-
Lecture #3 — Compression

ESE 150 —
DIGITAL Aupio BAsics

Based on slides © 2009--2018 DeHon
Additional Material © 2014 Farmer

COURSE MA

domain
conversion 5

\ sample freq pyscho-
\ 23 acoustics (4

1

7|

OK speaker MP3 Player / iPhone / Droid
— 12 _

WHAT WE DID IN LAB...

=

E—
Digigal * :

| SIH [—> ADC Jiomput:;ﬁ

i =i

Week 1: Converted Sound to analog voltage signal
a “pressure wave” that changes air molecules w/ respect to time
a “voltage wave” that changes amplitude w/ respect to time
Sample: Break up independent variable, take discrete ‘samples’
Quantize: Break up dependent variable into n-levels (need 2" bits to digitize)

Week 2: Reconstructed analog signal from digital

N
LECTURE ToPICS

Where are we on course map?
What we did in lab last week
How it relates to this week
Compression
What is it, examples, classifications
Probability based compression
Huffman Encoding
Entropy

Shannon Limits
Next Lab
References

e
]
COURSE MAP — WEEK 3

mic CcPU

> A/D »10101001101

\, sample
2,3

< D/A<—10101001101

sieaker

PRECLASS




PRECLASS

Tell me and | forget, teach me and | may
remember, involve me and | learn
-- Benjamin Franklin

73 symbols

19 unique (ignoring case)
(A,B,C,D,E,F,G,H,I,L,M,N,O,R, T, V, Y, space,
comma)
How many bits to represent each symbol?

How many bits to encode quote?

‘ ‘
‘ ‘

PRECLASS

Tell me and | forget, teach me and | may
remember, involve me and | learn
-- Benjamin Franklin
73 symbols
19 unique (ignoring case)
Conclude
Symbols do not occur equally
Symbol occurrence is not uniformly random

PRECLASS

Tell me and | forget, teach me and | may
remember, involve me and | learn
-- Benjamin Franklin

Using fixed encoding (question 1)
How many bits to encode first 24 symbols?
How many bits using encoding given?

PRECLASS

Tell me and | forget, teach me and | may
remember, involve me and | learn
-- Benjamin Franklin

73 symbols

19 unique (ignoring case)

If symbols occurrence equally likely, how many
occurrences of each symbol should we expect
in quote?

How many e’s are there in the quote?

PRECLASS

Tell me and | forget, teach me and | may
remember, involve me and | learn
-- Benjamin Franklin

Using fixed encoding (question 1)
How many bits to encode first 10 symbols?
How many bits using encoding given?

PRECLASS

Tell me and | forget, teach me and | may
remember, involve me and | learn
-- Benjamin Franklin

Using fixed encoding (question 1)
How many bits to encode al 73 symbols?
How many bits using encoding given?

12



CONCLUDE

Can encode with (on average) fewer bits than
log(unique-symbols)

DATA COMPRESSION

What is compression?
Encoding information using fewer bits than the original
representation

Why do we need compression?

Most digital data is not sampled/quantized/represented in the most
compact form

It takes up more space on a hard drive/memory

It takes longer to transmit over a network

Why? Because data is stored in a way that makes it easiest to use
Two broad categories of compression algorithms:
Lossless — when data is un-compressed, data is its original form

Lossy — when data is un-compressed, data is in approximate form
Some of the original data is lost

‘ a

How MANY BITS TO REPRESENT ALL LETTERS?
o M

A 00000 N 01101 Including upper and lower case?
B 00001 o 01110 and numbers?

Cc 00010 p 01111

D 00011 Q 10000

2 00100 R 10001

F 00101 S 10010

G 00110 T 10011

H 00111 U 10100

| 01000 vV 10101

J 01001 w 10110

K 01010 X 10111

L 01011 Y 11000

M 01100 z 11001

INTRO TO COMPRESSION

REPRESENTATION OF DATA
Loter M Lo Jere
A 0 N 13
B 1 o 14
3 2 p 15 How to encode alphabet?
D 3 Q 16
E 4 R 17 Easy to map/encode:
F 5 s 18 A->0and Z>25
G 6 T 19
H 7 u 20
| 8 \% 21
J 9 w 22
K 10 X 23
L 1 Y 24
M 12 z 25

ASCII ENCODING (7-BIT ENCODING)

