
ESE150 Spring 2018

University of Pennsylvania
Department of Electrical and System Engineering

Digital Audio Basics

ESE150, Spring 2018 Final Wednesday, May 2

• Exam ends at 8:00pm; begin as instructed (target 6:00pm)
• Problems weighted as shown at bottom of page.
• Calculators allowed.
• Closed book = No text or notes allowed.
• Provided reference materials on next to last page.
• Show work for partial credit consideration.
• Unless otherwise noted, answers to two significant figures are sufficient.
• Sign Code of Academic Integrity statement (see last page for code).

I certify that I have complied with the University of Pennsylvania’s Code of Academic
Integrity in completing this exam.

Name: Solution

1 2 3 4

a b.i b.ii c.i c.ii a b c d e f a b c.i c.ii

10 4 2 1 2 1 3 3 3 3 3 3 3 3 3 4

5 6 7 8 Total

a b c a b c d a.i a.ii a.iii b a b c

2 3 7 3 3 3 3 2 2 2 2 5 5 7 100

1

ESE150 Spring 2018

1. Implement the following truth table using inverters and 2-input AND and OR gates.

a b c d out

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 1

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 1

1 1 1 1 1

No Optimization Optimized
b

a

c

d

d

b

c

a

2

ESE150 Spring 2018

2. We want to move a running computation from one processor to another.

(a) What information do we need to transfer in order to allow the computation to
continue and produce the correct answer?

i. Program Counter

ii. Instructions (contents of instruction memory)

iii. Data (contents of data memory)

(b) Consider compressing the data before transfer (and decompressing after) using
Huffman Encoding.

i. Will this work (allow the computation to resume on the new processor, run
to completion, and produce the same result as if it had not been moved or
compressed/uncompressed)?

Yes. Huffman encoding is lossless, so all state can be
restored exactly to the original values.

ii. How effective is this compression likely to be (Impact on data transfered by
component)? Give specific examples where it will be effective or ineffective.

We will likely to get some compression on instructions
due to recurring instruction sequences. Effectiveness on
data memory will depend on what’s in it. If portions
of the memory are 0 (perhaps because they are unused),
that will compress well. Any other case where a common
value is in memory will also compress well. The program
counter is a small part of the state and not necessarily
compressible.

(c) Consider compressing the data before transfer (and decompressing after) using
MP3 encoder (decoder).

i. Will this work (allow the computation to resume on the new processor, run
to completion, and produce the same result as if it had not been moved or
compressed/uncompressed)?

No. The MP3 encoding is lossy. If any of the bits in the
instruction memory or program counter are changed, the
program will not execute as intended. Changes in data
state will also lead to incorrect values being computed.

ii. How effective is this compression likely to be (Impact on data transfered by
component)? Give specific examples where it will be effective or ineffective.

Using fixed-rate budgets for encoding, it can reduce the
state; it just won’t be restored to useful values when de-
coded.

3

ESE150 Spring 2018

3. Consider sending audio data over a UDP (Unreliable Datagram Protocol) link.
Assume the receiver is aware of which packets are lost and will make the best of the
information it does receive. As in lab, the frequency packets are based on Fourier
Transforms of time windows. Rank in order of subjective quality for humans based
on your knowledge of audio processing and human psychoacoustics from this course
(1-best, 6-worst). Justify your answers by explaining the impact of losing a packet in
each case.

Packets are at most a few thousand bytes – think 2048 sample windows, so cover 10s
of ms of sound; a single song is 3 minutes, so will be composed of thousands of packets.
Packets are lost independently, even in the case of packet pairs.

(a) 6 Packets contain PCM (raw, quantized time-sample data)

Every lost data packet will result in silence for the length of
time covered by the packet.

(b) 3 Packets come in pairs for a time window with the highest frequency critical
bands in one packet, and the rest in the second.

In the atypical case in which there are only high or low fre-
quencies, this will be perfect half the time (when the empty
frequency set is lost). Typically, there will be both. If the
high frequencies are lost, the sound is likely understandable
but lower quality; telephone audio only represents data up
4K Hz. If only the high frequency packet is received, this
time period will sound odd and any spoken words may be
hard or impossible to understand.

