
Summary	
We	 developed	 an	 efficient	 online	 method	 for	 learning	 mul5ple	 consecu5ve	
tasks	 based	 on	 the	 K-‐SVD	 algorithm	 for	 sparse	 dic5onary	 op5miza5on.	 	 	

Capabili-es	 of	 our	 ELLA-‐SVD	 algorithm:	
•  Learns	 mul5ple	 tasks	 consecu5vely	
•  Transfers	 knowledge	 to	 accelerate	 learning	 of	 new	 tasks	
•  Supports	 a	 variety	 of	 base	 learning	 algorithms	
•  Has	 lower	 computa5onal	 cost	 than	 current	 lifelong	 learning	 algorithms	
•  Supports	 both	 task	 and	 feature	 similarity	 matrices	

We	 demonstrate	 the	 effec5veness	 of	 ELLA-‐SVD	 in	 lifelong	 learning	 seIngs.	

Paul	 Ruvolo	
Olin	 College	 of	 Engineering	

Online	 Mul--‐Task	 Learning	 via	 Sparse	 Dic-onary	 Op-miza-on	

Introduc-on	
Goal:	 	 Develop	 intelligent	 agents	 that	
1. Quickly	 learn	 new	 tasks	
2. Learn	 con5nually	 with	 experience	
3. Exhibit	 versa5lity	 over	 mul5ple	 tasks	
	

	
This	 work	 inves5gates	 a	 formula5on	 of	 online	 mul5-‐task	 learning	 (MTL)	
based	 on	 sparse	 dic5onary	 op5miza5on.	
	

This	 approach	 builds	 upon	 our	 earlier	 work	 on	 the	 Efficient	 Lifelong	
Learning	 Algorithm	 (ELLA)	 [Ruvolo	 &	 Eaton,	 ICML	 ‘13].	

Op5mizes	
performance	 over	 All	 tasks	

Learns	 tasks	
consecu5vely	

Very	
inefficiently	

Computa5onal	 cost	 High	

Target	
task	
Yes,	

efficiently	
Low	

Transfer	
Learning	

Batch	 Mul--‐
Task	 Learning	

Lifelong	 learning	 includes	 elements	 of	
both	 transfer	 and	 mul5-‐task	 learning	

Sparse	 dic5onary	 op5miza5on	 provides	 a	 computa5onally	 efficient	 method	 for	 online	 mul5-‐task	 learning	 	 	

Acknowledgement:	 	 This	 research	 was	 supported	 by	 ONR	 grant	 #N00014-‐11-‐1-‐0139	

Applica-ons	

Student	 Exam	 Score	 Predic-on	
139	 Regression	 Tasks:	
• 139	 schools	
• 15,362	 students	 total	
• 4	 school-‐specific	 features	
• 3	 student-‐specific	 features	

Land	 Mine	 Detec-on	 from	 radar	
29	 Classifica5on	 Tasks:	
• 29	 regions	
• 2	 terrain	 types	
• 14,820	 instances	 total	

Mines	

Facial	 Expression	 Recogni-on:	 	 iden5fy	 presence	 of	 facial	 ac5on	 units	
(#5	 upper	 lid	 raiser,	 #10	 upper	 lip	 raiser,	 #12	 lip	 corner	 pull)	
	

	 	 PCA	
	 	 100	 features	 +	 bias	

2,880	 Gabor	 Features	

21	 Classifica5on	 Tasks:	
• 7	 subjects	
• 450-‐999	 images	 each	

...	 ELLA	

M
od

el
s	

Eric	 Eaton	
University	 of	 Pennsylvania	

Background:	 Dic-onary	 Learning	 for	 Sparse	 Coding	 via	 K-‐SVD	
	 	 	 Goal:	 	 Given	 a	 data	 set	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ,	 output	 a	 dic5onary	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 that	 sparse	 codes	 the	 data	 by	 solving:	

	

{x1, . . . ,xn} ⇢ Rd

L 2 Rd⇥k

arg min
L

n
X

i=1

min
s(i)

n

�

�

Ls

(i) � xi

�

�

2

2
+ µ

�

�

s

(i)
�

�

0

o

	 	 Step	 1:	 update	 codes	 for	 each	 point	

The	 K-‐SVD	 Algorithm	
Iterate	 two	 steps	 un5l	 convergence	 to	 yield	 L:	

	 	 Step	 2:	 update	 each	 basis	 vector	 and	 the	 weights	 of	 the	 data	
points	 that	 u5lize	 this	 basis	 vector	

Online Multi-Task Learning based on K-SVD

call MTL-SVD. We then modify the batch MTL-SVD
algorithm to operate online, making it suitable for ap-
plication to lifelong learning settings.

