
1

Based on slides © 2009--2018 DeHon
Additional Material © 2014 Farmer

1

Lecture #3 – Compression

!  Where are we on course map?

!  What we did in lab last week
"  How it relates to this week

!  Compression
"  What is it, examples, classifications
"  Probability based compression

#  Huffman Encoding
"  Entropy

#  Shannon Limits

!  Next Lab
!  References

2

3

NIC

10101001101

EULA

click
OK

NIC

CPU

A/D

sample

domain
conversion

MP3 Player / iPhone / Droid

File-
System

10101001101

compress
freq pyscho-

acoustics

D/A

MIC

speaker

2,3 4

5

4

7,8,9

10

11
13

12

Music

Numbers
correspond to
course weeks

1

4

CPU

A/D

sample

compress

D/A

MIC

speaker

2,3 4

Music

Numbers
correspond to
course weeks

1

10101001101

10101001101

Analog
input

!  Week 1: Converted Sound to analog voltage signal
!  a “pressure wave” that changes air molecules w/ respect to time
!  a “voltage wave” that changes amplitude w/ respect to time
"  Sample: Break up independent variable, take discrete ‘samples’
"  Quantize: Break up dependent variable into n-levels (need 2n bits to digitize)

!  Week 2: Reconstructed analog signal from digital

5

S/H ADC Digital
Output

6

2

!  Tell me and I forget, teach me and I may
remember, involve me and I learn
"  -- Benjamin Franklin

!  73 symbols
!  19 unique (ignoring case)

"  (A, B, C, D, E, F, G, H, I, L, M, N, O, R, T, V, Y, space,
comma)

"  How many bits to represent each symbol?

!  How many bits to encode quote?

7

!  Tell me and I forget, teach me and I may
remember, involve me and I learn
"  -- Benjamin Franklin

!  73 symbols
!  19 unique (ignoring case)
!  If symbols occurrence equally likely, how many

occurrences of each symbol should we expect
in quote?

!  How many e’s are there in the quote?
8

!  Tell me and I forget, teach me and I may
remember, involve me and I learn
"  -- Benjamin Franklin

!  73 symbols
!  19 unique (ignoring case)
!  Conclude

"  Symbols do not occur equally
"  Symbol occurrence is not uniformly random

9

!  Tell me and I forget, teach me and I may
remember, involve me and I learn
"  -- Benjamin Franklin

!  Using fixed encoding (question 1)
!  How many bits to encode first 10 symbols?
!  How many bits using encoding given?

10

!  Tell me and I forget, teach me and I may
remember, involve me and I learn
"  -- Benjamin Franklin

!  Using fixed encoding (question 1)
!  How many bits to encode first 24 symbols?
!  How many bits using encoding given?

11

!  Tell me and I forget, teach me and I may
remember, involve me and I learn
"  -- Benjamin Franklin

!  Using fixed encoding (question 1)
!  How many bits to encode al 73 symbols?
!  How many bits using encoding given?

12

3

!  Can encode with (on average) fewer bits than
log(unique-symbols)

13 14

!  What is compression?
"  Encoding information using fewer bits than the original

representation

!  Why do we need compression?
"  Most digital data is not sampled/quantized/represented in the most

compact form
#  It takes up more space on a hard drive/memory
#  It takes longer to transmit over a network

"  Why? Because data is stored in a way that makes it easiest to use

!  Two broad categories of compression algorithms:
"  Lossless – when data is un-compressed, data is its original form
"  Lossy – when data is un-compressed, data is in approximate form

#  Some of the original data is lost

15

Letter Numeric
Encoding

A 0
B 1
C 2
D 3
E 4
F 5
G 6
H 7
I 8
J 9
K 10
L 11
M 12

How to encode alphabet?

Easy to map/encode:
 A!0 and Z!25

Letter Numeric
Encoding

N 13
O 14
P 15
Q 16
R 17
S 18
T 19
U 20
V 21
W 22
X 23
Y 24
Z 25

Including upper and lower case?
…and numbers?