(c) 2 Packets come in pairs for a time window with the even timeslot PCM samples
in one packet of the pair, and odd timeslot PCM samples in the other.

Losing one packet of a pair will be equivalent to sampling
at half the frequency for that time interval. As long as the
sound has no frequency content higher than the one-quarter
the original sampling rate, the sound will be perfectly repro-
duced (half for the half lost, half since the Nyquist sampling
rate is twice the highest frequency component). If there are
higher frequencies present, we will get aliasing effects for the
frequencies between one-quarter and half the original sam-
pling rate (assuming the original data was filtered to remove
frequencies above half the sampling rate).

(d) 5 Packets come in pairs for a time window, were the first packet contains the
top 8b of the amplitude for all frequency and the second the low 8b.

4

ESE150 Spring 2018

It will depend on which packet is lost. If the packet with
the low 8b of amplitude is lost, there may be little noise; 8b
audio is understandable, and, in many cases, introduces little
noise. If the high 8b of amplitude is lost, the time window
may sound like noise.

(e) 1 Packets come in pairs for a time window where both the first and second
packet in a pair contains the top one-third frequencies (by amplitude) in each
critical band. The first packet also contains the middle one-third of the highest
frequency critical bands, while the second packet contains the middle one-third
of the remaining critical bands.

Loss is likely unnoticeable. The highest amplitude frequen-
cies in a critical band will mask the lower frequencies. Since
the highest (one-third) frequencies exist in both packets in a
pair, reconstruction will be able to produce these frequencies
even if one of the packets in the pair is lost.

(f) 4 Packets come in pairs for a time window, where the highest amplitude fre-
quencies from each critical band are in one packet and the lowest in the other.

It will depend on which packet is lost. If the packet with
the low amplitude is lost, the result will be unnoticeable, as
the high amplitude frequencies will mask the low amplitude
frequencies. If the packet with the high amplitude frequen-
cies is lost, the sound will not be reproduced properly. The
important components are lost. The remaining components
are likely not noise, but they are sounds that would typically
not have been heard, so the result is only slightly better than
silence.

1 and 6 should not be contraversial. There might be some wiggle
room for 2. 3, 4, 5 are more debatable. Pointing out key features
of each to support ranking is important thing to get for these.

5

ESE150 Spring 2018

4. Consider a FLASH memory with the following characteristic:

• 64KB native flash pages

• Opening a flash page takes 25µs

• Once open, access within a flash page is 25 ns per Byte.

• inodes and bnodes are 1KB blocks

• must read all bytes in each 1KB block

(a) How long to read a 38KB file organized as one 1KB inode and 38 1KB bnodes,
all of which are placed in the same 64KB flash page?

25µs+(25 ns × 1024)×(38+1)=1,023,400 ns≈1.0 ms

(b) How long to read a 38KB file organized as one 1KB inode and 38 1KB bnodes,
each of which is placed in a different 64KB flash page?

Each of the 39 nodes is in a separate page.

(25µs+25 ns × 1024)×(38+1)=1,973,400 ns≈2.0 ms

6

ESE150 Spring 2018

(c) Consider storing 4 files: A of size 512B, B of size 41KB, C of size 33KB, and D
of size 49KB.
(assume all are 1 inode and dsize/1KBe bnodes):

i. How should we place these files into pages in order to minimize the access
time for every file? (minimize pages used as a secondary goal.)

Put A and C together in one page, and B and D each in
their own pages.

ii. How should we place these files into pages to minimize the number of 64KB
pages used? (minimize access time as a secondary goal.) Quantify overall
space saving percentage and per file read performance impact percentage.

One page contains all of A and B and 20 1KB bnode
blocks from C (a total of 2+42+20=64 blocks); the second
page contains all of D and the rest of B (inode block +
13 bnode blocks; so this becomes 50+1+13=64 blocks).
This saves 1 of 3 pages or 33% compared to the access-
time-optimized version above.
• Access to files A, B, and D is not impacted.