2. The K-SVD Algorithm

This section reviews the K-SVD algorithm of Aharon
et al. (2006) for learning dictionaries for sparse coding,
which forms the foundation of our approach. Suppose
we are designing a dictionary consisting of k vectors to
sparsely code a set of points {x

1

, . . . ,xn} ⇢ Rd. We
would like to compute a dictionary L 2 Rd⇥k such that
each input point can be coded with a minimal number
of dictionary elements. This objective can be realized
by solving the following optimization problem:

arg min
L

n
X

i=1

min
s(i)

n

�

�Ls(i) � xi

�

�

2

2

+ µ
�

�s(i)
�

�

0

o

, (1)

where s(i) is the vector of coe�cients over the columns
of L to encode xi and µ is a positive constant that
defines the tradeo↵ between accurate reconstruction
of the input points and the sparsity of the coe�cient
vectors. This objective is computationally hard to op-
timize due to the cross terms between the dictionary
L and coe�cients S =

⇥

s(1) · · · s(n)
⇤

as well as the
presence of the L

0

norm k · k
0

, which both make the
objective non-convex. Some approaches for solving
Equation 1 alternately optimize L and S until a lo-
cal minima is reached.1

Like other approaches for dictionary learning, K-SVD
alternates two optimization steps.
1. Optimize S in Equation 1 given the current L.
2. For a particular dictionary element (i.e., the jth

column of L), jointly optimize the element as well
as its corresponding coe�cient for each data point
currently encoded by the dictionary element (i.e.,
the non-zero entries in the jth row of S).

We next describe each of these steps of K-SVD; the
complete K-SVD algorithm is given as Algorithm 1.

Step 1: Optimizing S

Given a fixed value of L, Equation 1 decomposes into
n independent optimization problems of the form:

s(i) arg min
s

�

kLs� xik2
2

+ µksk
0

. (2)

Equation 2 is known as the sparse coding problem, and
can be solved (approximately) using numerous tech-

1Optimizing L given a fixed S is a convex optimization
problem, whereas optimizing the columns of S with fixed L,
while not convex, can be relaxed into a convex optimization
problem by replacing the L0 norm with the L1 norm.

Algorithm 1 K-SVD (Aharon et al., 2006)

input data points {x
1

, . . . ,xn}, dictionary size k
init L using random column vectors of unit length
loop until convergence do

for i 2 {1, . . . , n}, perform update in Eqn. 2
for j 2 {1, . . . , k}, perform updates in Eqns. 4–6

end loop
return L

niques (e.g., Matching Pursuit, Orthogonal Matching
Pursuit, or the Lasso (Tibshirani, 1996)).

Step 2: Optimizing a Dictionary Element and
its Corresponding Non-Zero Coe�cients

This step updates a particular dictionary element as
well as the corresponding coe�cients for data points
that are encoded using the element (i.e., have a non-
zero coe�cient value). Let lj indicate the particular
column of L to optimize. First, we form the matrix
E representing the residual for each data point given
that lj is zeroed out. The ith column of E is given by:

ei = xi �
X

r 6=j

s(i)r lr , (3)

where s
(i)
r is the rth entry of s(i). Next, we perform

a singular value decomposition (SVD) on E. The first
left singular vector provides the updated value for lj
and the corresponding right singular vector scaled by
the corresponding singular value yields the updated
coe�cients for each data point (i.e., the jth row of S).

We would like both steps (1) and (2) to either maintain
or improve the quality of our solution to Equation 1.
Unfortunately, using the SVD of E will cause some
coe�cients in S that were previously zero to become
non-zero, eliminating the guarantee that the quality of
our solution cannot become worse. To eliminate this
possibility, we take the SVD of the subset A of the

columns of E such m 2 A, s(m)

j 6= 0:

(U,⌃,V) = svd (EA) (4)

lj u
1

(5)

s(A)

j �
1,1v1

, (6)

where EA denotes the matrix formed from the subset
of columns in A, the singular values are assumed to all
be positive (this is possible for any real matrix) and

sorted in descending order, and s(A)

j denotes the vec-
tor formed from the columns in A of the jth row of S.
It is well-known that this optimization procedure min-

imizes kEA�Bk2
2

for all rank-1 matrices B = ljs
(A)>
j .

lj , s
(A)
j arg min

lj ,s
(A)
j

nX

i=1

⇣
kLs(i) � xik22 + µks(i)k0

⌘

s

(i) arg min
s

�
kLs� xik22 + µksk0

Online Multi-Task Learning based on K-SVD

call MTL-SVD. We then modify the batch MTL-SVD
algorithm to operate online, making it suitable for ap-
plication to lifelong learning settings.