Letter ASCIl Code Binary  Letter ASCIl Code Binary
097 01100001 065 01000001
098 01100010 066 01000010
099 01100011 067 01000011 .
100 01100100 068 01000100 ASC”',
101 01100101 069 otooot01 American Standard
102 01100110 070 01000110 Gode for Information
103 01100111 071 01000111
104 01101000 o072 oo01000 Interchange
105 01101001 073 01001001  27=128 combinations
106 01101010 074 01001010
107 01101011 075 01001011
1w onovor o oo Srandard encoding,
77 010011 . g
01101110 o8 owonio developed in the 1960’s
11 01101111 079 01001111
112 01110000 080 01010000 . . :
13 01110001 os1  otoi0001 Didn't take into account
114 01110010 082 ot010010 international standards!
15 01110011 083 01010011
116 01110100 084 01010100
17 01110101 oss  otot0101 UNICODE
18 01110110 086 01010110 p :
19 01110111 o7 oo O-Dit enCOd'n.g. »
120 01111000 oss  otoriooo  28=256 possibilities!
121 01111001 089 01011001
12201111010 090 01011010

N<XE<C~0-0DO033—x—=—7@=00a00T0
3
NXXS<CH0DOTVOZErXec-—IOTMMOO®>




]
EXAMPLE OF LOSSLESS COMPRESSION

A simple form of compression would be the following:
ORIGINAL TEXT (13-characters): I Love ESE150
ASCII Encoding (13-bytes = 104 bits):
01001001 00100000 01001100 01101111 01110110
01100101 00100000 01000101 01010011 01000101
00110010 00110101 00110000
Convenient to write programs that read/write files 1-byte at a time
But, since ASCII only needs 7-bits (not 8):

We could write a compression program that strips the leading 0

Output of Compression Program (91 bits ~ 11.375 bytes):
1001001 0100000 1001100 1101111 1110110 1100101

0100000 1000101 1010011 1000101 0110010 0110101
0110000

Compression ratio: 104 bits in / 91 bits out = 1.14 :1

Lossless because we can easili restore exact oriﬂinal

]
REcALL ADC PROCESS?

Analog-to-Digital (ADC) Conversion
We have 7 discrete voltages, # of bits to represent 7 things?
3-bits! Why? 23-its = 8 (1 unused state) Binary
Samples: Encoding:

Voltage {0 ms, 0 Volts }—> 011

10 3 -

{1 ms, 2 Volts —> 101
101 2 {2 ms, 3 Volts —> 110
100 1 {3 ms, 2 Volts }——> 101

44
tt

| time (ms)H ms, 0 Volts }—— 011
) {5 ms, -2 Volts }—> 001
/ {6 ms, -3 Volts }—> 000
d {7 ms, -2 Volts }—> 001
{8 ms, 0 Volts }—> 011

Encoding: mapping data from one form to another (not always conversion) 21

010 -1

DE-COMPRESSION OF SIGNAL:

Decompression & DAC Process
Original digital signal: {011, 101, 110, 101, 011, 001, 000, 001, 011}

Original Sampling Rate: 1000 samples/sec
Voltage
110 3

101 2 —

100 1

OH——o—1 time (ms)

010 -1

000 -3 —1

COMPRESSION PROCESS

Original Compression De-Compression Original
Program Program Program Program

& N > 9 )
< N » Y, O
% 785> X % EB>

Original Compressed Original
Output Output Output
File File File

13-bytes 11.375-bytes 13-bytes

Why not compress all the time?
Inconvenient ; expensive in terms of microprocessor cycles

EXAMPLE OF LOSSY COMPRESSION

Sample Rate: 1000 samples/sec, Resolution: 3-bits per sample

Our Sampled Signal: {0, 2.2V, 3V, 2.2V, 0, -2.2V, -3, -2.2V, 0}

Our Quantized Signal: {0, 2V, 3, 2V, 0, -2, -3, -2, 0}

Our 3-bit Digitized Data: {011, 101, 110, 101, 011, 001, 000, 001, 011}
space required to store/transmit: 27 bits

ADC related compression algorithm:
CS&Q (Coarser Sampling AND/OR Quantization)
Either reduce number of bits per sample AND/OR discard a sample completely
Example with our digitized data:
Our 3-bit Digitized Data: {011, 101, 110, 101, 011, 001, 000, 001, 011}

Compressing w/CS&Q: {011, 110, oM, 000, 011}
Reducing # of samples by 15-bits

Compression Ratio: 6-bits in per group / 3-bits out per group: 2:1
Lossy because we cannot restore exact original

DE-COMPRESSION OF SIGNAL:

Decompression & DAC Process
Original compressed signal: {011, , 110, , 011, , 000, , 011}
New Sampling Rate Due to Compression: 500 samples/sec
Voltage Effect of CS&Q compression

1o 3 Lowered Sampling Rate
T Added “noise” to signal

101 2 —— Listeners might not notice!