Letter Binary
Encoding

A 00000
B 00001
C 00010
D 00011
E 00100
F 00101
G 00110
H 00111
I 01000
J 01001
K 01010
L 01011
M 01100

Letter Binary
Encoding

N 01101
O 01110
P 01111
Q 10000
R 10001
S 10010
T 10011
U 10100
V 10101
W 10110
X 10111
Y 11000
Z 11001

Letter ASCII Code Binary Letter ASCII Code Binary

a 097 01100001 A 065 01000001
b 098 01100010 B 066 01000010
c 099 01100011 C 067 01000011
d 100 01100100 D 068 01000100
e 101 01100101 E 069 01000101
f 102 01100110 F 070 01000110
g 103 01100111 G 071 01000111
h 104 01101000 H 072 01001000
i 105 01101001 I 073 01001001
j 106 01101010 J 074 01001010
k 107 01101011 K 075 01001011
l 108 01101100 L 076 01001100

m 109 01101101 M 077 01001101
n 110 01101110 N 078 01001110
o 111 01101111 O 079 01001111
p 112 01110000 P 080 01010000
q 113 01110001 Q 081 01010001
r 114 01110010 R 082 01010010
s 115 01110011 S 083 01010011
t 116 01110100 T 084 01010100
u 117 01110101 U 085 01010101
v 118 01110110 V 086 01010110
w 119 01110111 W 087 01010111
x 120 01111000 X 088 01011000
y 121 01111001 Y 089 01011001
z 122 01111010 Z 090 01011010

ASCII:
American Standard
Code for Information
Interchange
27=128 combinations

Standard encoding,
developed in the 1960’s

Didn’t take into account
international standards!

UNICODE
8-bit encoding
28=256 possibilities!

4

!  A simple form of compression would be the following:
"  ORIGINAL TEXT (13-characters): I Love ESE150
"  ASCII Encoding (13-bytes = 104 bits):
"  01001001 00100000 01001100 01101111 01110110
01100101 00100000 01000101 01010011 01000101
00110010 00110101 00110000

"  Convenient to write programs that read/write files 1-byte at a time
"  But, since ASCII only needs 7-bits (not 8):

# We could write a compression program that strips the leading 0
"  Output of Compression Program (91 bits ~ 11.375 bytes):
"  1001001 0100000 1001100 1101111 1110110 1100101
0100000 1000101 1010011 1000101 0110010 0110101
0110000

"  Compression ratio: 104 bits in / 91 bits out = 1.14 :1
"  Lossless because we can easily restore exact original

19 20

Original
Program

Original
Output

File

Compression
Program

output input

Compressed
Output

File

13-bytes 11.375-bytes

De-Compression
Program

output input

Original
Output

File

13-bytes

Original
Program

output input

Why not compress all the time?
 Inconvenient ; expensive in terms of microprocessor cycles

!  Analog-to-Digital (ADC) Conversion
"  We have 7 discrete voltages, # of bits to represent 7 things?
"  3-bits! Why? 23-bits = 8 (1 unused state)

21

time (ms)

Voltage

1 2 3 4 5 6 7 8

3

2

1

0

-1

-2

-3

Samples:
{ 0 ms, 0 Volts }

{ 1 ms, 2 Volts }

{ 2 ms, 3 Volts }
{ 3 ms, 2 Volts }
{ 4 ms, 0 Volts }
{ 5 ms, -2 Volts }
{ 6 ms, -3 Volts }
{ 7 ms, -2 Volts }
{ 8 ms, 0 Volts }

Binary
Encoding:

011

101

110

101

011
001

000

000

001

010

011

100

101

110

001
011

Encoding: mapping data from one form to another (not always conversion)

!  Sample Rate: 1000 samples/sec, Resolution: 3-bits per sample
!  Our Sampled Signal: {0, 2.2V, 3V, 2.2V, 0, -2.2V, -3, -2.2V, 0}
!  Our Quantized Signal: {0, 2V, 3, 2V, 0, -2, -3, -2, 0}
!  Our 3-bit Digitized Data: {011, 101, 110, 101, 011, 001, 000, 001, 011}

!  space required to store/transmit: 27 bits

!  ADC related compression algorithm:
"  CS&Q (Coarser Sampling AND/OR Quantization)

#  Either reduce number of bits per sample AND/OR discard a sample completely
"  Example with our digitized data:
"  Our 3-bit Digitized Data: {011, 101, 110, 101, 011, 001, 000, 001, 011}
"  Compressing w/CS&Q: {011, 110, 011, 000, 011}

#  Reducing # of samples by 15-bits

"  Compression Ratio: 6-bits in per group / 3-bits out per group: 2:1
"  Lossy because we cannot restore exact original

22

!  Decompression & DAC Process
"  Original digital signal: {011, 101, 110, 101, 011, 001, 000, 001, 011}
"  Original Sampling Rate: 1000 samples/sec

23

time (ms)

Voltage

1 2 3 4 5 6 7 8

3

2

1

0

-1

-2

-3 000

001

010

011

100

101

110

Original Signal (recall ADC/DAC is approximation at best anyway!)

