
Summary	  
We	  developed	  an	  efficient	  online	  method	  for	  learning	  mul5ple	  consecu5ve	  
tasks	  based	  on	  the	  K-‐SVD	  algorithm	  for	  sparse	  dic5onary	  op5miza5on.	  	  	  

Capabili-es	  of	  our	  ELLA-‐SVD	  algorithm:	  
•  Learns	  mul5ple	  tasks	  consecu5vely	  
•  Transfers	  knowledge	  to	  accelerate	  learning	  of	  new	  tasks	  
•  Supports	  a	  variety	  of	  base	  learning	  algorithms	  
•  Has	  lower	  computa5onal	  cost	  than	  current	  lifelong	  learning	  algorithms	  
•  Supports	  both	  task	  and	  feature	  similarity	  matrices	  

We	  demonstrate	  the	  effec5veness	  of	  ELLA-‐SVD	  in	  lifelong	  learning	  seIngs.	  
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Online	  Mul--‐Task	  Learning	  via	  Sparse	  Dic-onary	  Op-miza-on	  

Introduc-on	  
Goal:	  	  Develop	  intelligent	  agents	  that	  
1. Quickly	  learn	  new	  tasks	  
2. Learn	  con5nually	  with	  experience	  
3. Exhibit	  versa5lity	  over	  mul5ple	  tasks	  
	  

	  
This	  work	  inves5gates	  a	  formula5on	  of	  online	  mul5-‐task	  learning	  (MTL)	  
based	  on	  sparse	  dic5onary	  op5miza5on.	  
	  

This	  approach	  builds	  upon	  our	  earlier	  work	  on	  the	  Efficient	  Lifelong	  
Learning	  Algorithm	  (ELLA)	  [Ruvolo	  &	  Eaton,	  ICML	  ‘13].	  
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Lifelong	  learning	  includes	  elements	  of	  
both	  transfer	  and	  mul5-‐task	  learning	  

Sparse	  dic5onary	  op5miza5on	  provides	  a	  computa5onally	  efficient	  method	  for	  online	  mul5-‐task	  learning	  	  	  
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Applica-ons	  

Student	  Exam	  Score	  Predic-on	  
139	  Regression	  Tasks:	  
• 139	  schools	  
• 15,362	  students	  total	  
• 4	  school-‐specific	  features	  
• 3	  student-‐specific	  features	  

Land	  Mine	  Detec-on	  from	  radar	  
29	  Classifica5on	  Tasks:	  
• 29	  regions	  
• 2	  terrain	  types	  
• 14,820	  instances	  total	  

Mines	  

Facial	  Expression	  Recogni-on:	  	  iden5fy	  presence	  of	  facial	  ac5on	  units	  
(#5	  upper	  lid	  raiser,	  #10	  upper	  lip	  raiser,	  #12	  lip	  corner	  pull)	  
	  

	  	  PCA	  
	  	  100	  features	  +	  bias	  

2,880	  Gabor	  Features	  

21	  Classifica5on	  Tasks:	  
• 7	  subjects	  
• 450-‐999	  images	  each	  
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Background:	  Dic-onary	  Learning	  for	  Sparse	  Coding	  via	  K-‐SVD	  
	  	  	  Goal:	  	  Given	  a	  data	  set	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  output	  a	  dic5onary	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  that	  sparse	  codes	  the	  data	  by	  solving:	  
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	  	  Step	  1:	  update	  codes	  for	  each	  point	  

The	  K-‐SVD	  Algorithm	  
Iterate	  two	  steps	  un5l	  convergence	  to	  yield	  L:	  

	  	  Step	  2:	  update	  each	  basis	  vector	  and	  the	  weights	  of	  the	  data	  
points	  that	  u5lize	  this	  basis	  vector	  

Online Multi-Task Learning based on K-SVD

call MTL-SVD. We then modify the batch MTL-SVD
algorithm to operate online, making it suitable for ap-
plication to lifelong learning settings.

