ESE 150 — Lab 07: Digital Logic

LAB 07
In this lab we will do the following:
1. Investigate basic logic operations (AND, OR, INV, XOR)
2. Implement an ADDER on an FPGA
3. Implement a simple Finite-State Machine on an FPGA

Background:

In lecture we discussed the 3 basic logic operations: AND, OR, NOT (inversion). We examined
each operation and learned that the operations can be implemented using a logic gate. We
went further to see how we could implement any truth table in terms of these basic logic gates.
We created a multi-bit adder by “cascading” full adder circuits. We saw how to store state in
registers and create state-dependent logic in the form of Finite-State Machines (FSMs).

We also saw Field-Programmable Gate Arrays--- programmable chips that could be configured
to implement any network of gates and flip-flops.

In lab today we’ll see how to program these FPGAs to build logic functions and Finite-State
Machines.

ESE 150 —Lab 7 Page 1 of 17

ESE 150 — Lab 07: Digital Logic

Prelab

1. Write the truth table for each of the following functions.
a. Out=NOT(AND(p1,NOT(p2))
b. Out =OR(AND(p1,p2),NOT(p3))
2. Write a logic expression using AND, NOR, and NOT for the following truth table for a full
adder with (a, b, c) as inputs and (sum, carry) as outputs.

a b c sum carry
0 0 0 0 0
1 0 0 1 0
0 1 0 1 0
1 1 0 0 1
0 0 1 1 0
1 0 1 0 1
0 1 1 0 1
1 1 1 1 1

3. Write a function using if-then statements and state assignment for the FSM shown in
the diagram below (next page).

This FSM mimics a simplified remote controller with reset, pause, and rev (reverse)
control. The LED’s cycle 1->2->3->4->1 for forward and 4->3->2->1->4 for backward.
Reset always goes back to state 0. Pause will remember the state and direction
traveling. Reverse (rev) inverts the flow directions. LED1 should be on in states 0, 4;
LED2 in states 1, 5; LED3 in states 2, 6; LED4 in states 3, 7.

ESE 150 —Lab 7 Page 2 of 17

ESE 150 — Lab 07: Digital Logic

pause

B = ~reset & ~rev & ~pause

C= ~reset & rev & ~pause

ESE 150 —Lab 7 Page 3 of 17

ESE 150 — Lab 07: Digital Logic

Lab Procedure:

Lab — Section 1: Working with a USB FPGA

* |nthis section you’ll learn how to compile simple combinational logic in Verilog for an FPGA

Obtain an iceStick USB FPGA
Login to the Linux PC at your station using your SEAS account.

a. Each station has both a Linux and a Windows PC. The A/B KVM switcher controls
which machine is connected to the keyboard and screen. The switch should be set

to linux.
3. Bring up a terminal window.
a. Click onicon in lower left
b. Look under System
c. Select X-terminal
4. In the terminal window, create a directory for your work for this lab

a. mkdir esel50lab7
b. cd esel50lab7
5. Copy the files you will need for this lab into the directory you just created
a.cp ~esel50/lab7/* .
6. Make sure the shell script is executable
a. chmod +x build.sh
7. Wire switch inputs up to the FPGA.
a. We will be using the following FPGA:

FTDI Lattice Prototyping ¥DA
2%H CE40-1KHX Holes Transceiver

Epane

PIN1

|
b. The circuits connections are shown below:

ESE 150 - Lab 7

Page 4 of 17

ESE 150 — Lab 07: Digital Logic

Connections

12
11
10

= NWAUGO

c. These are how the LEDs look, and they are denoted by D1,D2,D3,D4.

d. The push button should be connected such that (A & B) and (C & D) are not shorted.

A
D A D
-
\iﬂ'/ |
, Z
B —»)

‘«—C B C

8. Review the Verilog file sectionl.v to see how it encodes combinational logic
The first section looks like the header signature on a C or Java function and serves a similar
role. Here, it defines the input and output signals. This is the top-level for our design on
the FPGA. ltis defining the Inputs and Outputs for the entire FPGA. We will use this same
Input/Output configuration for the entire lab. They key outputs are the LEDs and the inputs

ESE 150 —Lab 7 Page 5 of 17

ESE 150 — Lab 07: Digital Logic

on the PMOD connector, which you wired in the previous step. Also included is a clock

signal (clk), which we will be using for the sequential logic in later sections.

input
output
output
output
output
output
input
input
input
input
input
input
input
input

);

