

Lecture \#1 - Course Introduction / Intro to Digital Audio
ESE 150 -
digital Audio Basics
Based on slides © 2009-2018 DeHon Additional Material © 2014-2017 Farmer

Lecture Topics

Course Introduction / Goals of Class

Syllabus; Laboratory; Grading
History \& Motivation
Computing and Digital Audio
Overview of Class Schedule
Big picture of our class goals
Week 1: Intro to Sound Waves
Week by week breakdown of class itself
Summary

History \& Motivation
Short Story / Overview
Course Introduction
Learning Styles
HISTORY \& MOTIVATION
Long Story / Intro to Sound
Summary

Star Trek Technology

Forward looking Science Fiction

Envisioned many wonderful things

+ Warp Drive
Transporter
Phasor
...and a hand-held communicator

THINGS WERE BREWING..,

Moore's Law: Every 18 months, size of transistor will be halved Who cares?

In same area, can fit twice as many transistors, twice the computing power!
Also, generally: if you make a transistor smaller, it gets a bit faster

THINGS WERE BREWING.,.
Moore's Law
Internet Grew
Copyright ©2006 Robert H Zakon http://www.zakon.org/robertfinterview/timeline

THINGS WERE BREWING.,.
Moore's Law
Internet Grew
Personal Stereo
Sony Walkman 1979
AT\&T licenses transistor to Sony in 1955

Things were brewing...
Moore's Law
Internet Grew
Personal Stereo
Sony Walkman 1979
Compact Discs 1982
700MB, 80 minutes music
IBM PC/XT 1983
10MB Hard Disk

POLL

How many of you have:
Cell phone?
Digital Music Player (separate from phone?)
Digital camera (separate from phone?)

Use GPS?

How do you obtain music?
Communicate with friends outside of school?
Voice phone, e-mail, text message, facebook, skype?
Where do you go to find answers?
Google

Cool Stuff of Today...

Today's "must have" technology is:
computerized, networked, and based on digital media
Cell phones - smaller than ST Communicator
MP3 players (Digital Audio Players) - make walkman bulky Internet enabled
Digital cameras and video recorders (part of phones!)
Realistic Video Games
Integrated (e.g. iPhone, iPad)
DVRs (e.g. TiVo)
E-book readers (e.g. Kindle)
What else
3D printers (e.g. Makerbot)
Circuit Scribe - draw actual circuits, electric ink!
Augmented Reality (e.g. Jedi Challenge,Pokemon-Go)

What do these things involve?

Computation

Communications
Hardware
Substantial software
\rightarrow Products of Computer Engineers

Changing World: Instant Gratification

Search engines

Instant access to knowledge
iTunes
Instant access to music/casts/apps/video too

Streaming video

Instant access to video/news/visual information
Internet services/Netflix/On-Demand/etc.
Amazon.com
Instant access to nearly any product, \sim drone delivery!

Changing World: Easy Sharing

Easy Instant sharing and storage
Photos, videos, writing
Web, Facebook, Youtube, Blogs
Backed up, Cloud
Accessible anywhere in the world
Indexed and searchable
Can carry it with you

Changing World; New Wealth, New Players
Microsoft founded 1975
World's richest man...for a while
Apple founded 1976
Highest valued company
Oracle 1977
CISCO 1984
NVIDIA 1993
Amazon.com 1994
New world's richest man.
E-Bay 1995
Google 1998
Facebook 2004
Twitter 2006
Bitcoin 2009

Convergence

Big Ideas and Advanced Technology
Digitize Everything
Cheap Digital Processing
Cheap Storage
Cheap Digital Bandwidth

Enabled by Visionary Engineers

Hard work, inspiration, and competition
...would not have just happened
Certain applications/products tie many things together No one realized facebook/music would be "killer app" for smartphone revolution
Most inconceivable just prior
Compare how archaic the "future" looks in most movies just 20 years old
What's next?
How can we harness to make the world better?

About the Course

ESE 150: Digital Audio Basics

But really: "Introduction to Computer Engineering"

Our Goals:

Deliver 13 lectures on 13 topics in Comp. Eng.
Each lecture....maps to nearly 13 different courses!
Expose you to the big topics in Comp. Eng.
You won't like them all....but you will probably love 1 or 2 !
Help you figure out which path in Comp. Eng. to take
Use digital audio as common theme between lectures
This information goes way beyond digital audio
Tie theory to practice ("feel-the-bits") through a weekly lab
To see concepts discussed in lecture in a lab environment
Labs are not perfect, connections sometimes not obvious at first You might think lab is "stand-alone"...not really true!

Mechanics of the Class

Wednesday: Lecture

Introduce theory
Help paint the big picture

Monday: Lab

Put theory into practice
Apply 1 big concept in real world
Many concepts may appear in lecture..
One will be put to use in guise of digital audio in the lab
Work in teams of 2
Individual lab report write-ups
Friday: Lab Report due
(except formal one - Sunday)
28

Grading

10\% - Class Participation and Quizzes (if necessary) Based on assigned reading material
50\% - Weekly Lab Report Writeup
Work in groups of 2 (we assign and mix up week-to-week)
Some labs may have "prelab" work to do - counted as part of lab writeup
Drop lowest score on attempted labs
20\% - Formal Lab Report
5\% - Midterm Exam
Warmup for final
15\% - Final Exam
Based on reading material, lecture material, lab work
Read web page for policies
Not hard, but must show up, engage, do the work

Components

Lecture slides online morning of lecture
Preclass - available beginning (ideally 4:25pm)
Work through to get you thinking about the topic

- ...and gives you some of the questions will ask in lecture
"Warm" Calls
Promote interaction/engagement

Feedback sheets

Turn in at end of lecture
Help me tune lecture for class

Class Goals

Provide digital audio background for ESE350
...build an actual digital audio platform
Context and motivation for CMPE major
Appreciate how CMPE, EE, CIS:
Work together
How they impact today's world
Start thinking like an engineer!

