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Abstract	
  
In	
  a	
  lifelong	
  learning	
  framework,	
  an	
  agent	
  acquires	
  knowledge	
  
incrementally	
  over	
  consecu8ve	
  learning	
  tasks,	
  con8nually	
  building	
  upon	
  its	
  
experience.	
  Recent	
  lifelong	
  learning	
  algorithms	
  have	
  nearly	
  iden8cal	
  
accuracy	
  to	
  batch	
  mul8-­‐task	
  learning	
  methods	
  while	
  learning	
  tasks	
  
sequen8ally	
  in	
  over	
  1,000x	
  less	
  8me.	
  In	
  this	
  work,	
  we	
  further	
  improve	
  the	
  
scalability	
  of	
  lifelong	
  learning	
  by	
  developing	
  curriculum	
  selec8on	
  methods	
  
that	
  enable	
  an	
  agent	
  to	
  ac8vely	
  select	
  the	
  next	
  task	
  to	
  learn	
  in	
  order	
  to	
  
maximize	
  performance	
  on	
  future	
  learning	
  tasks.	
  We	
  demonstrate	
  that	
  
ac8ve	
  task	
  selec8on	
  is	
  highly	
  reliable	
  and	
  effec8ve,	
  allowing	
  an	
  agent	
  to	
  
learn	
  high	
  performance	
  models	
  using	
  up	
  to	
  50%	
  fewer	
  tasks	
  than	
  when	
  the	
  
agent	
  has	
  no	
  control	
  over	
  the	
  task	
  order.	
  We	
  also	
  explore	
  a	
  variant	
  of	
  
transfer	
  learning	
  in	
  the	
  lifelong	
  learning	
  seGng	
  in	
  which	
  the	
  agent	
  can	
  
focus	
  knowledge	
  acquisi8on	
  toward	
  a	
  par8cular	
  target	
  task.	
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Introduc'on	
  
Goal:	
  	
  Develop	
  intelligent	
  agents	
  that	
  
1. Quickly	
  learn	
  new	
  tasks	
  
2. Learn	
  con8nually	
  with	
  experience	
  
3. Exhibit	
  versa8lity	
  over	
  mul8ple	
  tasks	
  
4. Direct	
  their	
  own	
  learning	
  
Contribu'ons:	
  
1. Ac8ve	
  task	
  selec8on	
  methods	
  that	
  enable	
  a	
  lifelong	
  learner	
  to	
  choose	
  
the	
  next	
  task	
  to	
  learn	
  in	
  order	
  to	
  maximize	
  performance	
  on	
  future	
  tasks	
  

2. Targeted	
  task	
  selec8on	
  that	
  enables	
  the	
  lifelong	
  learning	
  agent	
  to	
  focus	
  
knowledge	
  acquisi8on	
  toward	
  par8cular	
  target	
  tasks	
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Lifelong	
  learning	
  includes	
  elements	
  of	
  
both	
  transfer	
  and	
  mul8-­‐task	
  learning	
  

Lifelong	
  Learning	
  Framework	
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  parametric	
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  task	
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The	
  parameter	
  vectors	
  for	
  each	
  model	
  are	
  
linear	
  combina8ons	
  of	
  a	
  shared	
  latent	
  basis	
  L 
 

Ac8ve	
  task	
  selec8on	
  enables	
  a	
  lifelong	
  learner	
  to	
  choose	
  the	
  next	
  task	
  to	
  learn	
  in	
  order	
  to	
  maximize	
  performance	
  on	
  future	
  tasks	
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Overview	
  of	
  the	
  Efficient	
  Lifelong	
  Learning	
  Algorithm	
  
Our	
  ac8ve	
  task	
  selec8on	
  is	
  built	
  on	
  top	
  of	
  ELLA	
  [Ruvolo	
  &	
  Eaton,	
  ICML’13],	
  	
  	
  	
  	
  	
  	
  
an	
  efficient	
  online	
  mul8-­‐task	
  learner	
  with	
  the	
  following	
  proper8es:	
  