• Access to file C is slowed by 3% (920400−895400
895400

≈ 0.028)

– Performance packing: 25µs + 25 ns × 1024 × 34 = 895,400 ns ≈ 0.90 ms

– Space packing: 25µs ×2 + 25 ns × 1024 × 34 = 920,400 ns ≈ 0.92 ms

7

ESE150 Spring 2018

5. Consider the following Arduino Assembly code:

000010a2 <__udivmodsi4>:

10a2: a1 e2 ldi r26, 0x21 ; 33

10a4: 1a 2e mov r1, r26

10a6: aa 1b sub r26, r26

10a8: bb 1b sub r27, r27

10aa: fd 01 movw r30, r26

10ac: 0d c0 rjmp .+26 ; 0x10c8 <__udivmodsi4_ep>

000010ae <__udivmodsi4_loop>:

10ae: aa 1f adc r26, r26

10b0: bb 1f adc r27, r27

10b2: ee 1f adc r30, r30

10b4: ff 1f adc r31, r31

10b6: a2 17 cp r26, r18

10b8: b3 07 cpc r27, r19

10ba: e4 07 cpc r30, r20

10bc: f5 07 cpc r31, r21

10be: 20 f0 brcs .+8 ; 0x10c8 <__udivmodsi4_ep>

10c0: a2 1b sub r26, r18

10c2: b3 0b sbc r27, r19

10c4: e4 0b sbc r30, r20

10c6: f5 0b sbc r31, r21

000010c8 <__udivmodsi4_ep>:

10c8: 66 1f adc r22, r22

10ca: 77 1f adc r23, r23

10cc: 88 1f adc r24, r24

10ce: 99 1f adc r25, r25

10d0: 1a 94 dec r1

10d2: 69 f7 brne .-38 ; 0x10ae <__udivmodsi4_loop>

10d4: 60 95 com r22

10d6: 70 95 com r23

10d8: 80 95 com r24

10da: 90 95 com r25

10dc: 9b 01 movw r18, r22

10de: ac 01 movw r20, r24

10e0: bd 01 movw r22, r26

10e2: cf 01 movw r24, r30

10e4: 08 95 ret

8

ESE150 Spring 2018

(a) Identify the top and bottom of the loop.

Loop ends at 0x10d2 where it branches back to the top at
0x10ae. The brne is the end of the loop where it condition-
ally branches back to the top.

(b) How many times does the loop execute?
(Hint: What is the loop exit condition? What register holds the value tested for
the exit condition? What happens to this register on each loop iteration? How is
the register initialized?)

The full loop executes 32 times, with one part of the loop
(0x10c8–0x10d2) executing 33 times.
The loop exits when r1 becomes 0. r1 is holding the value.
r1 is decremented (dec r1) on every loop iteration. r1 is
initialized to 33 in 0x10a2 and 0x10a4, where the ldi loads
33 into r26 and moves it to r1.

(c) What is the worst-case number of cycles from entering at 0x10a2 to performing
the return at 0x10e4?

698

(instruction table on next to last page)

9

ESE150 Spring 2018

code cycles executed total

10a2: ldi r26, 0x21 1 1 1
10a4: mov r1, r26 1 1 1
10a6: sub r26, r26 1 1 1
10a8: sub r27, r27 1 1 1
10aa: movw r30, r26 1 1 1
10ac: rjmp .+26 2 1 2
10ae: adc r26, r26 1 32 32
10b0: adc r27, r27 1 32 32
10b2: adc r30, r30 1 32 32
10b4: adc r31, r31 1 32 32
10b6: cp r26, r18 1 32 32
10b8: cpc r27, r19 1 32 32
10ba: cpc r30, r20 1 32 32
10bc: cpc r31, r21 1 32 32
10be: brcs .+8 2 32 64
10c0: sub r26, r18 1 32 32
10c2: sbc r27, r19 1 32 32
10c4: sbc r30, r20 1 32 32
10c6: sbc r31, r21 1 32 32
10c8: adc r22, r22 1 33 33
10ca: adc r23, r23 1 33 33
10cc: adc r24, r24 1 33 33
10ce: adc r25, r25 1 33 33
10d0: dec r1 1 33 33
10d2: brne .-38 2 33 66
10d4: com r22 1 1 1
10d6: com r23 1 1 1
10d8: com r24 1 1 1
10da: com r25 1 1 1
10dc: movw r18, r22 1 1 1
10de: movw r20, r24 1 1 1
10e0: movw r22, r26 1 1 1
10e2: movw r24, r30 1 1 1
10e4: ret 4 1 4

