

Lecture Topics

Where are we on course map?
What we did in lab last week How it relates to this week

Compression

What is it, examples, classifications
Probability based compression
Huffman Encoding
Entropy
Shannon Limits
Next Lab
References

Preclass

Tell me and I forget, teach me and I may remember, involve me and I learn
-- Benjamin Franklin

73 symbols

19 unique (ignoring case)
(A, B, C, D, E, F, G, H, I, L, M, N, O, R, T, V, Y, space, comma)
How many bits to represent each symbol?
How many bits to encode quote?

Preclass

Tell me and I forget, teach me and I may remember, involve me and I learn
-- Benjamin Franklin

73 symbols

19 unique (ignoring case)
If symbols occurrence equally likely, how many occurrences of each symbol should we expect in quote?
How many e's are there in the quote?

PRECLASS

Tell me and I forget, teach me and I may remember, involve me and I learn
-- Benjamin Franklin
Using fixed encoding (question 1)
How many bits to encode first 10 symbols?
How many bits using encoding given?

Symbols do not occur equally
Symbol occurrence is not uniformly random

PRECLASS

Tell me and I forget, teach me and I may remember, involve me and I learn
-- Benjamin Franklin

Using fixed encoding (question 1)
How many bits to encode first 24 symbols?
How many bits using encoding given?

PRECLASS

Tell me and I forget, teach me and I may remember, involve me and I learn
-- Benjamin Franklin

Using fixed encoding (question 1)

How many bits to encode al 73 symbols?
How many bits using encoding given?

DATA COMPRESSION

What is compression?
Encoding information using fewer bits than the original representation
Why do we need compression?
Most digital data is not sampled/quantized/represented in the most compact form

It takes up more space on a hard drive/memory
It takes longer to transmit over a network
Why? Because data is stored in a way that makes it easiest to use Two broad categories of compression algorithms: Lossless - when data is un-compressed, data is its original form Lossy - when data is un-compressed, data is in approximate form Some of the original data is lost

RePRESENTATION OF DATA				
Letter	Numeric Encoding	Letter	Numeric Encoding	
A	0	N	13	
B	1	\bigcirc	14	
c	2	P	15	How to encode alphabet?
D	3	Q	16	
E	4	R	17	Easy to map/encode:
F	5	s	18	$\mathrm{A} \rightarrow 0$ and $\mathrm{Z} \rightarrow 25$
G	6	T	19	
H	7	u	20	
1	8	v	21	
J	9	w	22	
k	10	x	23	
L	11	Y	24	
M	12	z	25	

How many Bits to represent all letters?

Letter	Binary Encoding	Letter	Binary Encoding	
A	00000	N	01101	Including upper and lower case?
B	00001	O	01110	...and numbers?
C	00010	P	01111	
D	00011	Q	10000	
E	00100	R	10001	
F	00101	S	10010	
G	00110	T	10011	
H	00111	U	10100	
I	01000	V	10101	
J	01001	W	10110	
K	01010	X	10111	
L	01011	Y	11000	
M	01100	Z	11001	

EXAMPLE OF LOSSLESS COMPRESSION

A simple form of compression would be the following: ORIGINAL TEXT (13-characters): I Love ESE150 ASCII Encoding (13-bytes = 104 bits):
0100100100100000010011000110111101110110 0110010100100000010001010101001101000101 001100100011010100110000
Convenient to write programs that read/write files 1-byte at a time But, since ASCII only needs 7-bits (not 8):

We could write a compression program that strips the leading 0 Output of Compression Program (91 bits ~ 11.375 bytes):
100100101000001001100110111111101101100101 010000010001011010011100010101100100110101 0110000

Compression ratio: 104 bits in / 91 bits out = 1.14 :1
Lossless because we can easily restore exact original

Compression Process

Why not compress all the time?
Inconvenient ; expensive in terms of microprocessor cycles

20

EXAMPLE OF LOSSY COMPRESSION

Sample Rate: 1000 samples/sec, Resolution: 3-bits per sample
Our Sampled Signal: $\{0,2.2 \mathrm{~V}, 3 \mathrm{~V}, 2.2 \mathrm{~V}, 0,-2.2 \mathrm{~V},-3,-2.2 \mathrm{~V}, 0\}$
Our Quantized Signal: $\{0,2 \mathrm{~V}, 3,2 \mathrm{~V}, 0,-2,-3,-2,0\}$
Our 3-bit Digitized Data: $\{011,101,110,101,011,001,000,001,011\}$
space required to store/transmit: 27 bits

ADC related compression algorithm:
CS\&Q (Coarser Sampling AND/OR Quantization)
Either reduce number of bits per sample AND/OR discard a sample completely Example with our digitized data
Our 3-bit Digitized Data: $\{011,101,110,101,011,001,000,001,011\}$
Compressing w/CS\&Q: \{011, 110, 011, 000, 011\} Reducing \# of samples by $\mathbf{1 5}$-bits
Compression Ratio: 6-bits in per group / 3-bits out per group: 2:1
Lossy because we cannot restore exact original

De-Compression of Signal:

Decompression \& DAC Process

Original compressed signal: $\{011$, , 110, , 011, , 000, , 011\}
New Sampling Rate Due to Compression: $\mathbf{5 0 0}$ samples/sec

Two FORMS OF CLASSIFICATION

Compression Algorithms

Compression Algorithms

Fixed Group Size
Variable Group Size
Examples of Fixed Group Size:
Take in 2 samples: (6-bits) always spit out: (3-bits)
Take in 8-bit ASCII character (group), spit out 7-bit ASCII character (group)

Algorithms Classified

Lossless	Lossy
run-length	CS\&Q
Huffman	JPEG
delta	MPEG
LZW	

Method	Group size:	
input	output	
CS\&Q	fixed	fixed Huffman
fixed	variable	
Arithetic	variable	variable
run-length, LZW	variable	fixed

These two tables show popular compression algorithms Sorted by the two forms of classifications
Notice: JPG, and MPEG are actually forms of compression! Not just a file format for pictures or video
We will also learn: MP3 is a form of lossy compression as well

Statistics
How often does each character occur?
Capital letters versus non-capitals?
How many e's in a preclass quote?
How many z's?
How many q's?