2. The K-SVD Algorithm

This section reviews the K-SVD algorithm of Aharon
et al. (2006) for learning dictionaries for sparse coding,
which forms the foundation of our approach. Suppose
we are designing a dictionary consisting of k vectors to
sparsely code a set of points {x

1

, . . . ,xn} ⇢ Rd. We
would like to compute a dictionary L 2 Rd⇥k such that
each input point can be coded with a minimal number
of dictionary elements. This objective can be realized
by solving the following optimization problem:
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where s(i) is the vector of coe�cients over the columns
of L to encode xi and µ is a positive constant that
defines the tradeo↵ between accurate reconstruction
of the input points and the sparsity of the coe�cient
vectors. This objective is computationally hard to op-
timize due to the cross terms between the dictionary
L and coe�cients S =

⇥

s(1) · · · s(n)
⇤

as well as the
presence of the L

0

norm k · k
0

, which both make the
objective non-convex. Some approaches for solving
Equation 1 alternately optimize L and S until a lo-
cal minima is reached.1

Like other approaches for dictionary learning, K-SVD
alternates two optimization steps.
1. Optimize S in Equation 1 given the current L.
2. For a particular dictionary element (i.e., the jth

column of L), jointly optimize the element as well
as its corresponding coe�cient for each data point
currently encoded by the dictionary element (i.e.,
the non-zero entries in the jth row of S).

We next describe each of these steps of K-SVD; the
complete K-SVD algorithm is given as Algorithm 1.

Step 1: Optimizing S

Given a fixed value of L, Equation 1 decomposes into
n independent optimization problems of the form:

s(i)  arg min
s

�

kLs� xik2
2

+ µksk
0

 

. (2)

Equation 2 is known as the sparse coding problem, and
can be solved (approximately) using numerous tech-

1Optimizing L given a fixed S is a convex optimization
problem, whereas optimizing the columns of S with fixed L,
while not convex, can be relaxed into a convex optimization
problem by replacing the L0 norm with the L1 norm.

Algorithm 1 K-SVD (Aharon et al., 2006)

input data points {x
1

, . . . ,xn}, dictionary size k
init L using random column vectors of unit length
loop until convergence do

for i 2 {1, . . . , n}, perform update in Eqn. 2
for j 2 {1, . . . , k}, perform updates in Eqns. 4–6

end loop
return L

niques (e.g., Matching Pursuit, Orthogonal Matching
Pursuit, or the Lasso (Tibshirani, 1996)).

Step 2: Optimizing a Dictionary Element and
its Corresponding Non-Zero Coe�cients

This step updates a particular dictionary element as
well as the corresponding coe�cients for data points
that are encoded using the element (i.e., have a non-
zero coe�cient value). Let lj indicate the particular
column of L to optimize. First, we form the matrix
E representing the residual for each data point given
that lj is zeroed out. The ith column of E is given by:

ei = xi �
X

r 6=j

s(i)r lr , (3)

where s
(i)
r is the rth entry of s(i). Next, we perform

a singular value decomposition (SVD) on E. The first
left singular vector provides the updated value for lj
and the corresponding right singular vector scaled by
the corresponding singular value yields the updated
coe�cients for each data point (i.e., the jth row of S).

We would like both steps (1) and (2) to either maintain
or improve the quality of our solution to Equation 1.
Unfortunately, using the SVD of E will cause some
coe�cients in S that were previously zero to become
non-zero, eliminating the guarantee that the quality of
our solution cannot become worse. To eliminate this
possibility, we take the SVD of the subset A of the

columns of E such m 2 A, s(m)

j 6= 0:

(U,⌃,V) = svd (EA) (4)
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where EA denotes the matrix formed from the subset
of columns in A, the singular values are assumed to all
be positive (this is possible for any real matrix) and

sorted in descending order, and s(A)

j denotes the vec-
tor formed from the columns in A of the jth row of S.
It is well-known that this optimization procedure min-

imizes kEA�Bk2
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for all rank-1 matrices B = ljs
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j .
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where s(i) is the vector of coe�cients over the columns
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where EA denotes the matrix formed from the subset
of columns in A, the singular values are assumed to all
be positive (this is possible for any real matrix) and

sorted in descending order, and s(A)

j denotes the vec-
tor formed from the columns in A of the jth row of S.
It is well-known that this optimization procedure min-
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Step	  2	  can	  be	  solved	  efficiently	  via	  SVD:	  
•  Let	  the	  ith	  column	  of	  E	  be	  given	  by	  
•  Then	  take	  	  	  

Surprisingly,	  we	  can	  efficiently	  find	  the	  global	  minimum!	  
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as well as the
presence of the L

0

norm k · k
0

, which both make the
objective non-convex. Some approaches for solving
Equation 1 alternately optimize L and S until a lo-
cal minima is reached.1

Like other approaches for dictionary learning, K-SVD
alternates two optimization steps.
1. Optimize S in Equation 1 given the current L.
2. For a particular dictionary element (i.e., the jth

column of L), jointly optimize the element as well
as its corresponding coe�cient for each data point
currently encoded by the dictionary element (i.e.,
the non-zero entries in the jth row of S).

We next describe each of these steps of K-SVD; the
complete K-SVD algorithm is given as Algorithm 1.