1. Op8mized	
  performance	
  over	
  all	
  tasks	
  
2. Efficient	
  learning	
  of	
  each	
  new	
  consecu8ve	
  task	
  via	
  transfer	
  
3. Computa8onal	
  complexity	
  independent	
  of:	
  (1)	
  the	
  number	
  of	
  tasks	
  
learned,	
  and	
  (2)	
  the	
  amount	
  of	
  training	
  data	
  for	
  all	
  previous	
  tasks	
  

4. Close	
  connec8ons	
  to	
  online	
  dic8onary	
  learning	
  for	
  sparse	
  coding	
  
5. Equivalent	
  accuracy	
  to	
  batch	
  MTL	
  with	
  over	
  1,000x	
  speedup	
  

ELLA	
  minimizes	
  an	
  objec8ve	
  that	
  encourages	
  transfer	
  between	
  models:	
  
	
  
	
  
	
  
	
  
To	
  ensure	
  scalability,	
  ELLA	
  makes	
  the	
  following	
  simplifica8ons:	
  
	
  

	
  
 

	
  
1. Replace	
  the	
  inner	
  sum	
  with	
  the	
  2nd-­‐order	
  Taylor	
  expansion	
  around	
  the	
  
op8mal	
  task-­‐specific	
  model:	
  
2. Eliminate	
  the	
  outer	
  sum	
  by	
  op8mizing	
  	
  	
  	
  	
  	
  	
  	
  	
  only	
  when	
  training	
  on	
  task	
  t 

These	
  simplifica8ons	
  yield	
  the	
  following	
  updates	
  to	
  learn	
  given	
  (X(t),	
  y	
  
(t)):	
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D(t) is	
  ½	
  the	
  Hessian	
  of	
  the	
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  evaluated	
  at	
  

where	
  

s(t)  argmin
s(t)

`(Lm, s(t),✓(t),D(t))

Lm+1  argmin
L

�kLk2F +
1

T

TX

t=1

`
⇣
L, s(t),✓(t),D(t)

⌘

where

` (L, s,✓,D) = µ ksk1 + k✓ � Lsk2D

✓

(t) = arg min✓
1
nt

Pnt

i=1 L
⇣
f
�
x

(t)
i ;✓

�
, y(t)i

⌘

s(t)

8 L, D(t)
, and ✓(t)

, the smallest eigenvalue of L>
� D

(t)L� �  > 0

model	
  fit	
  to	
  data	
   sparsity	
   complexity	
  

eT (L) =
1

T

TX

t=1

min
s(t)

(
1

nt

ntX

i=1

L
⇣
f
⇣
x

(t)
i ;Ls(t)

⌘
, y(t)i

⌘
+ µks(t)k1

�
+ �kLk2F

#tasks	
  seen	
  so	
  far	
  

Ac've	
  Task	
  Selec'on	
  

	
  

Goal:	
  Choose	
  the	
  next	
  task	
  to	
  learn	
  from	
  the	
  candidate	
  pool	
  to	
  best	
  learn	
  L 
• The	
  agent	
  can	
  access	
  a	
  small	
  set	
  of	
  labeled	
  data	
  for	
  each	
  candidate	
  task	
  

Informa'on	
  Maximiza'on	
  Approach	
  

Selects	
  the	
  candidate	
  task	
  that	
  maximizes	
  the	
  informa8on	
  gain	
  on	
  L 

	
  

To	
  approximate	
  this	
  efficiently,	
  we	
  (1)	
  use	
  the	
  op8mal	
  single	
  task	
  model	
  
(	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  	
  	
  ),	
  and	
  (2)	
  use	
  a	
  Laplace	
  approxima8on	
  of	
  L’s	
  density	
  as	
  a	
  
mul8variate	
  Gaussian	
  for	
  the	
  differen8al	
  entropy	
  term	
  H	
  [	
  ],	
  yielding:	
  	
  

	
  
	
  