698

10

ESE150 Spring 2018

6. Consider the following FSM for decoding serial, Huffman encoded data into characters.

 logic
below

state

bit
character (result of putc)

int state=START;

while(true) {

int bit=nextInputBit();

switch(state) {

case START: if (bit==0) state=S0; else state=S1; break;

case S0: if (bit==0) state=S00; else state=S01; break;

case S1: if (bit==0) state=S10; else state=S11; break;

case S00: if (bit==0) state=S000; else{ state=START; putc(’E’); } break;

case S01: if (bit==0) state=S010; else state=S011; break;

case S10: if (bit==0) state=S100; else {state=START; putc(’ ’);} break;

case S11: if (bit==0) state=S110; else state=S111; break;

case S000: if (bit==0) state=S0000; else {state=START; putc(’H’);} break;

case S010: if (bit==0) {state=START; putc(’R’);} else {state=START; putc(’S’);} break;

case S011: if (bit==0) {state=START; putc(’N’);} else state=S0111; break;

case S100: if (bit==0) {state=START; putc(’I’);} else {state=START; putc(’O’);} break;

case S110: if (bit==0) {state=START; putc(’A’);} else state=S1101; break;

case S111: if (bit==0) {state=START; putc(’T’);} else state=S1111; break;

case S0000: if (bit==0) {state=START; putc(’C’);} else {state=START; putc(’U’);} break;

case S0111: if (bit==0) state=S01110; else {state=START; putc(’L’);} break;

case S1101: if (bit==0) state=S11010; else {state=START; putc(’D’);} break;

case S1111: if (bit==0) state=S11110; else state=S11111; break;

case S01110: if (bit==0) {state=START; putc(’B’);} else {state=START; putc(’P’);}

break;

case S11010: if (bit==0) {state=START; putc(’G’);} else {state=START; putc(’W’);}

break;

case S11110: if (bit==0) {state=START; putc(’Y’);} else state=S111101; break;

case S11111: if (bit==0) {state=START; putc(’F’);} else {state=START; putc(’M’);}

break;

case S111101: if (bit==0) {state=START; putc(’V’);} else state=S1111011; break;

case S111011: if (bit==0) state=S1110110; else {state=START; putc(’K’);} break;

case S1110110:if (bit==0) {state=START; putc(’X’);} else state=S11101101; break;

case S11101101:if (bit==0) {state=START; putc(’Q’);} else state=S111011011; break;

case S111011011:if (bit==0) {state=START; putc(’Z’);} else {state=START; putc(’J’);}

break;

}

}

11

ESE150 Spring 2018

(a) What is the minimum number of state bits needed to encode state for a hardware
implementation? Why?
(Hint: different from the 16b or 32b that might be used to encode an int in C.)

5b, because there are 26 states. dlog2(26)e = 5
(b) What is the encoding for the following letters:

letter encoding

A
1100

B
011100

E
001

Y
111100

(c) What letters can be encoded with each of the following number of bits:

bits to encode encoding

1

2

3
E, space

4
H R S N I O A T

5
C U L D

6
B P G W Y F M

7
V K

8
X

(d) Using the encoding, how many bits does it require to encode:

W E A L L L I V E I N A
Y E L L O W S U B M A R I N E

144

12

ESE150 Spring 2018

7. Consider a smartphone Application User Interface for requesting a partner assignment
for lab, where the user gets to submit a prioritized list of 3 choices. Valid selections
must be a student in the course which you have not worked with on previous labs.

(a) Considering the UI design issues discussed in class, identify strengths and weak-
nesses of each of the following (at least one of each):

i. Text fields to type in 3 names and submit button.
1st Choice:

2nd Choice:

3rd Choice:

SUBMIT

• strength: how to use interface is clear

• strength: can see selection all together before submit

• weakness: does not prevent invalid selections (e.g., stu-

dents not in class, students who have already partnered

with)
ii. Sequence of three menus/scrolling pickers to select from all students who have

not previously partnered (40-n), where n is week of lab. End with option to
restart or submit.