2. The K-SVD Algorithm

This section reviews the K-SVD algorithm of Aharon
et al. (2006) for learning dictionaries for sparse coding,
which forms the foundation of our approach. Suppose
we are designing a dictionary consisting of k vectors to
sparsely code a set of points {x

1

, . . . ,xn} ⇢ Rd. We
would like to compute a dictionary L 2 Rd⇥k such that
each input point can be coded with a minimal number
of dictionary elements. This objective can be realized
by solving the following optimization problem:

arg min
L

n
X

i=1

min
s(i)

n

�

�Ls(i) � xi

�

�

2

2

+ µ
�

�s(i)
�

�

0

o

, (1)

where s(i) is the vector of coe�cients over the columns
of L to encode xi and µ is a positive constant that
defines the tradeo↵ between accurate reconstruction
of the input points and the sparsity of the coe�cient
vectors. This objective is computationally hard to op-
timize due to the cross terms between the dictionary
L and coe�cients S =

⇥

s(1) · · · s(n)
⇤

as well as the
presence of the L

0

norm k · k
0

, which both make the
objective non-convex. Some approaches for solving
Equation 1 alternately optimize L and S until a lo-
cal minima is reached.1

Like other approaches for dictionary learning, K-SVD
alternates two optimization steps.
1. Optimize S in Equation 1 given the current L.
2. For a particular dictionary element (i.e., the jth

column of L), jointly optimize the element as well
as its corresponding coe�cient for each data point
currently encoded by the dictionary element (i.e.,
the non-zero entries in the jth row of S).

We next describe each of these steps of K-SVD; the
complete K-SVD algorithm is given as Algorithm 1.

Step 1: Optimizing S

Given a fixed value of L, Equation 1 decomposes into
n independent optimization problems of the form:

s(i) arg min
s

�

kLs� xik2
2

+ µksk
0

. (2)

Equation 2 is known as the sparse coding problem, and
can be solved (approximately) using numerous tech-

1Optimizing L given a fixed S is a convex optimization
problem, whereas optimizing the columns of S with fixed L,
while not convex, can be relaxed into a convex optimization
problem by replacing the L0 norm with the L1 norm.

Algorithm 1 K-SVD (Aharon et al., 2006)

input data points {x
1

, . . . ,xn}, dictionary size k
init L using random column vectors of unit length
loop until convergence do

for i 2 {1, . . . , n}, perform update in Eqn. 2
for j 2 {1, . . . , k}, perform updates in Eqns. 4–6

end loop
return L

niques (e.g., Matching Pursuit, Orthogonal Matching
Pursuit, or the Lasso (Tibshirani, 1996)).

Step 2: Optimizing a Dictionary Element and
its Corresponding Non-Zero Coe�cients

This step updates a particular dictionary element as
well as the corresponding coe�cients for data points
that are encoded using the element (i.e., have a non-
zero coe�cient value). Let lj indicate the particular
column of L to optimize. First, we form the matrix
E representing the residual for each data point given
that lj is zeroed out. The ith column of E is given by:

ei = xi �
X

r 6=j

s(i)r lr , (3)

where s
(i)
r is the rth entry of s(i). Next, we perform

a singular value decomposition (SVD) on E. The first
left singular vector provides the updated value for lj
and the corresponding right singular vector scaled by
the corresponding singular value yields the updated
coe�cients for each data point (i.e., the jth row of S).

We would like both steps (1) and (2) to either maintain
or improve the quality of our solution to Equation 1.
Unfortunately, using the SVD of E will cause some
coe�cients in S that were previously zero to become
non-zero, eliminating the guarantee that the quality of
our solution cannot become worse. To eliminate this
possibility, we take the SVD of the subset A of the

columns of E such m 2 A, s(m)

j 6= 0:

(U,⌃,V) = svd (EA) (4)

lj u
1

(5)

s(A)

j �
1,1v1

, (6)

where EA denotes the matrix formed from the subset
of columns in A, the singular values are assumed to all
be positive (this is possible for any real matrix) and

sorted in descending order, and s(A)

j denotes the vec-
tor formed from the columns in A of the jth row of S.
It is well-known that this optimization procedure min-

imizes kEA�Bk2
2

for all rank-1 matrices B = ljs
(A)>
j .

