

Sampling vs Quantization Review

ADC - SAMPLING \& QUANTIZATION

Analog-to-Digital (ADC) Conversion
Converting analog (continuous) signal to digital signal
Digitization process has two important aspects:

1) Sampling

Converting independent variable of signal from continuous to discrete e.g.: breaking continuous time down into intervals
2) Quantization

Converting dependent variable of signal from continuous to discrete e.g.: breaking continuous voltage down into levels

ADC - SAMPLING

Sampling: breaking independent variable (time) into intervals Quantization: breaking dependent variable (voltage) into levels

Two Knobs

Quantization level (bits/sample)
Sampling rate (samples/second)

Effect of increasing Sampling Rate

BOTH (QUANTIZATION, SAMPLING) IMPACT STORAGE

* How many bytes for 3 minute song sampled at 8b precision and 1000 samples/s?
at 2000 samples/s?

16b precision at 2000 samples/s?

KEY QUESTION

DEFINITION OF GOOD SAMPLING

Definition of proper sampling:
Let's say you've sampled an analog signal.

If you can exactly reconstruct the analog signal from the samples You have done the sampling properly!
Essentially: if you can reverse the process. You've capture enough information about the signal

Can we formalize this a bit more?
Yes, next few slides will try....

SAmpling - What is the minimum?

SAMPLING - WHAT IS THE MINIMUM?

How much do we need to capture to reconstruct it?
If we sample at $3 x$ frequency or 300 Hz
more than enough samples to capture it!
We are actually wasting space!
.more samples...more bits per sample...more storage required

200 Hz SAMPLE

. What happened here?

SAmpling - What is the minimum?

Cannot sample lower without reconstruction error We not only lose information...
...but when we 'reconstruct' the signal from the samples alone...
We will reconstruct at a lower frequency!
This phenomenon is called: aliasing

SAMPLing - What is the minimum?

What frequency does aliasing occur?
Original Signal's Frequency: 1 Hz
Sampling Rate: 1.5 Hz
Aliasing occurs at: $1.5 \mathrm{~Hz}-1 \mathrm{~Hz}=0.5 \mathrm{~Hz}$
Also referred to as "Folding" - signal has "folds over" as if it were lower frequency

SAMPLING - WHAT IS THE MINIMUM?

Another example/effect of aliasing

The dots represent the samples, we can see an inverse sine-wave
Not only has the frequency of the original signal changed.. But phase of the signal has changed too
Original signal: sine wave $+0^{\circ}$ phase
Aliased signal: sine wave w/different frequency $+180^{\circ}$ phase shift!

SAMPLING - WHAT IS THE MINIMUM?

Harry Nyquist
Electronic Engineer for AT\&T from 1917 to 1954
Published paper in 1928 defining the: Sampling Theorem Nyquist Sampling Rate $=2 \times$ frequency of signal Anything less: under-sampling - leads to aliasing Anything more: over-sampling - waste of space?

What about Multirate Signals?

Fourier's Theorem \& Nyquist Rate:
Highest component's frequency: 3 Hz
What is Nyquist Sampling Rate?
2 x highest frequency contained in the signal $=6 \mathrm{~Hz}$
Sampling at this rate: avoids aliasing problem

NYQUIST RATE VS FREQUENCY

Nyquist Sampling Rate:
$f_{\mathrm{s}}=2 \mathrm{x}$ highest frequency component of signal
Minimum sampling rate that satisfies: Nyquist Sampling Criterion
for a given signal or family of signals
Minimum sampling rate that avoids aliasing
Property of a continuous-time signal
Nyquist Frequency:
$1 / 2 f_{\mathrm{s}}=1 / 2$ sampling rate
Highest frequency that can be recovered from samples
Property of a discrete-time signal
\square

ALIASING IN MOVIES

Called visual aliasing
See it all the time on TV/Film
Wheels tend to move backwards on moving cars...why?
What is it?
Primer: Movies are just pictures (frames) flying by quickly Movies "sample" real life at roughly 24 frames per second
What do we know from Nyquist Sampling Theorem? Aliasing will occur if changes occur faster than $1 / 2 f_{\mathrm{s}}$ Film Example
ff light to dark transitions occur faster than $1 / 2 f_{\mathrm{s}}$ aka: 12 frame $/ \mathrm{sec}$ Aliasing will occur..

The "Wagon Wheel" Effect

What if it moved a little slower?

Let's say it turns at a rate of 2.5 revolutions per second clockwise

$$
\frac{\left(2.5 \frac{\text { revolutions }}{\text { sec }}\right) \times\left(8 \frac{\text { spokes }}{\text { revolution }}\right)}{\left(24 \frac{\text { frames }}{\text { sec }}\right)}=83 \frac{\text { spoke }}{\text { frame }}
$$

Our brain could interpret this in two possible ways:
Wheel has moved clockwise by 83% of spoke interval in clockwise direction OR: wheel has moved counter-clockwise by 17%
\square Aliasing in Music...