!  Decompression & DAC Process
"  Original compressed signal: {011, , 110, , 011, , 000, , 011}
"  New Sampling Rate Due to Compression: 500 samples/sec

24

time (ms)

Voltage

1 2 3 4 5 6 7 8

3

2

1

0

-1

-2

-3 000

001

010

011

100

101

110

Lossy: Compression removed every other sample

Effect of CS&Q compression:
 Lowered Sampling Rate
 Added “noise” to signal
 Listeners might not notice!

Lossy Compression:
 One can achieve high
 Compression ratios

Frequently used for Audio:
 MP3 format uses lossy
 compression algorithm

5

25

Compression Algorithms

Lossy Lossless

Compression Algorithms

Fixed Group Size Variable Group Size
Examples of Fixed Group Size:
 Take in 2 samples: (6-bits) always spit out: (3-bits)
 Take in 8-bit ASCII character (group), spit out 7-bit ASCII character (group)

!  These two tables show popular compression algorithms
"  Sorted by the two forms of classifications
"  Notice: JPG, and MPEG are actually forms of compression!

#  Not just a file format for pictures or video
#  We will also learn: MP3 is a form of lossy compression as well

26

!  JPG
"  Uses “transform”
"  We will study in week 4
"  Each pixel is 8-bits

#  1 byte per pixel

"  Breaks pic into 8x8
#  Treats as a 64-byte

group

"  Lossy algorithm
#  Reduces each group

to 2 to 20 bytes
"  Substantial savings

#  Not as sharp a pic as
BMP

27 28

!  Does each character contain the same amount
of “information”?

λ  How often does each character occur?
λ  Capital letters versus non-capitals?
λ  How many e’s in a preclass quote?
λ  How many z’s?
λ  How many q’s?

6

http://en.wikipedia.org/wiki/File:English-slf.png

!  Developed in 1950’s (D.A. Huffman)
!  Takes advantage of frequency of stream of bits

occurrence in data
"  Can be done for ASCII (8-bits per character)

#  Characters do not occur with equal frequency.
#  How can we exploit statistics (frequency) to pick character encodings?

"  But can also be used for anything with symbols occurring frequently
#  AKA: MUSIC (drum beats…frequently occurring data)

"  Example of variable length compression algorithm
#  Takes in fixed size group – spits out variable size replacement

32

!  Example: more than 96% of file consists of 31 characters
!  Idea: Assign frequently used characters fewer bits

"  31 common characters get 5b codes 00000--11110
"  Rest get 13g: 11111+original 8b code

!  How many bits do we need on average per original byte?

33

!  Bits = #5b-characters * 5 + #13b-character * 13
!  Bits=#bytes*0.96*5 + #bytes*0.04*13
!  Bits/original-byte = 0.96*5+0.04*13

34

!  Huffman goes further: Assign MOST used characters least # of bits:
"  Most frequent: A= 1, least frequent: G=00011, etc.
"  Example:

35 36

symbol encode occur
(space) 00 15
A 1110
B 100100
C 100101
D 10110
E 110 11
F 011010
G 011011
H 011000
I 0111

symbol encode occur
L 0100
M 1111
N 1010
O 10011
R 0101
T 10111
V 10000
Y 011001
, 10001

7

37

symbol encode occur
(space) 00 15
A 1110 6
B 100100
C 100101
D 10110
E 110 11
F 011010
G 011011
H 011000
I 0111 4

symbol encode occur
L 0100 4
M 1111 6
N 1010 5
O 10011
R 0101 4
T 10111
V 10000
Y 011001
, 10001

38

symbol encode occur
(space) 00 15
A 1110 6
B 100100
C 100101
D 10110 3
E 110 11
F 011010
G 011011
H 011000
I 0111 4

symbol encode occur
L 0100 4
M 1111 6
N 1010 5
O 10011 2
R 0101 4
T 10111 3
V 10000 2
Y 011001
, 10001 2

39

symbol encode occur
(space) 00 15
A 1110 6
B 100100 1
C 100101 1
D 10110 3
E 110 11
F 011010 1
G 011011 1
H 011000 1
I 0111 4

symbol encode occur
L 0100 4
M 1111 6
N 1010 5
O 10011 2
R 0101 4
T 10111 3
V 10000 2
Y 011001 1
, 10001 2

!  Previous example:
"  Simply looked at letters in isolation, determined

frequency of occurrence
!  More advanced models:

"  Predecessor context: What’s probability of a symbol
occurring, given: PREVIOUS letter.