Step	 2	 can	 be	 solved	 efficiently	 via	 SVD:	
•  Let	 the	 ith	 column	 of	 E	 be	 given	 by	
•  Then	 take	 	 	

Surprisingly,	 we	 can	 efficiently	 find	 the	 global	 minimum!	

Online Multi-Task Learning based on K-SVD

call MTL-SVD. We then modify the batch MTL-SVD
algorithm to operate online, making it suitable for ap-
plication to lifelong learning settings.

2. The K-SVD Algorithm

This section reviews the K-SVD algorithm of Aharon
et al. (2006) for learning dictionaries for sparse coding,
which forms the foundation of our approach. Suppose
we are designing a dictionary consisting of k vectors to
sparsely code a set of points {x

1

, . . . ,xn} ⇢ Rd. We
would like to compute a dictionary L 2 Rd⇥k such that
each input point can be coded with a minimal number
of dictionary elements. This objective can be realized
by solving the following optimization problem:

arg min
L

n
X

i=1

min
s(i)

n

�

�Ls(i) � xi

�

�

2

2

+ µ
�

�s(i)
�

�

0

o

, (1)

where s(i) is the vector of coe�cients over the columns
of L to encode xi and µ is a positive constant that
defines the tradeo↵ between accurate reconstruction
of the input points and the sparsity of the coe�cient
vectors. This objective is computationally hard to op-
timize due to the cross terms between the dictionary
L and coe�cients S =

⇥

s(1) · · · s(n)
⇤

as well as the
presence of the L

0

norm k · k
0

, which both make the
objective non-convex. Some approaches for solving
Equation 1 alternately optimize L and S until a lo-
cal minima is reached.1

Like other approaches for dictionary learning, K-SVD
alternates two optimization steps.
1. Optimize S in Equation 1 given the current L.
2. For a particular dictionary element (i.e., the jth

column of L), jointly optimize the element as well
as its corresponding coe�cient for each data point
currently encoded by the dictionary element (i.e.,
the non-zero entries in the jth row of S).

We next describe each of these steps of K-SVD; the
complete K-SVD algorithm is given as Algorithm 1.

Step 1: Optimizing S

Given a fixed value of L, Equation 1 decomposes into
n independent optimization problems of the form:

s(i) arg min
s

�

kLs� xik2
2

+ µksk
0

. (2)

Equation 2 is known as the sparse coding problem, and
can be solved (approximately) using numerous tech-

1Optimizing L given a fixed S is a convex optimization
problem, whereas optimizing the columns of S with fixed L,
while not convex, can be relaxed into a convex optimization
problem by replacing the L0 norm with the L1 norm.

Algorithm 1 K-SVD (Aharon et al., 2006)

input data points {x
1

, . . . ,xn}, dictionary size k
init L using random column vectors of unit length
loop until convergence do

for i 2 {1, . . . , n}, perform update in Eqn. 2
for j 2 {1, . . . , k}, perform updates in Eqns. 4–6

end loop
return L

niques (e.g., Matching Pursuit, Orthogonal Matching
Pursuit, or the Lasso (Tibshirani, 1996)).

Step 2: Optimizing a Dictionary Element and
its Corresponding Non-Zero Coe�cients

This step updates a particular dictionary element as
well as the corresponding coe�cients for data points
that are encoded using the element (i.e., have a non-
zero coe�cient value). Let lj indicate the particular
column of L to optimize. First, we form the matrix
E representing the residual for each data point given
that lj is zeroed out. The ith column of E is given by:

ei = xi �
X

r 6=j

s(i)r lr , (3)

where s
(i)
r is the rth entry of s(i). Next, we perform

a singular value decomposition (SVD) on E. The first
left singular vector provides the updated value for lj
and the corresponding right singular vector scaled by
the corresponding singular value yields the updated
coe�cients for each data point (i.e., the jth row of S).

We would like both steps (1) and (2) to either maintain
or improve the quality of our solution to Equation 1.
Unfortunately, using the SVD of E will cause some
coe�cients in S that were previously zero to become
non-zero, eliminating the guarantee that the quality of
our solution cannot become worse. To eliminate this
possibility, we take the SVD of the subset A of the

columns of E such m 2 A, s(m)

j 6= 0:

(U,⌃,V) = svd (EA) (4)

lj u
1

(5)

s(A)

j �
1,1v1

, (6)

where EA denotes the matrix formed from the subset
of columns in A, the singular values are assumed to all
be positive (this is possible for any real matrix) and

sorted in descending order, and s(A)

j denotes the vec-
tor formed from the columns in A of the jth row of S.
It is well-known that this optimization procedure min-

imizes kEA�Bk2
2

for all rank-1 matrices B = ljs
(A)>
j .