Outcomes

Able to conduct experiments
Psychoacoustic, network, hardware
Able to optimize information encoding
Able to design file system for multiple views
Able to quantify quality vs. size tradeoffs in audio Able to use oscilloscope, matlab, arduino
Able to write formal lab report
Understand role of Intellectual Property
Appreciate User Interface design
Understand technology enables new capabilities

HOW DO PEOPLE COME OUT?

Create Histogram
How I came out...
Count numbers by students:
Bin: 9+, 8-4, 3-1, 0, 1-3, 4-8, 9+
Histograms:
Active/Reflective
Sensing/Intuitive
Visual/Verbal
Sequential/Global

DIMENSIONS

Active (ACT) vs. Reflective (REF)
Doing vs. thinking
Sensing (SEN) vs. Intuitive (INT)
Facts and methods vs. abstractions and innovation
Visual (VIS) vs. Verbal (VRB)
Pictures, diagrams vs. descriptions
Sequential (SEQ) vs. Global (GLO)
Linear steps vs. context and connections
http://www4.ncsu.edu/unity/lockers/users/f/felder/public/ILSdir/styles.htm

Active vs. Reflective

Active learners tend to retain and understand information best by doing something active with it "Let's try it out and see how it works" is an active learner's phrase
Reflective learners prefer to think about it quietly first.
"Let's think it through first" is the reflective learner's response. Active learners tend to like group work more than reflective learners, who prefer working alone.
Sitting through lectures without getting to do anything physical but take notes is hard for both learning types, but particularly hard for active learners.
http://www4.ncsu.edu/unity/lockers/users/f/felder/public/ILSdir/styles.htm .

SENSING VS. INTUITIVE (1 OF 2)

Sensing learners tend to like learning facts
Intuitive learners often prefer discovering possibilities and relationships.
Sensors often like solving problems by wellestablished methods and dislike complications and surprises;
Intuitors like innovation and dislike repetition.
Sensors are more likely than intuitors to resent being tested on material that has not been explicitly covered in class.
http://www4.ncsu.edu/unity/lockers/users/f/felder/public/ILSdir/styles.htn

Visual vs, Verbal
Visual learners remember best what they see pictures, diagrams, flow charts, time lines, films, and demonstrations.
Verbal learners get more out of words--written and spoken explanations.

AWARE OF DIFFERENCES

Differences among people
Differences between faculty and students?
Claim college courses are biased toward:
Reflective, intuitive, verbal, sequential
This course:
Active, sensing?, visual, global
Read explanation
Being aware and how to cope useful for navigating all your courses at Penn

SENSING VS, INTUITIVE (2 OF 2)

Sensors tend to be patient with details and good at memorizing facts and doing hands-on (laboratory) work Intuitors may be better at grasping new concepts and are often more comfortable than sensors with abstractions and mathematical formulations.
\times Sensors tend to be more practical and careful than intuitors;
Intuitors tend to work faster and to be more innovative than sensors.
Sensors don't like courses that have no apparent connection to the real world;

* Intuitors don't like "plug-and-chug" courses that involve a lot of memorization and routine calculations.
http://www4.ncsu.edu/unity/lockers/users/f/felder/public/ILSdir/styles.h

Sequential vs. Global

Sequential learners tend to gain understanding in linear steps, with each step following logically from the previous one.
Global learners tend to learn in large jumps, absorbing material almost randomly without seeing connections, and then suddenly "getting it."
Sequential learners tend to follow logical stepwise paths in finding solutions;
Global learners may be able to solve complex problems quickly or put things together in novel ways once they have grasped the big picture, but they may have difficulty explaining how they did it.

Week 3: Lossless Compression

Statistics of data allow compression
If all symbols (characters, voltages) aren't equally likely, Can assign shorter bit sequences to most common cases and reduce bits required to store or transmit!
Famous Example of statistical storage: Morse Code:
THE = — $\cdots \bullet .=6$ symbols (not 18 as you might expect)

Week 4: Time-Frequency Conversion

There are other ways to represent
Frequency representation particularly efficient

$392 \quad 311 \quad 348$
294

Frequencies in Hertz

Week 9: Operating System

This hardware can be virtualized and shared among tasks

How does OS control hardware?
Do we need giant OS or small portion for mp3?

Week 13: Intellectual Property

Who own's the bits?
What is the law?
Why is the law?
Why should you care (as engineers)?
How is the world changing?

Changing World

Automated computation changed world Faster than we imagined
World being digitized and refitted for computerized control and mediation

People-to-people, people-to-machines
Infrastructure from bricks/concrete/steel to networking/ computers/software

Enabling new engineering

Computerization at center
Exciting and dangerous
Computer Engineering at center

THIS COURSE
It is a work in progress:
Attempts to explain a great deal of Comp Eng Without going to far in depth
Lecture/Lab
Intent is to tie them together well
Inevitably, the tie won't always be obvious
Help us, help you (and future yous):
The more feedback you provide, the better we can make this course
If a tie isn't obvious, let us help make the connection stronger We want you to love Comp Engineering as much as we do ©
One form: daily feedback sheets

Parting Thought

From $1^{\text {st }}$ computer to PCs in 30 years Eniac $1946 \rightarrow$ Apple 1976
From first PCs to iPhone next 30 years
Apple 1976 \rightarrow iPhone 2007
What will next 30 years hold?
Beginning of your career
What will you imagine, create, enable?