Diversity	
  Approach	
  

Selects	
  the	
  candidate	
  task	
  that	
  the	
  current	
  L	
  is	
  doing	
  the	
  worst	
  job	
  solving:	
  

	
  
We	
  also	
  explore	
  a	
  probabilis8c	
  version,	
  Diversity++,	
  that	
  chooses	
  a	
  
candidate	
  task	
  propor8onally	
  to	
  its	
  inverse	
  performance	
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Targeted	
  Knowledge	
  Acquisi'on	
  with	
  InfoMax	
  

	
  

Idea:	
  Instead	
  of	
  acquiring	
  a	
  general-­‐purpose	
  basis	
  L,	
  focus	
  on	
  the	
  
knowledge	
  needed	
  for	
  a	
  specific	
  target	
  task,	
  t	
  (target)	
  =	
  (X(target),	
  y	
  

(target))	
  

The	
  targeted	
  InfoMax	
  objec8ve	
  is:	
  

	
  

which	
  can	
  be	
  approximated	
  efficiently	
  as:	
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Results	
  

Student	
  Exam	
  Score	
  Predic'on	
  
139	
  Regression	
  Tasks:	
  
• 139	
  schools	
  
• 15,362	
  students	
  total	
  
• 4	
  school-­‐specific	
  features	
  
• 3	
  student-­‐specific	
  features	
  

Land	
  Mine	
  Detec'on	
  from	
  radar	
  
29	
  Classifica8on	
  Tasks:	
  
• 29	
  regions	
  
• 2	
  terrain	
  types	
  
• 14,820	
  instances	
  total	
  

Mines	
  

Ac8ve	
  task	
  selec8on	
  requires	
  less	
  tasks	
  than	
  random	
  selec8on	
  

Facial	
  Expression	
  Recogni'on:	
  	
  iden8fy	
  presence	
  of	
  facial	
  ac8on	
  units	
  
(#5	
  upper	
  lid	
  raiser,	
  #10	
  upper	
  lip	
  raiser,	
  #12	
  lip	
  corner	
  pull)	
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2,880	
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  subjects	
  
• 450-­‐999	
  images	
  each	
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(a) Active Task Selection for General Knowledge Acquisition (b) Targeted Knowledge Acquisition

Figure 2: The results of active task selection for (a) general, and (b) targeted knowledge acquisition. Each plot shows the
accuracy achieved by each method versus the relative efficiency (in number of tasks) as compared to random task selection.

Table 1: The results for (a) general and (b) targeted knowl-
edge acquisition, as measured by the percent less tasks re-
quired by active task selection, averaged across all perfor-
mance levels. The mean and standard deviation are reported.

(a) General Knowledge Acquisition
Data Set InfoMax Diversity Diversity++

Land Mine 5.1±3.7 29.4±4.1 18.1±3.0
Facial Expr. 0.5±2.6 14.6±5.1 9.9±4.0
Syn. Data 10.2±7.9 20.2±6.7 17.0±5.9
London Sch. 29.8±6.8 21.0±3.1 26.2±3.1

(b) Targeted Knowledge Acquisition
Targeted

Data Set InfoMax InfoMax Diversity Diversity++

Land Mine 17.9±2.7 -1.7±3.0 14.9±3.2 8.5±2.5
Facial Expr. 7.8±0.7 2.6±0.8 10.0±2.5 2.7±1.3
Syn. Data 38.4±7.5 11.4±5.6 19.9±4.9 16.6±5.0
London Sch. 26.9±1.8 20.1±2.8 22.3±1.1 16.4±2.7

Recall that Diversity++ is a stochastic version of Diver-
sity, and therefore does not always select the task with the
worst performance to learn next. The results show that Di-
versity++ was dominated in three of the four data sets by Di-
versity, affirming the benefits of selecting the task with the
worst performance to learn next. However, both Diversity++
and InfoMax perform better than Diversity on the London
Schools data set. Further investigation is needed to deter-
mine whether particular characteristics of the data set, such
as the degree of sparsity of its input features, are important
for determining when each method should be used.