Online Multi-Task Learning based on K-SVD

call MTL-SVD. We then modify the batch MTL-SVD
algorithm to operate online, making it suitable for ap-
plication to lifelong learning settings.

2. The K-SVD Algorithm

This section reviews the K-SVD algorithm of Aharon
et al. (2006) for learning dictionaries for sparse coding,
which forms the foundation of our approach. Suppose
we are designing a dictionary consisting of k vectors to
sparsely code a set of points {x

1

, . . . ,xn} ⇢ Rd. We
would like to compute a dictionary L 2 Rd⇥k such that
each input point can be coded with a minimal number
of dictionary elements. This objective can be realized
by solving the following optimization problem:

arg min
L

n
X

i=1

min
s(i)

n

�

�Ls(i) � xi

�

�

2

2

+ µ
�

�s(i)
�

�

0

o

, (1)

where s(i) is the vector of coe�cients over the columns
of L to encode xi and µ is a positive constant that
defines the tradeo↵ between accurate reconstruction
of the input points and the sparsity of the coe�cient
vectors. This objective is computationally hard to op-
timize due to the cross terms between the dictionary
L and coe�cients S =

⇥

s(1) · · · s(n)
⇤

as well as the
presence of the L

0

norm k · k
0

, which both make the
objective non-convex. Some approaches for solving
Equation 1 alternately optimize L and S until a lo-
cal minima is reached.1

Like other approaches for dictionary learning, K-SVD
alternates two optimization steps.
1. Optimize S in Equation 1 given the current L.
2. For a particular dictionary element (i.e., the jth

column of L), jointly optimize the element as well
as its corresponding coe�cient for each data point
currently encoded by the dictionary element (i.e.,
the non-zero entries in the jth row of S).

We next describe each of these steps of K-SVD; the
complete K-SVD algorithm is given as Algorithm 1.

Step 1: Optimizing S

Given a fixed value of L, Equation 1 decomposes into
n independent optimization problems of the form:

s(i) arg min
s

�

kLs� xik2
2

+ µksk
0

. (2)

Equation 2 is known as the sparse coding problem, and
can be solved (approximately) using numerous tech-

1Optimizing L given a fixed S is a convex optimization
problem, whereas optimizing the columns of S with fixed L,
while not convex, can be relaxed into a convex optimization
problem by replacing the L0 norm with the L1 norm.

Algorithm 1 K-SVD (Aharon et al., 2006)

input data points {x
1

, . . . ,xn}, dictionary size k
init L using random column vectors of unit length
loop until convergence do

for i 2 {1, . . . , n}, perform update in Eqn. 2
for j 2 {1, . . . , k}, perform updates in Eqns. 4–6

end loop
return L

niques (e.g., Matching Pursuit, Orthogonal Matching
Pursuit, or the Lasso (Tibshirani, 1996)).

Step 2: Optimizing a Dictionary Element and
its Corresponding Non-Zero Coe�cients

This step updates a particular dictionary element as
well as the corresponding coe�cients for data points
that are encoded using the element (i.e., have a non-
zero coe�cient value). Let lj indicate the particular
column of L to optimize. First, we form the matrix
E representing the residual for each data point given
that lj is zeroed out. The ith column of E is given by:

ei = xi �
X

r 6=j

s(i)r lr , (3)

where s
(i)
r is the rth entry of s(i). Next, we perform

a singular value decomposition (SVD) on E. The first
left singular vector provides the updated value for lj
and the corresponding right singular vector scaled by
the corresponding singular value yields the updated
coe�cients for each data point (i.e., the jth row of S).

We would like both steps (1) and (2) to either maintain
or improve the quality of our solution to Equation 1.
Unfortunately, using the SVD of E will cause some
coe�cients in S that were previously zero to become
non-zero, eliminating the guarantee that the quality of
our solution cannot become worse. To eliminate this
possibility, we take the SVD of the subset A of the

columns of E such m 2 A, s(m)

j 6= 0:

(U,⌃,V) = svd (EA) (4)

lj u
1

(5)

s(A)

j �
1,1v1

, (6)

where EA denotes the matrix formed from the subset
of columns in A, the singular values are assumed to all
be positive (this is possible for any real matrix) and

sorted in descending order, and s(A)

j denotes the vec-
tor formed from the columns in A of the jth row of S.
It is well-known that this optimization procedure min-

imizes kEA�Bk2
2

for all rank-1 matrices B = ljs
(A)>
j .

