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Abstract

In a lifelong learning framework, an agent acquires knowledge
incrementally over consecutive learning tasks, continually building upon its
experience. Recent lifelong learning algorithms have nearly identical
accuracy to batch multi-task learning methods while learning tasks
sequentially in over 1,000x less time. In this work, we further improve the
scalability of lifelong learning by developing curriculum selection methods
that enable an agent to actively select the next task to learn in order to
maximize performance on future learning tasks. We demonstrate that
active task selection is highly reliable and effective, allowing an agent to
learn high performance models using up to 50% fewer tasks than when the
agent has no control over the task order. We also explore a variant of
transfer learning in the lifelong learning setting in which the agent can
focus knowledge acquisition toward a particular target task.
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Contributions:

1. Active task selection methods that enable a lifelong learner to choose
the next task to learn in order to maximize performance on future tasks

2. Targeted task selection that enables the lifelong learning agent to focus
knowledge acquisition toward particular target tasks
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We learn a parametric model for each task ¢
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The parameter vectors for each model are

linear combinations of a shared latent basis L
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Overview of the Efficient Lifelong Learning Algorithm

Our active task selection is built on top of ELLA [Ruvolo & Eaton, ICML13],

an efficient online multi-task learner with the following properties:

1. Optimized performance over all tasks

2. Efficient learning of each new consecutive task via transfer

3. Computational complexity independent of: (1) the number of tasks
learned, and (2) the amount of training data for all previous tasks

4. Close connections to online dictionary learning for sparse coding

5. Equivalent accuracy to batch MTL with over 1,000x speedup

ELLA minimizes an objective that encourages transfer between models:
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To ensure scalability, ELLA makes the following simplifications:
1. Replace the inner sum with the 2nd-order Taylor expansion around the

optimal task-specific model: ") = arg ming -->7™" L(f (w,gt); 9),y§t))
2. Eliminate the outer sum by optimizing s{*) only when training on task ¢

These simplifications yield the following updates to learn given (X%, y(9):
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D@ is % the Hessian of the single-task loss evaluated at (%)

Targeted Knowledge Acquisition with InfoMax

Idea: Instead of acquiring a general-purpose basis L, focus on the
knowledge needed for a specific target task, ¢ (terget) = (X(target) 4 (target))

The targeted InfoMax objective is:
tnext = arg min / / p(6®) :V|Im)><H[Ls<tafget>\e<t> —u, DY =V 7, |dudV
t

which can be approximated efficiently as:
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te{T+1,....Tso01}
Applications

Facial Expression Recognition: identify presence of facial action units
(#5 upper lid raiser, #10 upper lip raiser, #12 lip corner pull)
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21 Classification Tasks:
*7 subjects

*450-999 images each ELLA

Models

2,880 Gabor Features

Student Exam Score Prediction

139 Regression Tasks:

*139 schools
*15,362 students total
+4 school- specific features
3 student-specific features

Land Mine Detection from radar

b 29 Classification Tasks:
‘ *g | "ﬁ *29 regions

th *2 terrain types
| " | 14,820 instances total
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Active Task Selection

Goal: Choose the next task to learn from the candidate pool to best learn L
* The agent can access a small set of |labeled data for each candidate task

Information Maximization Approach

Selects the candidate task that maximizes the information gain on LL
bnext = ALg min//p(H(t) —u,DW :V\Zm)xH[Lw(t) —u,DW :V,Im] du dV
t

To approximate this efficiently, we (1) use the optimal single task model
() D®), and (2) use a Laplace approximation of L’s density as a
multivariate Gaussian for the differential entropy term H[], yielding:

thext = arg min In |Cov {vec(L)\H(t) =0 DO =D, Im} ’
tE{T+1 pool}
Diversity Approach

Selects the candidate task that the current L is doing the worst job solving:
min €(Lm, S, é(t), ﬁ(t))
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We also explore a probablllstlc version, Diversity++, that chooses a
candidate task proportionally to its inverse performance
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Results
Active task selection requires less tasks than random selection
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Plots shows the accuracy achieved versus the relative efficiency (in #tasks) as compared to random task selection

Average Task Reduction (%) for
Targeted Knowledge Acquisition

Average Task Reduction (%) for
General Knowledge Acquisition

Targeted
Data Set InfoMax | Diversity | Diversity++ Data Set Inf(;gMax InfoMax | Diversity | Diversity++
Land Mine 51+£3.7 {29.4+4.1|18.1£3.0 Land Mine |17.9+2.7| -1.743.0|14.9+£3.2 | 8.542.5
Facial Expr. 0.5+2.6 | 14.65.1 | 9.9+4.0 Facial Expr. | 7.8£0.7| 2.6£0.8 |10.0+£2.5 | 2.7+1.3
Syn. Data 10.2+£7.9 | 20.2£6.7 | 17.0£5.9 Syn. Data 384+7.5(11.4+£5.6|19.94:4.9 | 16.6£5.0
London Sch. | 29.84-6.8 | 21.0£3.1 |26.243.1 London Sch. | 26.9+1.8 | 20.1£2.8 | 22.3+1.1 | 16.4+£2.7
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Active task selection enables a lifelong learner to choose the next task to learn in order to maximize performance on future tasks