“default nettype none
module demo (

clk,

LED1,

LED2,

LED3,

LED4,

LEDS,

PMOD1, // input pl
PMOD2, // input p2
PMOD3, // input p3
PMOD4, // input p4
PMOD7, // will use for section 2
PMODS8, //

PMODY9, //

PMOD10 //

Following this we declare some internal variables. These are similar to local variable

declarations in C and Java. Here, the only type is “wire” meaning a combinational signal. In

later sections, we’ll see another type for used for state.

wire
wire
wire
wire

wire
wire
wire
wire
wire

// Alias inputs

pl;
p2;
p3;
p4;

ol;

// Alias outputs

Following this, we have some assignments. These are simply giving more friendly names to

signals, in this case the inputs, for use with this piece of logic.

assign pl=PMOD1;
assign p2=PMOD2;
assign p3=PMOD3;

ESE 150 - Lab 7

Page 6 of 17

ESE 150 — Lab 07: Digital Logic

assign p4=PMOD4;

We have one more assignment which serves to directly connect one of the inputs to a signal
we will connect to the output.
| assign o5=p4; // output directly controls

We place the actual logic in the next section. The <= symbol is used for logic assignment.
This logic demonstrates how Verilog expresses and (&), or (|), and invert (!) Boolean
operators we learned in class.

always // combinational assignment -- always computing
begin

// <= is used for logic assignment

ol<=pl & p2; // and together two inputs

02<=pl | p2; // or together two inputs

o3<=!(pl & !p2); // use a not !

o4<=(pl & p2) | !p3; // compound logic expression
end

In the final section, we have more assignments to connect up the logical outputs computed
by the logical expression to the module outputs.

// Wire up the lights
assign LED1 = ol;
assign LED2 =
assign LED3 = 03;
assign LED4 = o4;
assign LED5 =

I
(¢
N

|
(¢}
(S,

9. Compile and download the sectionl.v Verilog file to the FPGA.
a. Working in the same terminal window and directory where you just copied the files
run the commands
./build.sh sectionl
b. You will see the output of the compilation and download steps scroll by. Then the
LEDs will glow dim then return to a state with some on and others off. At this point,
the FPGA should be programmed and ready for use.
10. Review the output of the compilation process and note the resources uses.
Scroll back and look for the following section on the terminal output:

After packing:

IOs 10 / 96

GBs 0/ 8
GB_IOs 0/ 8

LCs 4 / 1280
DFF 0

ESE 150 —Lab 7 Page 7 of 17

ESE 150 — Lab 07: Digital Logic

CARRY

CARRY, DFF

DFF PASS

CARRY PASS
BRAMs
WARMBOOTSs
PLLs

O O OO o oo

~ N
Ll B]

This says we are using 4 LCs (Logic Cells) out of 1280 and 10 10s out of 96. The 4 LCs are for
each of the 4 expressions we compute. None of them have more than 4 inputs, so they can
fit into a single LC. Later we’ll see the logic begin to use the flip-flops (DFF) and Carry logic
(CARRY).

11. Use the input switches and LEDs to verify the truth table for the basic logic functions and
the simple combinational logic in the Verilog file.

ESE 150 —Lab 7 Page 8 of 17

ESE 150 — Lab 07: Digital Logic

Lab — Section 2: Writing your own combinational logic

In this section you'll learn how to write simple combinational logic in Verilog

Copy sectionl.v to section2fa.v
Edit section2fa.v
a. Ifyou are familiar with linux, you can bring up your favorite text editor.
b. Alternately, through the menu accessed from the icon on the lower left, under
Utilities, you can find “Text Editor”
Change the Verilog logic equations in section2fa.v to implement your full adder from Prelab
2.
a. Declare wire variables for a, b, c and assign the inputs a, b, c to the inputs PMOD1,
PMOD2, and PMOD3
b. Write your logic equations for sum and carry inside the always block in place of the
logic that was in Section 1
c. Connect the output sum to LED1, output carry to LED2
Compile and download your section2fa.v.
a. ./build.sh section2fa
Record the resources required for your design.
a. Include in report
b. Explain the required resources (why does your logic map to these resources)
Use the inputs and LEDs to verify the truth table for your full adder in section2fa.v.
a. Debug your logic as necessary
Edit section2add4.v.
Revise the Verilog logic equations in section2add4.v to produce a 4-bit adder
a. We have setup the inputs and outputs for you. This shows that you can declare
multi-bit variables in Verilog similar to arrays in C or Java. Here, a, b, and c are each
4b values. ois a 5b value. Why do we need 5b for the output of a 4-bit adder?