Online Multi-Task Learning based on K-SVD

call MTL-SVD. We then modify the batch MTL-SVD
algorithm to operate online, making it suitable for ap-
plication to lifelong learning settings.

2. The K-SVD Algorithm

This section reviews the K-SVD algorithm of Aharon
et al. (2006) for learning dictionaries for sparse coding,
which forms the foundation of our approach. Suppose
we are designing a dictionary consisting of k vectors to
sparsely code a set of points {x

1

, . . . ,xn} ⇢ Rd. We
would like to compute a dictionary L 2 Rd⇥k such that
each input point can be coded with a minimal number
of dictionary elements. This objective can be realized
by solving the following optimization problem:

arg min
L

n
X

i=1

min
s(i)

n

�

�Ls(i) � xi

�

�

2

2

+ µ
�

�s(i)
�

�

0

o

, (1)

where s(i) is the vector of coe�cients over the columns
of L to encode xi and µ is a positive constant that
defines the tradeo↵ between accurate reconstruction
of the input points and the sparsity of the coe�cient
vectors. This objective is computationally hard to op-
timize due to the cross terms between the dictionary
L and coe�cients S =

⇥

s(1) · · · s(n)
⇤

as well as the
presence of the L

0

norm k · k
0

, which both make the
objective non-convex. Some approaches for solving
Equation 1 alternately optimize L and S until a lo-
cal minima is reached.1

Like other approaches for dictionary learning, K-SVD
alternates two optimization steps.
1. Optimize S in Equation 1 given the current L.
2. For a particular dictionary element (i.e., the jth

column of L), jointly optimize the element as well
as its corresponding coe�cient for each data point
currently encoded by the dictionary element (i.e.,
the non-zero entries in the jth row of S).

We next describe each of these steps of K-SVD; the
complete K-SVD algorithm is given as Algorithm 1.

Step 1: Optimizing S

Given a fixed value of L, Equation 1 decomposes into
n independent optimization problems of the form:

s(i) arg min
s

�

kLs� xik2
2

+ µksk
0

. (2)

Equation 2 is known as the sparse coding problem, and
can be solved (approximately) using numerous tech-

1Optimizing L given a fixed S is a convex optimization
problem, whereas optimizing the columns of S with fixed L,
while not convex, can be relaxed into a convex optimization
problem by replacing the L0 norm with the L1 norm.

Algorithm 1 K-SVD (Aharon et al., 2006)

input data points {x
1

, . . . ,xn}, dictionary size k
init L using random column vectors of unit length
loop until convergence do

for i 2 {1, . . . , n}, perform update in Eqn. 2
for j 2 {1, . . . , k}, perform updates in Eqns. 4–6

end loop
return L

niques (e.g., Matching Pursuit, Orthogonal Matching
Pursuit, or the Lasso (Tibshirani, 1996)).

Step 2: Optimizing a Dictionary Element and
its Corresponding Non-Zero Coe�cients

This step updates a particular dictionary element as
well as the corresponding coe�cients for data points
that are encoded using the element (i.e., have a non-
zero coe�cient value). Let lj indicate the particular
column of L to optimize. First, we form the matrix
E representing the residual for each data point given
that lj is zeroed out. The ith column of E is given by:

ei = xi �
X

r 6=j

s(i)r lr , (3)

where s
(i)
r is the rth entry of s(i). Next, we perform

a singular value decomposition (SVD) on E. The first
left singular vector provides the updated value for lj
and the corresponding right singular vector scaled by
the corresponding singular value yields the updated
coe�cients for each data point (i.e., the jth row of S).

We would like both steps (1) and (2) to either maintain
or improve the quality of our solution to Equation 1.
Unfortunately, using the SVD of E will cause some
coe�cients in S that were previously zero to become
non-zero, eliminating the guarantee that the quality of
our solution cannot become worse. To eliminate this
possibility, we take the SVD of the subset A of the

columns of E such m 2 A, s(m)

j 6= 0:

(U,⌃,V) = svd (EA) (4)

lj u
1

(5)

s(A)

j �
1,1v1

, (6)

where EA denotes the matrix formed from the subset
of columns in A, the singular values are assumed to all
be positive (this is possible for any real matrix) and

sorted in descending order, and s(A)

j denotes the vec-
tor formed from the columns in A of the jth row of S.
It is well-known that this optimization procedure min-

imizes kEA�Bk2
2

for all rank-1 matrices B = ljs
(A)>
j .