Multirate Signals and Aliasing
magine the above is a music signal ($1 \mathrm{~Hz}, 2 \mathrm{~Hz}$ and 3 Hz chord) What happens if we undersample? Should sample at 6 Hz , but instead 4 Hz The 1 Hz \& 2 Hz signals will be sampled just fine (as 4 Hz is $2 \times 2 \mathrm{~Hz}$)
But what happens to 3 Hz Signal?
Fold baby fold!

How do we fix this?

It's simple...sample at the Nyquist Rate
But... what if your rate is fixed? Like 24 frames/sec?
Or our eye's sampling rate: 60 cycles/degree Spatial variations finer than this are undetectable!

How to Avoid Aliasing with Digital Music?

If we simply sample at $\mathbf{2} \boldsymbol{x}$ highest frequency of signal... (AKA: Nyquist Rate)
..we won't encounter aliasing!
But how do we guarantee highest frequency of our signal? Audio: this is easy!

We know the range of human ear: 20 Hz to 20 kHz ..
The highest frequency component in music is then: 20 kHz
..so, before sound goes into ADC, we apply a filter! Blocks any frequency above 20 kHz from going into ADC
Essentially, we are fixing our sampling rate \& 'bluring' or filtering our incoming signal

Full Block Diagram of DSP SYstem

Before ADC, we put music signal through antialias filter Filter blocks any signals higher than 20 kHz (prevents aliasing!)
Then our ADC can safely sample at $2 \times 20 \mathrm{kHz}$ without aliasing What is our Nyquist Rate?
$f_{s}=2 \times 20 \mathrm{kHz}=40 \mathrm{kHz}$, or 40 thousand samples per second!
What is our Nyquist Frequency?
$1 / 2 f_{s}=20 \mathrm{kHz}$
Cutoff frequency of our filter? Has to be the Nyquist Frequency

Why do we need the antialias filter?
If we can't hear anything above 20 kHz ...
Why do we need to filter it out?
Dog's can hear from 40 Hz to 60 kHz
so clearly there are sounds above 20 kHz
Let's imagine a high frequency noise in music studio
Let's say it's a vibration occurring at 25 kHz
No human can hear it, why filter it out?
Because of aliasing:
Frequency aliasing/folding will occur:
Sample rate - frequency = aliasing/folding frequency
$40 \mathrm{kHz}-25 \mathrm{kHz}=15 \mathrm{kHz}$
The 25 kHz vibration will fold-over to a 15 kHz "hum" or audible noise It will ruin our recording and source of noise wouldn't be obvious!

Compact Disc (CD)

CD (late 20 ${ }^{\text {th }}$ century)
First form of digitized music ADC \rightarrow DSP \rightarrow DAC

Up until this time, music was.. ..exact reproduction (record, tape)

Nyquist Sampling Rate: 44.1 kHz
Nyquist Frequency: $1 / 2(44.1 \mathrm{kHz})=22.05 \mathrm{kHz}$
AKA - upper range of audio
22.05 = cutoff frequency for low-pass antialias filter

Сомpact Disc (CD)

$C D$ (late 20 ${ }^{\text {th }}$ century)
Quick Math:
Sampling Rate: 44.1 kHz
Sampling Rate: $44,100 \mathrm{~Hz}$
That means we collect 44,100 Samples in 1 second! in 60 seconds, we collect: $2,646,000$ samples
(44,100 samples/ $/ \mathrm{sec} * 60 \mathrm{sec}$) $=2,646,000$ samples/minute
a 3 minute song: $7,938,000$ samples / song!
If each sample requires 16 bit 3 minutes $)=7,938,000$ samples/song
(7,938,000 samples/song) *(16 bits/sample) $=127,008,000$ bits/song That's $15,876,000$ bytes per song
$15,504 \mathrm{kB}=15.14 \mathrm{MB}$ per song!
What about stereo recordings? Double that
30.28 MB per 3 minute stereo song!

This is why a CD can only hold about 80 minutes of digital audio!

Big Ideas

Sample at twice the maximum frequency
Can reconstruct perfectly

If have frequencies > sample_freq/2
Will get aliasing ... as high frequencies fold
Avoid aliasing with analog Anti-Alias prefilter before sampling

This Week In Lab

Lab 2: D2A - play back the samples you recorded last week

PIAZZA

Signup piazza (half not)
Reminders and administrivia
Answer questions from lecture

LEARN MORE	
	ESE224 - Signal Processing
	40

References

S. Smith, "The Scientists and Engineer's Guide to Digital Signal Processing," 1997.
http://en.wikipedia.org/wiki/Nyquist frequency
http://en.wikipedia.org/wiki/Nyquist rate
http://en.wikipedia.org/wiki/Oversampling
http://en.wikipedia.org/wiki/Sampling rate
http://en.wikipedia.org/wiki/Hearing range
http://electronics.howstuffworks.com/telephone6.htm
B. Olshausen, "Aliasing", PSC 129 - Sensory Processes

Course Notes, UC Davis