// Alias inputs

wire [3:0] a;

wire [3:0] b;

wire [3:0] c; // you will likely use

// Alias outputs
wire [4:0] o;

We assigned a and b to the PMOD inputs for you. Following is the Circuit Diagram:

ESE 150 —Lab 7 Page 9 of 17

ESE 150 — Lab 07: Digital Logic

Connections

12
11

— g

=
o
_“NWsUO

—— 8

// assign inputs to signals with meaningful names
assign a[0]=PMOD1;
assign a[l]=PMOD2;
assign a[2]=PMOD3;
assign a[3]=PMOD4;

assign b[0]=PMOD7;
assign b[1l]=PMODS8;
assign b[2]=PMOD9;
assign b[3]=PMOD10;
Note that we can use the array notation to refer to individual bits in theaand b

variables.

b. Create your adder by replicating the full adder logic equations you have already
written for each set of inputs and connecting the carry out (c[i]) between the bits of
the full adders. Treat the carry input to your circuit (c[0]) as 0.

9. Compile and download section2add4.v
a. Record resources required and explain them.
b. Use the inputs and LEDs to verify the correct function of your 4-bit adder
i. If we were to exhaustively test your adder, how many test cases (sets of
input values) would there be?
ii. Test at least the following cases: 0+1, 0+2, 0+4, 0+8, 1+0, 2+0, 4+0, 8+0,
1+15, 2+15, 4+15, 8+15, 15+15, 5+2, 245, 7+1, 1+7
iii. Test4 more “random” cases

ESE 150 - Lab 7 Page 10 of 17

ESE 150 — Lab 07: Digital Logic

Lab — Section 3: Working with Verilog Arithmetic
* |nthis section you’ll learn how to write simple arithmetic in Verilog

Arithmetic is pretty common in Verilog, so you can also write arithmetic expressions directly in

Verilog.

1. Review the Verilog file section3add4.v to see how it encodes a simple addition
Here, we simply tell it to perform addition on the multi-bit variables using the multi-bit
addition (+) operator. The rest of the code in section3add.v is the same as the setup you
saw for section2add.v.

always // combinational assignment -- always computing
begin //
o<=a+tb;
end

2. Compile and download the section3add4.v Verilog file to the FPGA
a. Note the inputs are the same as the end of Section 2.
b. Record resources required and explain them. Note that it now uses CARRY logic
resources.
c. Use the inputs and LEDs to verify the correct function of this 4b adder. Perform the
same tests as you did at the end of Section 2.

ESE 150 - Lab 7 Page 11 of 17

ESE 150 — Lab 07: Digital Logic

Lab — Section 4: Working with State in Verilog
* |nthis section you’ll learn how to write simple sequential logic and FSMs in Verilog

We can also write logic that includes state in registers, including FSMs in Verilog.

1. Review the Verilog file section4fwd.v to see how it encodes a simple clockwise rotation of
the LEDs.
We now use the reg type instead of wire to denote that these variables are registers (flip
flops). They will hold state and can be controlled to only change their values at clock edges.
We declare these as multi-bit values.

// Manage 12MHz clock
reg [24:0] counter;
reg [1:0] dec_cntr;

The clock on the iceStick board runs at 12MHz. Unfortunately, if the LEDs changed at
12MHz, we wouldn’t be able to track them. So, we start by slowing the rate of advance
down to 0.5 seconds. We do this by counting to 6 million between each of the sequential
logic operations. Each time the clock counter reaches 6 million, we reset it and increment
the counter for the LEDs. Since this is sequential logic, we only want the logic to operates in
response to a clock edge. We specify that by telling the always block to operate on the
positive clock edge.

// The 12MHz clock is too fast
// ...count to 6 million to divide it down to a half second
clock
always@ (posedge clk)
begin
counter <= counter + 1;
if (counter == 6000000)
begin
counter<=0; // reset counter
dec_cntr <= dec _cntr + 1; // count half seconds
end
end

We use combinational logic to select LEDs based on values of the dec_cntr:

// Make the lights blink -- each light activiated on a different
value of 2b half-second counter

assign LED1l = (dec_cntr == 0) ;

assign LED2 = (dec_cntr == 1) ;

assign LED3 = (dec_cntr == 2) ;

assign LED4 = (dec_cntr == 3) ;