!  Ex: What’s most likely character to follow a T?

40

41

!  Compressibility depends on non-randomness
(uniformity)
"  Structure
"  Non-uniformity

!  If every character occurred with same freq:
"  There’s no common case
"  To which character do we assign the shortest encoding?

#  No clear winner
"  For everything we give a short encoding,

#  Something else gets a longer encoding

!  The less uniformly random data is…
"  the more opportunity for compression

42

8

!  Big idea in optimization engineering
" Make the common case inexpensive

!  Shows up throughout computer systems
"  Computer architecture

# Caching, instruction selection, branch prediction, …

"  Networking and communication
# Compression, error-correction/retransmission

"  Algorithms and software optimization
"  User Interfaces

# Where things live on menus, shortcuts, …
# How you organize your apps on screens

43

Is there a lower bound for compression?

44

45

What is the least # of bits required to encode information?

!  Father of Information Theory, brilliant mathematician
!  While at AT&T Bell Labs, landmark paper in 1948
!  Determined exactly how low we can go with

compression!

46

!  What is entropy?
"  Chaos/Disorganization/Randomness/Uncertainty

!  Shannon’s Famous Entropy Formula:

47

Shannon’s
Entropy

(measured in bits)
Negative Sum Of:

Probability of each outcome
X

log2 of (probability of each outcome)

! 

48

9

http://en.wikipedia.org/wiki/File:English-slf.png

Not all letters are equally probable
in English Language

letter p -log2(p) -p*log2(p)
a 8.17% 3.61 0.30
b 1.49% 6.07 0.09
c 2.78% 5.17 0.14
d 4.25% 4.56 0.19
e 12.70% 2.98 0.38
f 2.23% 5.49 0.12

z 0.07% 10.40 0.01
sum 100.00% 4.18

50

€

H = − pi
i
∑ × log2(pi)

51

€

H = − pi
i
∑ × log2(pi)

Symbol Bits Occur P -log2(p) H p*bits
(space) 2 15 0.21 2.28 0.47 0.41
A 4 6 0.08 3.60 0.30 0.33
B 6 1 0.01 6.19 0.08 0.08
C 6 1 0.01 6.19 0.08 0.08
D 5 3 0.04 4.60 0.19 0.21
E 3 11 0.15 2.73 0.41 0.45

, 5 2 0.03 5.19 0.14 0.14
sum 3.74 3.77

!  Shannon’s Entropy represents a lower limit for lossless
data compression
"  It tells us the minimum amount of bits that can be used to encode a

message without loss

!  Shannon’s Source Coding Theorem:
"  A lossless data compression algorithm cannot compress messages

to have (on average) more than 1 bit of Shannon’s Entropy per bit of
encoded message

52

!  Assumed know statistics
!  What if you don’t?
!  What if it changes?
!  How could we adapt the code to changing

statics?

53

!  Implement Compression!
"  Implement different compression algorithms

!  Remember:
"  Lab 2 report is due on canvas on Friday

"  TA Office hours tonight (Ketterer) and Thursday (Detkin)

54

10

!  Lossless Compression
"  Exploit non-uniform statistics of data
"  Given short encoding to most common items

!  Common Case
"  Make the common case inexpensive

!  Shannon’s Entropy
"  Gives us a formal tool to define lower bound for

compressibility of data

55

!  ESE 301– Probability
"  Central to understanding probabilities

# What cases are common and how common they are

!  ESE 674 – Information Theory
!  Most all computer engineering courses

"  Deal with common-case optimizations
"  CIS240, CIS371, CIS380, ESE407, ESE532….

56

!  S. Smith, “The Scientists and Engineer’s Guide to
Digital Signal Processing,” 1997.

!  Shannon’s Entropy (excellent video)
http://www.youtube.com/watch?v=JnJq3Py0dyM
"  Used heavily in the creation of entropy slides

57

