

SAMPLING VS QUANTIZATION REVIEW

ADC - SAMPLING & QUANTIZATION

- Analog-to-Digital (ADC) Conversion
 - + Converting analog (continuous) signal to digital signal
 - Digitization process has two important aspects:
 - 1) Sampling
 - * Converting *independent* variable of signal from continuous to discrete
 - * e.g.: breaking continuous time down into intervals
 - 2) Quantization
 - * Converting dependent variable of signal from continuous to discrete
 - * e.g.: breaking continuous voltage down into levels

ADC – SAMPLING

**Sampling: breaking independent variable (time) into intervals

**Quantization: breaking dependent variable (voltage) into levels

Voltage

Samples Quantized Levels digitized into 7 levels into 3-bits $\{0 \text{ ms}, 0 \text{ Volts}\} \rightarrow 011$ $\{1 \text{ ms}, 22 \text{ Volts}\} \{1 \text{ ms}, 2 \text{ Volts}\} \rightarrow 101$ $\{2 \text{ ms}, 3 \text{ Volts}\} \{2 \text{ ms}, 3 \text{ Volts}\} \rightarrow 101$ $\{4 \text{ ms}, 0 \text{ Volts}\} \{4 \text{ ms}, 0 \text{ Volts}\} \rightarrow 011$ $\{4 \text{ ms}, 0 \text{ Volts}\} \{5 \text{ ms}, -2 \text{ Volts}\} \rightarrow 001$ $\{6 \text{ ms}, 3 \text{ Volts}\} \{6 \text{ ms}, 3 \text{ Volts}\} \rightarrow 001$ $\{6 \text{ ms}, 3 \text{ Volts}\} \{7 \text{ ms}, -2 \text{ Volts}\} \rightarrow 001$ $\{8 \text{ ms}, 0 \text{ Volts}\} \{8 \text{ ms}, 0 \text{ Volts}\} \rightarrow 011$

Two Knobs

- × Quantization level (bits/sample)
- × Sampling rate (samples/second)

EFFECT OF INCREASING QUANTIZATION

- Dividing dependent variable up into more levels
 - Increasing resolution at each sample
 - + Doesn't change the # of samples itself!

10

EFFECT OF INCREASING SAMPLING RATE

- Increasing how often we take samples also helps
 - + Much like quantization...
 - × 1 bit was too few, 16 bits was more than enough
 - x Is there a sweet spot for the sampling rate?

BOTH (QUANTIZATION, SAMPLING) IMPACT STORAGE

- * How many bytes for 3 minute song sampled at 8b precision and 1000 samples/s?
- x at 2000 samples/s?
- * 16b precision at 2000 samples/s?

12

KEY QUESTION

* What sampling rate should we use?

DEFINITION OF GOOD SAMPLING

- * Definition of proper sampling:
 - + Let's say you've sampled an analog signal...
 - + If you can exactly reconstruct the analog signal from the samples × You have done the sampling properly!
 - + Essentially: if you can reverse the process...
 - × You've capture enough information about the signal

* Can we formalize this a bit more?

+ Yes, next few slides will try....

14

PRECLASS

- * Identify frequencies
- × Samples
- w What's indistinguishable at various sample rates?

> 0

SAMPLING - WHAT IS THE MINIMUM?

16

15

SAMPLING — WHAT IS THE MINIMUM?

- > 05
- * How much do we need to capture to reconstruct it?
 - + If we sample at 200 Hz, capture peaks & troughs of signal
 - + Sample rate: 2 x frequency = 200 Hz

SAMPLING — WHAT IS THE MINIMUM?

**How much do we need to capture to reconstruct it?*

If we sample at 3 x frequency or 300 Hz

more than enough samples to capture it!

We are actually wasting space!

...more samples...more bits per sample...more storage required

18

Nyquist Sampling Rate: + f_s = 2 x highest frequency component of signal × Minimum sampling rate that satisfies: Nyquist Sampling Criterion for a given signal or family of signals × Minimum sampling rate that avoids aliasing × Property of a continuous-time signal * Nyquist Frequency: + ½ f_s = ½ sampling rate × Highest frequency that can be recovered from samples × Property of a discrete-time signal

INTERLUDE

VIDEO

* http://www.youtube.com/watch? v=jHS9JGkEOmA

ALIASING IN MOVIES

- Called visual aliasing
 - See it all the time on TV/Film
 - Wheels tend to move backwards on moving cars...why?
 - + What is it?
 - Primer: Movies are just pictures (frames) flying by quickly
 - Movies "sample" real life at roughly 24 frames per second
 - + What do we know from Nyquist Sampling Theorem?
 - Aliasing will occur if changes occur faster than $\frac{1}{2}f_{\rm s}$
 - Film Example:
 - If **light to dark transitions** occur faster than $1/2 f_{\rm s}$ aka: 12 frame/sec
 - Aliasing will occur...

THE "WAGON WHEEL" EFFECT

Consider a wagon with 8 spokes:

- Let's say it turns at a rate of 3 revolutions per second clockwise That's 180 rpm
- On film this wheel will appear to stand still! Why?

$$\frac{\left(3\:\frac{revolutions}{sec}\right)\times\left(8\:\frac{spokes}{revolution}\right)}{\left(24\:\frac{frames}{sec}\right)}=1\:\frac{spoke}{frame}$$

THE "WAGON WHEEL" EFFECT

What if it moved a little slower?