ESE 150 —Lab 7 Page 12 of 17

ESE 150 — Lab 07: Digital Logic

3. Compile and download the section4fwd.v Verilog file to the FPGA
a. Record resources required and explain them.

i. What resources are needed to drive the LEDs from the dec_cntr?

ii. What resources are needed for the counters? (logic compiler is being clever
and may be trimming a bit from your expectation; state your expectation and
what it is actually using.)

b. Observe the LED clockwise rotation pattern
Copy sectiondfwd.v to sectiondbkwd.v
Modify the logic in section4bkwd.v to change the LED pattern to counter-clockwise rotation.
6. Compile and download the section4bkwd.v Verilog file to the FPGA
a. Record resources required and explain them
b. Observe the LED rotation pattern

ESE 150 —Lab 7 Page 13 of 17

ESE 150 — Lab 07: Digital Logic

Lab — Section 5: Implement FSM in Verilog
* Inthis section you’ll implement your own FSM logic in Verilog

1. Review the Verilog file section5ex.v to see how it encodes the simple state machine
shown below with forward logic, a pause, and a reset.
pause|reset

~pause & -reset ~pause & ~reset

pause&-reset pause&-reset

~pause & ~reset ~pause & ~reset

State2

pause&-resel

The surrounding logic looks just like the previous section except that we’ve changed
dec_cntr to a 2b state variable, state. What differs here is what we do on each half second
(each time the counter hits 6 million):

if (counter == 6000000)
begin
counter<=0; // reset counter
if (reset == 1)
state <= 0;
else
case(state) // state machine logic here
0: begin
if (pause)
state<=0;
else
state<=1;
end

ESE 150 —Lab 7 Page 14 of 17

ESE 150 — Lab 07: Digital Logic

1: begin
if (pause)
state<=1;
else
state<=2;
end
2: begin
if (pause)
state<=2;
else
state<=3;
end
3: begin
if (pause)
state<=3;
else
state<=0;
end
default: state<=0;
endcase
end

The logic first encodes the reset condition that sets the state to O regardless of what state the
FSM is in. We handle the logic for each state separately using a case statement on state. The
case statement is similar to the switch statement in C. Inside each case, we use if-else logic to
write the logic for the state. We use assignment to state to control which state the machine
transitions to as a result of the input (in this case the pause signal).

2. Compile and download the section5ex.v Verilog file to the FPGA
a. Record resources required and explain them
i. Here, you know what logic was required for the LED combinational logic
and the 6 million cycle counter, so you can subtract those out to identify
the resources required for the state machine logic.
b. Validate operation (hold reset for 0.5s to get started)
3. Copy section5ex.v to section5fsm.v
4. Revise section5fsm.v to implement the FSM from prelab 3
a. Inputs: reset, pause, rev
b. Outputs: LED1, LED2, LED3, LED4
5. Compile and download the section5fsm.v Verilog file to the FPGA
a. Record resources required and explain them.
b. Validate operation

ESE 150 —Lab 7 Page 15 of 17

ESE 150 — Lab 07: Digital Logic

6. Demonstrate your FSM to your TA, show your code, and answer a few questions for exit
checkoff.
7. Return your iceStick USB card and switches and cleanup.
8. Make sure to log out
a. lcon lower left
b. Under Power/Session
c. Select logout

ESE 150 —Lab 7 Page 16 of 17

ESE 150 — Lab 07: Digital Logic

Postlab

1. How many resources will be required for a two input, 16-bit adder (adds together two
16b inputs to produce one 17b output)

2. How many 16-bit adders could you put on the FPGA used on the iceStick?

3. How many 16-bit adders do you need to implement a combinational 16-bit multiplier
(multiplies two 16b values to produce one 32b output)

4. What other logic do you need besides adders for the multiplier? How many FPGA
resources will this require?

5. How many of these combinational 16-bit multipliers can you place on the FPGA used on
the iceStick?

6. How many resources will it require perform a combinational 16-point dot product on
16-bit inputs (input is 16 16-bit inputs for vector A and 16 16-bit inputs for vector B,
output is one 36-bit output)?

7. What is the minimum size part iced40 part you could use to implement this design?

a. You may want to refer to the data sheet
http://latticesemi.com/view_document?document_id=49312

HOW TO TURN IN THE LAB

* Upload a PDF document to canvas containing:
o Prelab answers

o All tables completed
o All code you wrote (.v files)
o Answers to all questions
o Postlab answers
* Each student must submit an individual lab writeup

ESE 150 - Lab 7 Page 17 of 17