100 1 == Lossy Compression:

04— { } { } timg (ms) One can aphievg high
1234 5 7 Compression ratios

010 -1 ——

001 2 — Frequently used for Audio:

MP3 format uses lossy
000 -3 — compression algorithm

Lossy: Compression removed every other sample 24



]
TWO FORMS OF CLASSIFICATION

Compression Algorithms

Lossy Lossless

Compression Algorithms

Fixed Group Size Variable Group Size

Examples of Fixed Group Size:
Take in 2 samples: (6-bits) always spit out: (3-bits)
Take in 8-bit ASCII character (group), spit out 7-bit ASCII character (group)

JPG COMPRESSION

8 piels

i

1 JPG

Uses “transform”

We will study in week 4

Each pixel is 8-bits
1 byte per pixel

Breaks pic into 8x8

A - _ _ Treats as a 64-byte

! = group

Lossy algorithm
Reduces each group
to 2 to 20 bytes

- T Substantial savings

Not as sharp a pic as
s ; BMP

Nl
T
IT
T
IT
=

T

T

(LS

o [e s [rer [ [ |55 [+

‘ 3

INFORMATION CONTENT

Does each character contain the same amount
of “information”?

]
ALGORITHMS CLASSIFIED

G
Lossless Lossy Method iuplt[o P ’liirpnl
run-length CS&Q CS&Q fixed fixed
Huffman JPEG Huffman fixed variable
delta MPEG Arithmetic variable  variable
LZw run-length, LZW variable  fixed

These two tables show popular compression algorithms
Sorted by the two forms of classifications

Notice: JPG, and MPEG are actually forms of compression!
Not just a file format for pictures or video
We will also learn: MP3 is a form of lossy compression as well

PROBABILITY-BASED LOSSLESS COMPRESSION

|
STATISTICS

How often does each character occur?
Capital letters versus non-capitals?
How many €’s in a preclass quote?
How many z's?
How many q’s?




N
ENGLISH LETTER FREQUENCY

014
012

01

Relative frequency

abcdefghijkimnopagrstuvwxyz
Letter

http://en.wikipedia.org/wiki/File:English-slf.png
|
|
HUFFMAN ENCODING — THE BAsICS

space

Teiters

0.05]

L
o 50 100 150 0 50
Byte value

Example: more than 96% of file consists of 31 characters
Idea: Assign frequently used characters fewer bits

31 common characters get 5b codes 00000--11110

Rest get 13g: 11111+original 8b code
How many bits do we need on average per original byte?

|
HUFFMAN ENCODING — MORE ADVANCED

0.2 Example Encoding Table

s
letter | probability | Huffman code
A 154 1
loyer case B 110 01
- |:> c| om 0010
D | .063 0011
e E | 059 0001
T F | o015 000010
oo G | o1 000011

Bylte value

Huffman goes further: Assign MOST used characters least # of bits:
Most frequent: A= 1, least frequent: G=00011, etc.

Example: original data stream:

DF B E A-

PIARRRNNN

Huffman encoded: 0010 0001 000011 1 0011 000010 01 0001 1---

35

HUFFMAN ENCODING

Developed in 1950’s (D.A. Huffman)
Takes advantage of frequency of stream of bits
occurrence in data

Can be done for ASCII (8-bits per character)
Characters do not occur with equal frequency.
How can we exploit statistics (frequency) to pick character encodings?

But can also be used for anything with symbols occurring frequently
AKA: MUSIC (drum beats...frequently occurring data)

Example of variable length compression algorithm
Takes in fixed size group — spits out variable size replacement

CALCULATION

Bits = #5b-characters * 5 + #13b-character * 13
Bits=#bytes*0.96*5 + #bytes*0.04*13
Bits/original-byte = 0.96*5+0.04*13

‘ ‘

PRECLASS ENCODING

(space) 00 15 L 0100
A 1110 M 1111

B 100100 N 1010
C 100101 0 10011
D 10110 R 0101

E 110 " T 10111
F 011010 Vv 10000
€ ik Y 011001
H 011000 X 10001
| 0111




PRECLASS ENCODING

(space) 00 15

L 0100 4
A 1110 6 M 111 6
B 100100 N 1010 5
C 100101 0 10011
D 10110 R 0101 4
E 10 " T 10111
F 011010 V2 10000
G 011011 Y 011001
H 011000 , 10001
| 0111 4

‘ ‘
‘ ‘

PRECLASS ENCODING

(space) 00 15 L 0100 4
A 1110 6 M 1111 6
B 100100 1 N 1010 5
(6] 100101 1 o 10011 2
D 10110 3 R 0101 4
E] 110 1" T 10111 3
F 011010 1 \ 10000 2
G 011011 1 Y 011001 1
H 011000 1 10001 2
| 0111 4

‘

Letter and next-letter frequencies in Engllsh
measured across 1 million articles from Wikipedia

PRECLASS ENCODING

(space) 00 15

L 0100 4
A 1110 6 M 111 6
B 100100 N 1010 5
c 100101 o 10011 2
D 10110 3 R 0101 4
E 10 " T 10111 3
F 011010 vV 10000 2
G 011011 Y 011001
H 011000 , 10001 2
| 0111 4

MANY TYPES OF FREQUENCY

Previous example:

Simply looked at letters in isolation, determined
frequency of occurrence

More advanced models:

Predecessor context: What’s probability of a symbol
occurring, given: PREVIOUS letter.