Online	 Mul--‐Task	 Learning	 via	 K-‐SVD	

f (t)(x) = f(x;✓(t)) ✓(t) 2 Rd

✓(t) = Ls(t) L 2 Rd⇥k, s(t) 2 Rk

X =

Source''
Knowledge'

Co
effi

ci
en

ts
'

✓(t) s(t)LAssumes	 a	 parametric	 model	 for	 each	 task	 t

The	 parameter	 vectors	 for	 each	 model	 are	
linear	 combina5ons	 of	 a	 shared	 latent	 basis	 L

The	 MTL	 objec5ve	 func5on	 encourages	 transfer	 between	 models:	

model	 fit	 to	 data	 sparsity	 complexity	

eT (L) =
1

T

TX

t=1

min
s(t)

(
1

nt

ntX

i=1

L
⇣
f
⇣
x

(t)
i ;Ls(t)

⌘
, y(t)i

⌘
+ µks(t)k1

�
+ �kLk2F

#tasks	 seen	 so	 far	

Lifelong)
Learning)System)

1.)$Tasks$are$received$$
sequen2ally$

previously$learned$tasks$ future$learning$tasks$

...$...$t t:1$t:2$t:3$ t+1$ t+2$ t+3$

labeled$data$

previously$learned$
knowledge$L

learned$model$ft$
$

2.)$Knowledge$is$$
transferred$from$$
previously$$
learned$tasks$

3.)New
knowledge$$
is$stored$for$
futureuse

4.)$Exis2ng$
knowledge$$
is$refined$

ft$
$

current$
task$

X(t),$y(t)$

✓

(t) = arg min✓
1
nt

Pnt

i=1 L
⇣
f
�
x

(t)
i ;✓

�
, y(t)i

⌘

D(t) is	 ½	 the	 Hessian	 of	 the	 single-‐task	 loss	 evaluated	 at	
where:	

✓(t)

kxk2D = x

>
Dx

gT (L) =
1

T

TX

t=1

min
s(t)

⇢��✓(t) � Ls(t)k2D(t) + µks(t)k1
�
+ �kLk2F

We	 can	 re-‐write	 this	 objec5ve	 as	 a	 sparse	 coding	 problem	 [Ruvolo	 &	 Eaton,	 ICML	 ‘13]	

	

	

	

	

	

	
	

Using	 K-‐SVD	 for	 Mul--‐Task	 Learning	
The	 sparse	 coding	 formula5on	 of	 MTL	 is	 similar	 to	 the	 K-‐SVD	 objec5ve.	
	 Key	 Idea:	 	 Use	 SVD	 to	 efficiently	 solve	 the	 MTL	 objec5ve	
•  Need	 to	 use	 the	 generalized	 SVD	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
instead	 of	 the	 SVD	 to	 properly	 account	 for	 2nd	 order	 informa5on,	 where	

•  	 	 and	 	 	 serve	 as	 feature	 and	 task	 rela5onship	 matrices	
	

Modifica-ons	 to	 Learn	 Tasks	 Online	
•  When	 training	 on	 task	 t,	 update	 only	 s(t)	 and	 the	 relevant	 basis	 vectors	
•  Perform	 each	 step	 of	 K-‐SVD	 only	 once	 per	 batch	 of	 training	 data	

(U,⌃,V) = gsvd (EA,M,W)

(U,⌃,V) = gsvd (EA,M,W)(U,⌃,V) = gsvd (EA,M,W)

ELLA-‐SVD	 Algorithm	
	

	

Given	 a	 new	 task	 t,	
1. 	 Train	 a	 single-‐task	 model	 	 	 	 	 	 	 	 	 	 for	 task	 t
2. 	 Reconstruct	 	 	 	 	 	 	 	 	 	 in	 the	 current	 basis	 (LASSO):	
	

3. 	 Update	 the	 basis:	
	 	 	 	 	 	 	 	 for	 j	 =	 1	 ...	 k such	 that	 sj(t)	 ≠	 0,	 solve	 via	 GSVD	

✓(t)

✓(t)

s(t) arg mins
�
kLs� ✓(t)k2

D(t) + µksk0

One	 pass	 per	
training	 set	

(no	 “loop	 un5l	
convergence”)	

Results	
We	 compared	 ELLA-‐SVD	 to	 ELLA	 and	 two	 variants:	
•  ELLA	 Incremental	 –	 a	 more	 efficient	 but	 subop5mal	 version	 of	 ELLA	
•  ELLA	 Dual	 Update	 –	 a	 hybrid	 combina5on	 of	 ELLA-‐SVD	 &	 ELLA	 Incremental	

0 20 40 60 80 100−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

Number of Tasks Learned

Ac
cu

ra
cy

 (−
rM

SE
)