Step 1: Optimizing S

Given a fixed value of L, Equation 1 decomposes into
n independent optimization problems of the form:

s(i)  arg min
s

�

kLs� xik2
2

+ µksk
0

 

. (2)

Equation 2 is known as the sparse coding problem, and
can be solved (approximately) using numerous tech-

1Optimizing L given a fixed S is a convex optimization
problem, whereas optimizing the columns of S with fixed L,
while not convex, can be relaxed into a convex optimization
problem by replacing the L0 norm with the L1 norm.

Algorithm 1 K-SVD (Aharon et al., 2006)

input data points {x
1

, . . . ,xn}, dictionary size k
init L using random column vectors of unit length
loop until convergence do

for i 2 {1, . . . , n}, perform update in Eqn. 2
for j 2 {1, . . . , k}, perform updates in Eqns. 4–6

end loop
return L

niques (e.g., Matching Pursuit, Orthogonal Matching
Pursuit, or the Lasso (Tibshirani, 1996)).

Step 2: Optimizing a Dictionary Element and
its Corresponding Non-Zero Coe�cients

This step updates a particular dictionary element as
well as the corresponding coe�cients for data points
that are encoded using the element (i.e., have a non-
zero coe�cient value). Let lj indicate the particular
column of L to optimize. First, we form the matrix
E representing the residual for each data point given
that lj is zeroed out. The ith column of E is given by:

ei = xi �
X

r 6=j

s(i)r lr , (3)

where s
(i)
r is the rth entry of s(i). Next, we perform

a singular value decomposition (SVD) on E. The first
left singular vector provides the updated value for lj
and the corresponding right singular vector scaled by
the corresponding singular value yields the updated
coe�cients for each data point (i.e., the jth row of S).

We would like both steps (1) and (2) to either maintain
or improve the quality of our solution to Equation 1.
Unfortunately, using the SVD of E will cause some
coe�cients in S that were previously zero to become
non-zero, eliminating the guarantee that the quality of
our solution cannot become worse. To eliminate this
possibility, we take the SVD of the subset A of the

columns of E such m 2 A, s(m)

j 6= 0:

(U,⌃,V) = svd (EA) (4)

lj  u
1

(5)

s(A)

j  �
1,1v1

, (6)

where EA denotes the matrix formed from the subset
of columns in A, the singular values are assumed to all
be positive (this is possible for any real matrix) and

sorted in descending order, and s(A)

j denotes the vec-
tor formed from the columns in A of the jth row of S.
It is well-known that this optimization procedure min-

imizes kEA�Bk2
2

for all rank-1 matrices B = ljs
(A)>
j .

Online	  Mul--‐Task	  Learning	  via	  K-‐SVD	  
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The	  parameter	  vectors	  for	  each	  model	  are	  
linear	  combina5ons	  of	  a	  shared	  latent	  basis	  L 
 

The	  MTL	  objec5ve	  func5on	  encourages	  transfer	  between	  models:	  
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D(t) is	  ½	  the	  Hessian	  of	  the	  single-‐task	  loss	  evaluated	  at	  
where:	  
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We	  can	  re-‐write	  this	  objec5ve	  as	  a	  sparse	  coding	  problem	  [Ruvolo	  &	  Eaton,	  ICML	  ‘13]	  

	  

	  

	  

	  

	  

	  
	  

Using	  K-‐SVD	  for	  Mul--‐Task	  Learning	  
The	  sparse	  coding	  formula5on	  of	  MTL	  is	  similar	  to	  the	  K-‐SVD	  objec5ve.	  
	  Key	  Idea:	  	  Use	  SVD	  to	  efficiently	  solve	  the	  MTL	  objec5ve	  
•  Need	  to	  use	  the	  generalized	  SVD	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
instead	  of	  the	  SVD	  to	  properly	  account	  for	  2nd	  order	  informa5on,	  where	  

•     	  	  and	     	  	  serve	  as	  feature	  and	  task	  rela5onship	  matrices	  
	  

Modifica-ons	  to	  Learn	  Tasks	  Online	  
•  When	  training	  on	  task	  t,	  update	  only	  s(t)	  and	  the	  relevant	  basis	  vectors	  
•  Perform	  each	  step	  of	  K-‐SVD	  only	  once	  per	  batch	  of	  training	  data	  

(U,⌃,V) = gsvd (EA,M,W)

(U,⌃,V) = gsvd (EA,M,W)(U,⌃,V) = gsvd (EA,M,W)

ELLA-‐SVD	  Algorithm	  
	  

	  