Ex: What’s most likely character to follow a T?

40

COMPRESSIBILITY

Compressibility depends on non-randomness
(uniformity)

Structure

Non-uniformity

If every character occurred with same freq:
There’s no common case
To which character do we assign the shortest encoding?
No clear winner
For everything we give a short encoding,
Something else gets a longer encoding
The less uniformly random data is...
the more opportunity for compression




[
CoMMON CASE

Big idea in optimization engineering
Make the common case inexpensive

Shows up throughout computer systems

Computer architecture

Caching, instruction selection, branch prediction, ...
Networking and communication

Compression, error-correction/retransmission
Algorithms and software optimization
User Interfaces

Where things live on menus, shortcuts, ...

How you organize your apps on screens

How LOW CAN WE GO WITH COMPRESSION?

What is the least # of bits required to encode information?

SHANNON’S ENTROPY

What is entropy?
Chaos/Disorganization/Randomness/Uncertainty
Shannon’s Famous Entropy Formula:

H= —Zp(x) logp(x)

S T

Shannon's Probability of each outcome
Entropy Negative Sum Of: X
(measured in bits) log, of (probability of each outcome

ENTROPY

Is there a lower bound for compression?

CLAUDE SHANNON

Father of Information Theory, brilliant mathematician
While at AT&T Bell Labs, landmark paper in 1948

Determined exactly how low we can go with
compression!

46

ESTIMATING ENTROPY OF ENGLISH LANGUAGE

27 Characters (26 letters + space)
If we assume all characters are equally probable:

p(each character) = %

Information Entropy per character:

H == p(x)logp(x)

1 1 1 ]
H=-27 <ﬁ)log (ﬁ) = —log (ﬁ) = +4.75 bits




BUT, WE RECALL:

Not all letters are equally probable
in English Language

Relative frequency

http://en.wikipedia.org/wiki/File:English-slf.png

SHANNON ENTROPY ENGLISH LETTERS
H = _Epi xlog,(p,)

(space) 2 & 0.21 2.28 0.47 0.41
A 4 & 0.08 3.60 0.30 0.33
B 6 i 0.01 6.19 0.08 0.08
c 6 t 0.01 6.19 0.08 0.08
D 5 & 0.04 4.60 0.19 0.21
E 3 e 0.15 2.73 0.41 0.45
5 2 0.03 5.19 0.14 0.14

sum 3.74 3.77

TO CONSIDER

Assumed know statistics
What if you don’t?
What if it changes?

How could we adapt the code to changing
statics?

SHANNON ENTROPY ENGLISH LETTERS
H= _Epi x log,(p,)

a 8.17% 3.61 0.30
b 1.49% 6.07 0.09
c 2.78% 517 0.14
d 4.25% 4.56 0.19
e 12.70% 2.98 0.38
f 2.23% 5.49 0.12
z 0.07% 10.40 0.01

sum 100.00% 4.18

‘ ‘

SUMMING IT UP: SHANNON & COMPRESSION

Shannon’s Entropy represents a lower limit for lossless
data compression
It tells us the minimum amount of bits that can be used to encode a
message without loss
Shannon’s Source Coding Theorem:

Alossless data compression algorithm cannot compress messages
to have (on average) more than 1 bit of Shannon’s Entropy per bit of
encoded message

‘ ‘

THIS WEEK IN LAB

Implement Compression!
Implement different compression algorithms

Remember:
Lab 2 report is due on canvas on Friday

TA Office hours tonight (Ketterer) and Thursday (Detkin)




N
BIG IDEAS

Lossless Compression
Exploit non-uniform statistics of data
Given short encoding to most common items

Common Case
Make the common case inexpensive

Shannon’s Entropy

Gives us a formal tool to define lower bound for
compressibility of data

]
REFERENCES

S. Smith, “The Scientists and Engineer’s Guide to

Digital Signal Processing,” 1997.

Shannon’s Entropy (excellent video)

http://www.youtube.com/watch?v=JnJq3Py0dyM
Used heavily in the creation of entropy slides

N
LEARN MORE

ESE 301- Probability

Central to understanding probabilities
What cases are common and how common they are

ESE 674 — Information Theory

Most all computer engineering courses
Deal with common-case optimizations
CIS240, CIS371, CIS380, ESE407, ESE532....

10



