets chosen by individual users.

6.3.3 ROVER IMAGES: PRECISION RESULTS.

Although all six users examined the same sets of rover images, we expected their individual prefer-
ences to be different. We used the functional similarity measure to compute the correlation between
different users’ preferences (Table 5). Overall, the average similarity between two non-experts
(0.76) was higher than between the two geologists (0.67), who presumably had more specialized
preferences. The lowest correlations were between geologists and non-experts (0.58 on average),
emphasizing the fact that the two user groups had very different priorities for this data set. This
result is consistent with the learned depth preferences shown in Figure 9, in which the geologists
had a preference for images with low amounts of “sky,” but non-experts did not.

7. Conclusions and Future Work

We have presented the DD-PREF language for representing preferences over sets, and have shown
how DD-PREF preferences can be learned by observing user-selected sets. We observed strong
performance in the artificial blocks world domain, where a variety of preferences were accurately
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learned and applied. From our experiments with music playlist subsets, we conclude that DD-Select
is able to identify satisfying subsets in direct proportion to how specific or precise the preference is.
In fact, whenever DD-Select is not able to consistently satisfy a preference, that result indicates that
the preference may not be very strong or clearly specified. In our experiments with rover image data
and subsets selected by geologists and non-experts, the average overlap between the subset chosen
by DD-Select and the user’s true subset ranged between 36-60%. In a follow-up study conducted
one year later, we determined that the lowest performance arose from subsets selected by a user who
valued randomly selected subsets higher than the user’s own manually selected subsets. The low
performance was therefore explained by the inconsistency in the expression of the user’s preference,
confirming our prior observation about consistency.

Another important result is the finding that, in almost every case across all three data sets, the
best α value (tradeoff between diversity and depth) was an intermediate one. This indicates that
purely emphasizing depth (as in a Top-K approach) or diversity yields poorer performance than a
weighted combination of both aspects. Indeed, the choice of α affects the results significantly. We
intend to explore ways to infer good α values on a per-user basis.

We also plan to extend DD-PREF to include additional set-based features such as coverage and
complementarity and to handle non-numeric (ordinal, categorical, and text) attributes. In addition,
our current KDE approach for learning depth preferences does not take into account the pool from
which the sets were selected. We plan to explore Bayesian or information-theoretic approaches for
incorporating this additional knowledge into the learning process when it is available. We are also
considering applying multidimensional KDE or richer preference representations such as CP-nets
to handle feature interactions.

The rover data represents a real-world application domain that is of practical importance for
NASA and other organizations who perform large-scale remote data collection. One limitation of
working with the rover images is the feature representation we have chosen. It is possible that the
factors that influence users to select certain images are not well captured in the pixel classification
that we used to assign features to images. We are currently exploring other kinds of representations
that might be more relevant, such as “number of rocks in the image” and “average rock size.”
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