Given	  a	  new	  task	  t,	  
1. 	  Train	  a	  single-‐task	  model	  	  	  	  	  	  	  	  	  	  for	  task	  t 
2. 	  Reconstruct	  	  	  	  	  	  	  	  	  	  in	  the	  current	  basis	  (LASSO):	  
	  

3. 	  Update	  the	  basis:	  
	  	  	  	  	  	  	  	  for	  j	  =	  1	  ...	  k such	  that	  sj(t)	  ≠	  0,	  solve	  via	  GSVD	  

✓(t)

✓(t)

s(t)  arg mins
�
kLs� ✓(t)k2

D(t) + µksk0
 

One	  pass	  per	  
training	  set	  

(no	  “loop	  un5l	  
convergence”)	  

Results	  
We	  compared	  ELLA-‐SVD	  to	  ELLA	  and	  two	  variants:	  
•  ELLA	  Incremental	  –	  a	  more	  efficient	  but	  subop5mal	  version	  of	  ELLA	  
•  ELLA	  Dual	  Update	  –	  a	  hybrid	  combina5on	  of	  ELLA-‐SVD	  &	  ELLA	  Incremental	  
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Figure 2: Lifelong learning results, averaged over 100 trials. Performance was evaluated on all tasks after learning each new task.

to maximize the average performance when learning using
all tasks. Although this procedure inflates performance rela-
tive to fitting the parameters online using a validation set, it
allows us to better compare the relative performance levels
of the different algorithms (which is our principal focus).

Results
The results of our evaluation are given in Figure 2. The pro-
posed ELLA-SVD approach is better than all other methods
on the land mine task. Specifically, the approach performs
much better than the other efficient update approach, ELLA
Incremental. On the synthetic regression tasks, the original
ELLA method is clearly the best, with the ELLA-SVD and
ELLA Incremental approaches lagging behind.

In contrast to the strong performance of ELLA-SVD on
land mine and the synthetic tasks, ELLA-SVD does not
perform well on either facial expression recognition or stu-
dent exam score prediction. In particular, the performance of
ELLA-SVD on student exam score prediction actually de-

clines as it learns more tasks. Further investigation revealed
that the cause of this problem was that the matrix M formed
as a consensus of the D

(t)’s (which is required for Eq. (8))
is a poor approximation to the true objective function we
would like to minimize (Eq. (7)). The primary reason for
this poor approximation is that the input distributions for
each task (i.e., each school) are quite different due to the
school-specific features of each instance. In this case, the
ELLA-SVD updates turn out to be counter-productive.

We proposed the ELLA Dual Update approach in order to
get the best of both worlds. That is, we seek to achieve the

high performance of ELLA-SVD on tasks where it is appro-
priate for application (e.g., for land mine detection), and to
fall back to ELLA Incremental when ELLA-SVD performs
poorly (e.g., for the London schools data). The results for the
Dual Update version shown in Figure 2 suggest that this hy-
brid approach is successful. The performance of ELLA Dual
Update clusters tightly with the best performing algorithm
for each learning problem (with the exception of the syn-
thetic regression tasks, for which none of the more-efficient
approaches does as well as the original ELLA).

Conclusion
We explored the use of the K-SVD algorithm (Aharon et
al. 2006) in the lifelong machine learning setting. Adapting
K-SVD to the lifelong learning setting required several key
innovations including: a) replacing the SVD step in the orig-
inal algorithm with a generalized SVD, and b) selectively
updating components of the model as new task data is pre-
sented. We showed that ELLA-SVD performs well on prob-
lems where the input distributions of the data are similar.

For domains where the input distributions are not sim-
ilar, we showed that a hybrid approach (in which we in-
terleave the ELLA-SVD update with another efficient up-
date step called ELLA Incremental) performs robustly. In fu-
ture work, we will conduct experiments to better understand
the tradeoffs between ELLA-SVD and ELLA Incremental.
Additionally, we plan to test our more-efficient versions of
ELLA in settings where applying the original ELLA is com-
putationally intractable (e.g., when k and d are large).
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Per-‐Task	  Computa-onal	  Complexity	  
ELLA-‐SVD:	  O(base	  learner	  +	  d2k	  +	  k2d	  +	  qd3	  +	  qr2d)	  	  	  
	  	  	  	  	  	  	  	  	  q	  =	  sparsity	  of	  s(t)	  	  	  	  r	  =	  #	  tasks	  u5lizing	  same	  basis	  component	  	  
	  

ELLA:	  O(base	  learner	  +	  d3k2)	  	  	  	  	  	  	  	  ß	  significantly	  less	  efficient	  than	  ELLA-‐SVD	  