HuFFMAN Encoding - The Basics

Example: more than 96% of file consists of 31 characters
Idea: Assign frequently used characters fewer bits
31 common characters get 5 b codes 00000--11110
Rest get 13 g : $11111+$ original 8 b code
How many bits do we need on average per original byte?

Huffman Encoding - More Advanced

Huffman goes further: Assign MOST used characters least \# of bits: Most frequent: $A=1$, least frequent: $G=00011$, etc.
Example:original data stream:

CALCULATION

Bits = \#5b-characters * 5 + \#13b-character * 13
Bits=\#bytes*0.96*5 + \#bytes*0.04*13
Bits/original-byte $=0.96 * 5+0.04 * 13$

Huffman Encoding

Developed in 1950's (D.A. Huffman)
Takes advantage of frequency of stream of bits occurrence in data

Can be done for ASCII (8-bits per character)
Characters do not occur with equal frequency
How can we exploit statistics (frequency) to pick character encodings?
But can also be used for anything with symbols occurring frequently AKA: MUSIC (drum beats...frequently occurring data)

Example of variable length compression algorithm Takes in fixed size group - spits out variable size replacement

Preclass Encoding

symbol	encode	occur	symbol	encode
(space)	00	15	L	0100
A	1110		M	1111
B	100100		N	1010
C	100101		0	10011
D	10110		R	0101
E	110	11	T	10111
F	011010		V	10000
G	011011		Y	011001
H	011000		,	10001
	0111			

MANY TYPES OF FREQUENCY

Previous example:

Simply looked at letters in isolation, determined frequency of occurrence

More advanced models:

Predecessor context: What's probability of a symbol occurring, given: PREVIOUS letter.

Ex: What's most likely character to follow a T?

Common Case

Big idea in optimization engineering
Make the common case inexpensive
Shows up throughout computer systems
Computer architecture
Caching, instruction selection, branch prediction, ..
Networking and communication
Compression, error-correction/retransmission
Algorithms and software optimization
User Interfaces
Where things live on menus, shortcuts, ..
How you organize your apps on screens

Claude Shannon

Father of Information Theory, brilliant mathematician
While at AT\&T Bell Labs, landmark paper in 1948
Determined exactly how low we can go with compression!

ShANNON's Entropy

What is entropy?
Chaos/Disorganization/Randomness/Uncertainty
Shannon's Famous Entropy Formula:

$$
\begin{array}{ccc}
\begin{array}{c}
\text { Shannon's } \\
\text { Entropy } \\
\text { asured in bits) }
\end{array} & \downarrow & \text { Probability of each outcome } \\
\text { Ne Sum Of: } & \text { X } \\
\log _{2} \text { of (probability of each outcom }
\end{array}
$$

(measured in bits)

Estimating Entropy of English Language

27 Characters (26 letters + space)
If we assume all characters are equally probable:

$$
p(\text { each character })=\frac{1}{27}
$$

Information Entropy per character:

$$
\begin{gathered}
H=-\sum p(x) \log p(x) \\
H=-27\left(\frac{1}{27}\right) \log \left(\frac{1}{27}\right)=-\log \left(\frac{1}{27}\right)=+4.75 \text { bits }
\end{gathered}
$$

SHANNON ENTROPY ENGLISH LETTERS						
$H=-\sum p_{i} \times \log _{2}\left(p_{i}\right)$						
Symbo	Bits	Occur	P	- $\log 2(\mathrm{p}$	H	prbits
(space)	2	15	0.21	2.28	0.47	0.41
A	4	6	0.08	3.60	0.30	0.33
B	6	1	0.01	6.19	0.08	0.08
C	6	1	0.01	6.19	0.08	0.08
D	5	3	0.04	4.60	0.19	0.21
E	3	11	0.15	2.73	0.41	0.45
,	5	2	0.03	5.19	0.14	0.14
			sum		3.74	3.77
						51

TO CONSIDER

Assumed know statistics
What if you don't?
What if it changes?
How could we adapt the code to changing statics?

Summing it up; Shannon \& Compression
Shannon's Entropy represents a lower limit for lossless data compression

It tells us the minimum amount of bits that can be used to encode a message without loss
Shannon's Source Coding Theorem:
A lossless data compression algorithm cannot compress messages to have (on average) more than 1 bit of Shannon's Entropy per bit of encoded message

This week in Lab
Implement Compression!
Implement different compression algorithms

Remember:
Lab 2 report is due on canvas on Friday

TA Office hours tonight (Ketterer) and Thursday (Detkin)

Learn More

ESE 301- Probability

Central to understanding probabilities What cases are common and how common they are

ESE 674 - Information Theory

Most all computer engineering courses
Deal with common-case optimizations
CIS240, CIS371, CIS380, ESE407, ESE532....

| REFERENCES |
| :--- |\quad| S. Smith, "The Scientists and Engineer's Guide to |
| :--- |
| Digital Signal Processing," 1997. |
| \timesShannon's Entropy (excellent video)
 http://www.youtube.com/watch?v=JnJq3Py0dyM
 Used heavily in the creation of entropy slides |