Table 1b shows our results on targeted knowledge acqui-
sition, with Figure 2b depicting extended results for selected
data sets. These results show that targeted task selection is
highly effective, revealing that Targeted InfoMax is the most
efficient method for three out of the four datasets. There-
fore, it appears that incorporating knowledge of the target
task into InfoMax can lead to large gains in performance,
not only over general InfoMax but also over Diversity, the
best general task selection method.

Conclusion

We have considered the setting of active curriculum selec-
tion in which a lifelong learner can select which task to learn
next for either general and targeted knowledge acquisition.
Our proposed Diversity heuristic is efficient and effective
for general knowledge acquisition, achieving significant re-
ductions in the number of tasks required to obtained a par-
ticular performance level as compared to random selection.
Although InfoMax did not work as well as Diversity for gen-
eral knowledge acquisition, it achieved the best performance
on targeted knowledge acquisition for modeling a specific
target task. In future work, we intend to connect active task
selection to higher level learning goals and incorporate ex-
ternal guidance from a teacher.
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Figure 2: The results of active task selection for (a) general, and (b) targeted knowledge acquisition. Each plot shows the
accuracy achieved by each method versus the relative efficiency (in number of tasks) as compared to random task selection.

Table 1: The results for (a) general and (b) targeted knowl-
edge acquisition, as measured by the percent less tasks re-
quired by active task selection, averaged across all perfor-
mance levels. The mean and standard deviation are reported.

(a) General Knowledge Acquisition
Data Set InfoMax Diversity Diversity++

Land Mine 5.1±3.7 29.4±4.1 18.1±3.0
Facial Expr. 0.5±2.6 14.6±5.1 9.9±4.0
Syn. Data 10.2±7.9 20.2±6.7 17.0±5.9
London Sch. 29.8±6.8 21.0±3.1 26.2±3.1

(b) Targeted Knowledge Acquisition
Targeted

Data Set InfoMax InfoMax Diversity Diversity++

Land Mine 17.9±2.7 -1.7±3.0 14.9±3.2 8.5±2.5
Facial Expr. 7.8±0.7 2.6±0.8 10.0±2.5 2.7±1.3
Syn. Data 38.4±7.5 11.4±5.6 19.9±4.9 16.6±5.0
London Sch. 26.9±1.8 20.1±2.8 22.3±1.1 16.4±2.7

Recall that Diversity++ is a stochastic version of Diver-
sity, and therefore does not always select the task with the
worst performance to learn next. The results show that Di-
versity++ was dominated in three of the four data sets by Di-
versity, affirming the benefits of selecting the task with the
worst performance to learn next. However, both Diversity++
and InfoMax perform better than Diversity on the London
Schools data set. Further investigation is needed to deter-
mine whether particular characteristics of the data set, such
as the degree of sparsity of its input features, are important
for determining when each method should be used.

Table 1b shows our results on targeted knowledge acqui-
sition, with Figure 2b depicting extended results for selected
data sets. These results show that targeted task selection is
highly effective, revealing that Targeted InfoMax is the most
efficient method for three out of the four datasets. There-
fore, it appears that incorporating knowledge of the target
task into InfoMax can lead to large gains in performance,
not only over general InfoMax but also over Diversity, the
best general task selection method.

Conclusion

We have considered the setting of active curriculum selec-
tion in which a lifelong learner can select which task to learn
next for either general and targeted knowledge acquisition.
Our proposed Diversity heuristic is efficient and effective
for general knowledge acquisition, achieving significant re-
ductions in the number of tasks required to obtained a par-
ticular performance level as compared to random selection.
Although InfoMax did not work as well as Diversity for gen-
eral knowledge acquisition, it achieved the best performance
on targeted knowledge acquisition for modeling a specific
target task. In future work, we intend to connect active task
selection to higher level learning goals and incorporate ex-
ternal guidance from a teacher.
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