Let's say it turns at a rate of 2.5 revolutions per second clockwise

it turns at a rate of 2.5 revolutions per se
$$\frac{\left(2.5 \frac{revolutions}{sec}\right) \times \left(8 \frac{spokes}{revolution}\right)}{\left(24 \frac{frames}{sec}\right)} = .83 \frac{spoke}{frame}$$

- Our brain could interpret this in two possible ways:
 - Wheel has moved clockwise by 83% of spoke interval in clockwise direction
 - OR: wheel has moved counter-clockwise by 17%

 * Our brains prefer this view! So we see the wheel m

EFFECTS OF ALIASING

- - The 1Hz & 2Hz signals will be sampled just fine (as 4 Hz is 2 x 2Hz)
 - But what happens to 3 Hz Signal?

 * Fold baby fold!

How do we fix this?

- * It's simple...sample at the Nyquist Rate
 - + But...what if your rate is fixed? Like 24 frames/sec?
 - + Or our eye's sampling rate: 60 cycles/degree
 - Spatial variations finer than this are undetectable!

If we simply sample at 2 x highest frequency of signal...

How to Avoid Aliasing with Digital Music?

- - (AKA: Nyquist Rate)
 - ...we won't encounter aliasing!
- But how do we guarantee highest frequency of our signal?
 - Audio: this is easy!
 - We know the range of human ear: 20 Hz to 20 kHz...
 - The highest frequency component in music is then: 20 kHz ...so, before sound goes into ADC, we apply a filter!
 - Blocks any frequency above 20 kHz from going into ADC
 - Essentially, we are fixing our sampling rate & 'bluring' or filtering our incoming signal

Called a "low pass" filter Has a "cutoff" frequency of 20 kHz Electronic Filter Only "delicious" signals ranging from 20Hz to 20kHz pass through filter (aka Audio Signals) Only delicious coffee passes through filter... "grinds" cannot pa

WHY DO WE NEED THE ANTIALIAS FILTER?

- * If we can't hear anything above 20kHz...
 - Why do we need to filter it out?
 - Dog's can hear from 40 Hz to 60 kHz
 - so clearly there are sounds above 20 kHz
 - Let's imagine a high frequency noise in music studio
 - Let's say it's a vibration occurring at 25 kHz No human can hear it, why filter it out?
 - Because of aliasing:
 - Frequency aliasing/folding will occur:
 - ample rate frequency
 - 40 kHz 25 kHz = 15 kHz
 - The 25 kHz vibration will fold-over to a 15 kHz "hum" or audible noise It will ruin our recording and source of noise wouldn't be obvious!

COMPACT DISC (CD)

- CD (late 20th century)
 - First form of digitized music ADC → DSP → DAC
 - Up until this time, music was...
 - ...exact reproduction (record, tape)
 - Nyquist Sampling Rate: 44.1 kHz
 - Nyquist Frequency: ½ (44.1 kHz) = 22.05 kHz
 - AKA upper range of audio
 - 22.05 = cutoff frequency for low-pass antialias filter

COMPACT DISC (CD)

- × CD (late 20th century)

 - Quick Math: Sampling Rate: 44.1 kHz
 - Sampling Rate: 44,100 Hz
 - That means we collect 44,100 Samples in 1 second!

 - In 60 seconds, we collect 44, 100 Samples In 1 Second: In 60 seconds, we collect: 2,646,000 samples = (44,100 samples/sec* 60 sec) = 2,646,000 samples/minute For a 3 minute song: 7,938,000 samples / song! = (2,646,000 samples/minute)* (3 minutes) = 7,938,000 samples/song

 - If each sample requires 16-bits to store:

 * (7,938,000 samples/song) * (16 bits/sample) = 127,008,000 bits/song

 * That's 15,876,000 bytes per song

 - I nats 15,470,000 bytes per song
 15,504 KB = 15.14 MB per song!
 What about stereo recordings? Double that!
 30.28 MB per 3 minute stereo song!!
 This is why a CD can only hold about 80 minutes of digital audio!

BIG IDEAS

- Sample at twice the maximum frequency
 - Can reconstruct perfectly
- If have frequencies > sample_freq/2
 - Will get aliasing ... as high frequencies fold
- Avoid aliasing with analog Anti-Alias prefilter before sampling

THIS WEEK IN LAB

* Lab 2: D2A - play back the samples you recorded last week

PIAZZA

- Signup piazza (half not)
 - Reminders and administrivia
 - Answer questions from lecture

LEARN MORE

× ESE224 - Signal Processing

REFERENCES

- + S. Smith, "The Scientists and Engineer's Guide to Digital Signal Processing," 1997.
- + http://en.wikipedia.org/wiki/Nyquist_frequency
- + http://en.wikipedia.org/wiki/Nyquist_rate
- + http://en.wikipedia.org/wiki/Oversampling
- + http://en.wikipedia.org/wiki/Sampling_rate
- + http://en.wikipedia.org/wiki/Hearing range
- + http://electronics.howstuffworks.com/telephone6.htm
- + B. Olshausen, "Aliasing", PSC 129 Sensory Processes Course Notes, UC Davis

50