1st Choice: 2nd Choice: 3rd Choice:

SUBMIT

RESTART

Able Body

Allysa P. HackerBen Bitdiddle

Matt LabberAlice Cody

Frieda Fourier

Kwon Tizer

Sid Samples

Ozzy Scopes

SELECT SELECT SELECT

• strength: prevents invalid selections—only allows se-

lection from valid list

• weakness: if make mistake or change your mind must

start over

• weakness: does not show what selection will be in one

place before submit

13

ESE150 Spring 2018

iii. Default 1st and 2nd selections to highest unassigned student from previous
preferences. List current selections in order. Click on selection for scrolling
picker to select (update choice). Up/down buttons to order. Submit button.

SUBMIT

Matt Labber

Kwon Tizer

Edit

Edit

Edit <select>

1st

2nd

3rd

Able Body

Ben Bitdiddle

Alice Cody

Update Choice

SELECT

order

Clicking on "Edit"
 in the main screen (left)
 will bring up "Update Choice" (right)
 for the corresponding selection.

After clocking on "SELECT"
 on the "Update Choice"
 screen (right), will return
 to main screen (left) with
 selection updated.

• strength: prevents invalid selections—only allows se-

lection from valid list

• strength: reduces work by preselecting likely choices;

in typical case only need to make one selection rather

than 3

• strength: can see selection all together before submit

• weakness: more complicated interface; may be less

clear how to use

• weakness: may be too easy to accidentally submit be-

fore ready

(b) Suggest an interface that is better than the options above; it may be an im-
provement to one of the above, a mix-and-match of features, or a completely new
design.

• ii – add summary of selections on final selection page; add

option to go back and edit a selection

• iii – Default 3rd option to random students, so possibly

no need for selection. Add review confirmation screen

for submit (maybe it’s too easy to accidentally submit?).

Show current choices on selection screen. Maybe remove

up/down arrows (both or only up or down) to simplify.

14

ESE150 Spring 2018

8. Consider a scenario where audio data is collected at a number of points and sent over
network links to a central location.

Microphones Processors ProcessorsNetwork
 Links

• PCM samples: 44KHz sample rate for each input channel at 16b/sample

• For compression (and decompression), each input channel is processed in 2048
point FFT windows

• context switch processor between channels every 2048 samples (matches window
size for compression case)

• Processor runs at 1 GHz; can handle many audio channels depending on compu-
tation required.

• 20 cycles to handle each uncompressed sample

• 200 cycles of computation per sample for (de)compression

• 20,480 cycles to switch context (channels)

• Frequency transformed and MP3 compressed data is 128Kb/s per channel.

• Network link is 100 Mb/s

• Processor is $25; network link is $250.

15

ESE150 Spring 2018

(a) With one processor on each end and a single network link, how many uncom-
pressed PCM sample channels can the system support? What resource sets the
limit? Uncompressed PCM sample channels=150, limited by
the bandwidth on the network link.
Processor: (20 + 20480

2048) instructions /sample × 44,000 sam-
ples/sec/channel = 1.3M instructions/sec/channel.

(109 instructions/sec)/1.3×106 instructions/sec/channel 757.57≈
760 channels/processor.

Network link: (100×220b/s)/(44,000 × 16b/s/channel) =
148.945≈ 150 channels/network link.

(b) With one processor on each end and a single network link, how many MP3 com-
pressed channels can the system support? What resource sets the limit?

MP3 compressed channels=110, limited by the bandwidth
on the processor (de)compression capacity.

Processor: (200 + 20480
2048) instructions /sample × 44,000 sam-

ples/sec/channel = 9.24M instructions/sec/channel.

(109 instructions/sec)/9.24×106 instructions/sec/channel =
108.225 ≈ 110 channels/processor.

Network link: (100×220b/s)/(128×1024b/s/channel) = 800
channels/network link.

(c) What combination of processors, network links, and compression should you use
to support 1000 channels at minimum cost? Include the final cost for the solution
in your answer.

Processors Net

each End Links Cost

Compressed 1000/110 1000/800 2×25×10+2×250

10 2 $1,000 Minimum

Uncompressed 1000/760 1000/150 2×25×2+7×250

2 7 $1,850

16

ESE150 Spring 2018

This page intentionally left mostly blank for pagination.
Feel free to use for work space.