Synthetic Data

ELLA
ELLA Incremental
ELLA−SVD
ELLA Dual Update

0 5 10 15 20 25 300.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

Number of Tasks Learned

Ac
cu

ra
cy

 (A
RO

C)

Land Mine Data

ELLA
ELLA Incremental
ELLA−SVD
ELLA Dual Update

0 50 100 150−12

−11.5

−11

−10.5

−10

Number of Tasks Learned

Ac
cu

ra
cy

 (−
rM

SE
)

London Schools Data

ELLA
ELLA Incremental
ELLA−SVD
ELLA Dual Update

0 5 10 15 20 250.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

Number of Tasks Learned

Ac
cu

ra
cy

 (A
RO

C)

Facial Expression Data

ELLA
ELLA Incremental
ELLA−SVD
ELLA Dual Update

Figure 2: Lifelong learning results, averaged over 100 trials. Performance was evaluated on all tasks after learning each new task.

to maximize the average performance when learning using
all tasks. Although this procedure inflates performance rela-
tive to fitting the parameters online using a validation set, it
allows us to better compare the relative performance levels
of the different algorithms (which is our principal focus).

Results
The results of our evaluation are given in Figure 2. The pro-
posed ELLA-SVD approach is better than all other methods
on the land mine task. Specifically, the approach performs
much better than the other efficient update approach, ELLA
Incremental. On the synthetic regression tasks, the original
ELLA method is clearly the best, with the ELLA-SVD and
ELLA Incremental approaches lagging behind.

In contrast to the strong performance of ELLA-SVD on
land mine and the synthetic tasks, ELLA-SVD does not
perform well on either facial expression recognition or stu-
dent exam score prediction. In particular, the performance of
ELLA-SVD on student exam score prediction actually de-

clines as it learns more tasks. Further investigation revealed
that the cause of this problem was that the matrix M formed
as a consensus of the D

(t)’s (which is required for Eq. (8))
is a poor approximation to the true objective function we
would like to minimize (Eq. (7)). The primary reason for
this poor approximation is that the input distributions for
each task (i.e., each school) are quite different due to the
school-specific features of each instance. In this case, the
ELLA-SVD updates turn out to be counter-productive.

We proposed the ELLA Dual Update approach in order to
get the best of both worlds. That is, we seek to achieve the

high performance of ELLA-SVD on tasks where it is appro-
priate for application (e.g., for land mine detection), and to
fall back to ELLA Incremental when ELLA-SVD performs
poorly (e.g., for the London schools data). The results for the
Dual Update version shown in Figure 2 suggest that this hy-
brid approach is successful. The performance of ELLA Dual
Update clusters tightly with the best performing algorithm
for each learning problem (with the exception of the syn-
thetic regression tasks, for which none of the more-efficient
approaches does as well as the original ELLA).

Conclusion
We explored the use of the K-SVD algorithm (Aharon et
al. 2006) in the lifelong machine learning setting. Adapting
K-SVD to the lifelong learning setting required several key
innovations including: a) replacing the SVD step in the orig-
inal algorithm with a generalized SVD, and b) selectively
updating components of the model as new task data is pre-
sented. We showed that ELLA-SVD performs well on prob-
lems where the input distributions of the data are similar.

For domains where the input distributions are not sim-
ilar, we showed that a hybrid approach (in which we in-
terleave the ELLA-SVD update with another efficient up-
date step called ELLA Incremental) performs robustly. In fu-
ture work, we will conduct experiments to better understand
the tradeoffs between ELLA-SVD and ELLA Incremental.
Additionally, we plan to test our more-efficient versions of
ELLA in settings where applying the original ELLA is com-
putationally intractable (e.g., when k and d are large).

lj , s
(A)
j arg min

lj ,s
(A)
j

TX

t=1

⇣
wtkLs(t) � ✓(t)k2M + µks(t)k0

⌘

wt =
1>D(t)1P

t02Aj
1>D(t0)1

M =
1

|Aj |
X

t02Aj

D(t0)

Per-‐Task	 Computa-onal	 Complexity	
ELLA-‐SVD:	 O(base	 learner	 +	 d2k	 +	 k2d	 +	 qd3	 +	 qr2d)	 	 	
	 	 	 	 	 	 	 	 	 q	 =	 sparsity	 of	 s(t)	 	 	 	 r	 =	 #	 tasks	 u5lizing	 same	 basis	 component	 	
	

ELLA:	 O(base	 learner	 +	 d3k2)	 	 	 	 	 	 	 	 ß	 significantly	 less	 efficient	 than	 ELLA-‐SVD	