17

ESE150 Spring 2018

Human auditory critical bands:

Band Number Low High

1 20 100
2 100 200
3 200 300
4 300 400
5 400 510
6 510 630
7 630 720
8 720 920
9 920 1080

10 1080 1370
11 1270 1480
12 1480 1720
13 1720 2000
14 2000 2320
15 2320 2700
16 2700 3150
17 3150 3700
18 3700 4400
19 4400 5300
20 5300 6400
21 6400 7700
22 7700 9500
23 9500 12000
24 12000 15500

18

ESE150 Spring 2018

Arduino (AVR) Instructions:

Instruction Operands Description Operation # Clocks

add Rd, Rr add registers no carry Rd ← Rd+Rr 1
adc Rd, Rr add registers with carry Rd ← Rd+Rr+C 1
brcs k

branch if not equal branch if
carry set

if (C=1) then PC ← PC+k+1 2

brne k
branch if carry set branch if
not equal

if (Z=0) then PC ← PC+k+1 2

com Rd One’s Complement Rd ← 0XFF-Rd 1
cp Rd, Rr Compare Rd-Rr 1
cpc Rd, Rr Copmare with carry Rd-Rr-C 1
dec Rd Decrement Rd ← Rd-1 1
ldi Rd, k Load Immediate RD ← k 1

mov Rd, Rr Move Between Registers Rd ← Rr 1
movw Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr 1

ret Subroutine Return PC ← STACK 4
rjmp k Relative Jump PC ← PC+k+1 2
sub Rd, Rr subtract registers no carry Rd ← Rd-Rr 1
subc Rd, Rr subtract registers with carry Rd ← Rd-Rr-C 1

19

ESE150 Spring 2018

Code of Academic Integrity

Since the University is an academic community, its fundamental purpose is the pursuit of
knowledge. Essential to the success of this educational mission is a commitment to the
principles of academic integrity. Every member of the University community is responsible
for upholding the highest standards of honesty at all times. Students, as members of the
community, are also responsible for adhering to the principles and spirit of the following
Code of Academic Integrity.*

Academic Dishonesty Definitions

Activities that have the effect or intention of interfering with education, pursuit of knowledge,
or fair evaluation of a students performance are prohibited. Examples of such activities
include but are not limited to the following definitions:

A. Cheating Using or attempting to use unauthorized assistance, material, or study aids
in examinations or other academic work or preventing, or attempting to prevent, another
from using authorized assistance, material, or study aids. Example: using a cheat sheet in
a quiz or exam, altering a graded exam and resubmitting it for a better grade, etc.

B. Plagiarism Using the ideas, data, or language of another without specific or proper
acknowledgment. Example: copying another persons paper, article, or computer work and
submitting it for an assignment, cloning someone elses ideas without attribution, failing to
use quotation marks where appropriate, etc.

C. Fabrication Submitting contrived or altered information in any academic exercise. Ex-
ample: making up data for an experiment, fudging data, citing nonexistent articles, contriv-
ing sources, etc.

D. Multiple Submissions Multiple submissions: submitting, without prior permission,
any work submitted to fulfill another academic requirement.

E. Misrepresentation of academic records Misrepresentation of academic records: mis-
representing or tampering with or attempting to tamper with any portion of a students
transcripts or academic record, either before or after coming to the University of Pennsyl-
vania. Example: forging a change of grade slip, tampering with computer records, falsifying
academic information on ones resume, etc.

F. Facilitating Academic Dishonesty Knowingly helping or attempting to help another
violate any provision of the Code. Example: working together on a take-home exam, etc.

G. Unfair Advantage Attempting to gain unauthorized advantage over fellow students in
an academic exercise. Example: gaining or providing unauthorized access to examination
materials, obstructing or interfering with another students efforts in an academic exercise,
lying about a need for an extension for an exam or paper, continuing to write even when
time is up during an exam, destroying or keeping library materials for ones own use., etc.

* If a student is unsure whether his action(s) constitute a violation of the Code of Academic
Integrity, then it is that students responsibility to consult with the instructor to clarify any
ambiguities.

20

