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Lecture #3 – Compression   

!  Where are we on course map? 

!  What we did in lab last week 
"  How it relates to this week 

!  Compression 
"  What is it, examples, classifications 
"  Probability based compression 

#  Huffman Encoding 
"  Entropy 

#  Shannon Limits 

!  Next Lab 
!  References 
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!  Week 1: Converted Sound to analog voltage signal 
!  a “pressure wave” that changes air molecules w/ respect to time 
!  a “voltage wave” that changes amplitude w/ respect to time 
"  Sample: Break up independent variable, take discrete ‘samples’ 
"  Quantize: Break up dependent variable into n-levels (need 2n bits to digitize) 

!  Week 2: Reconstructed analog signal from digital 
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!  Tell me and I forget, teach me and I may 
remember, involve me and I learn 
"  -- Benjamin Franklin 

!  73 symbols 
!  19 unique (ignoring case) 

"  (A, B, C, D, E, F, G, H, I, L, M, N, O, R, T, V, Y, space, 
comma) 

"  How many bits to represent each symbol? 

!  How many bits to encode quote? 
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!  Tell me and I forget, teach me and I may 
remember, involve me and I learn 
"  -- Benjamin Franklin 

!  73 symbols 
!  19 unique (ignoring case) 
!  If symbols occurrence equally likely, how many 

occurrences of each symbol should we expect 
in quote? 

!  How many e’s are there in the quote? 
8 

!  Tell me and I forget, teach me and I may 
remember, involve me and I learn 
"  -- Benjamin Franklin 

!  73 symbols 
!  19 unique (ignoring case) 
!  Conclude 

"  Symbols do not occur equally 
"  Symbol occurrence is not uniformly random 
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!  Tell me and I forget, teach me and I may 
remember, involve me and I learn 
"  -- Benjamin Franklin 

!  Using fixed encoding (question 1) 
!  How many bits to encode first 10 symbols? 
!  How many bits using encoding given? 
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!  Tell me and I forget, teach me and I may 
remember, involve me and I learn 
"  -- Benjamin Franklin 

!  Using fixed encoding (question 1) 
!  How many bits to encode first 24 symbols? 
!  How many bits using encoding given? 
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!  Tell me and I forget, teach me and I may 
remember, involve me and I learn 
"  -- Benjamin Franklin 

!  Using fixed encoding (question 1) 
!  How many bits to encode al 73 symbols? 
!  How many bits using encoding given? 
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!  Can encode with (on average) fewer bits than 
log(unique-symbols)  
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!  What is compression? 
"  Encoding information using fewer bits than the original 

representation 

!  Why do we need compression? 
"  Most digital data is not sampled/quantized/represented in the most 

compact form 
#  It takes up more space on a hard drive/memory 
#  It takes longer to transmit over a network 

"  Why?  Because data is stored in a way that makes it easiest to use 

!  Two broad categories of compression algorithms: 
"  Lossless – when data is un-compressed, data is its original form 
"  Lossy – when data is un-compressed, data is in approximate form 

#  Some of the original data is lost 
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Letter Numeric 
Encoding 

A 0 
B 1 
C 2 
D 3 
E 4 
F 5 
G 6 
H 7 
I 8 
J 9 
K 10 
L 11 
M 12 

How to encode alphabet? 

Easy to map/encode: 
 A!0 and Z!25 

Letter Numeric 
Encoding 

N 13 
O 14 
P 15 
Q 16 
R 17 
S 18 
T 19 
U 20 
V 21 
W 22 
X 23 
Y 24 
Z 25 

Including upper and lower case? 
…and numbers? 

Letter Binary 
Encoding 

A 00000 
B 00001 
C 00010 
D 00011 
E 00100 
F 00101 
G 00110 
H 00111 
I 01000 
J 01001 
K 01010 
L 01011 
M 01100 

Letter Binary 
Encoding 

N 01101 
O 01110 
P 01111 
Q 10000 
R 10001 
S 10010 
T 10011 
U 10100 
V 10101 
W 10110 
X 10111 
Y 11000 
Z 11001 

Letter ASCII Code Binary Letter ASCII Code Binary 

a 097 01100001 A 065 01000001 
b 098 01100010 B 066 01000010 
c 099 01100011 C 067 01000011 
d 100 01100100 D 068 01000100 
e 101 01100101 E 069 01000101 
f 102 01100110 F 070 01000110 
g 103 01100111 G 071 01000111 
h 104 01101000 H 072 01001000 
i 105 01101001 I 073 01001001 
j 106 01101010 J 074 01001010 
k 107 01101011 K 075 01001011 
l 108 01101100 L 076 01001100 

m 109 01101101 M 077 01001101 
n 110 01101110 N 078 01001110 
o 111 01101111 O 079 01001111 
p 112 01110000 P 080 01010000 
q 113 01110001 Q 081 01010001 
r 114 01110010 R 082 01010010 
s 115 01110011 S 083 01010011 
t 116 01110100 T 084 01010100 
u 117 01110101 U 085 01010101 
v 118 01110110 V 086 01010110 
w 119 01110111 W 087 01010111 
x 120 01111000 X 088 01011000 
y 121 01111001 Y 089 01011001 
z 122 01111010 Z 090 01011010 

ASCII: 
American Standard  
Code for Information  
Interchange  
27=128 combinations 

Standard encoding, 
developed in the 1960’s 

Didn’t take into account 
international standards! 

UNICODE 
8-bit encoding 
28=256 possibilities! 
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!  A simple form of compression would be the following: 
"  ORIGINAL TEXT (13-characters):  I Love ESE150 
"  ASCII Encoding (13-bytes = 104 bits):  
"  01001001 00100000 01001100 01101111 01110110  
01100101 00100000 01000101 01010011 01000101 
00110010 00110101 00110000 

"  Convenient to write programs that read/write files 1-byte at a time 
"  But, since ASCII only needs 7-bits (not 8): 

# We could write a compression program that strips the leading 0 
"  Output of Compression Program (91 bits ~ 11.375 bytes): 
"  1001001 0100000 1001100 1101111 1110110 1100101 
0100000 1000101 1010011 1000101 0110010 0110101 
0110000 

"  Compression ratio: 104 bits in / 91 bits out = 1.14 :1 
"  Lossless because we can easily restore exact original 
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Why not compress all the time?   
 Inconvenient ; expensive in terms of microprocessor cycles 

!  Analog-to-Digital (ADC) Conversion  
"  We have 7 discrete voltages, # of bits to represent 7 things? 
"  3-bits!  Why?  23-bits = 8 (1 unused state) 
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time (ms) 

Voltage 
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Samples: 
{ 0 ms, 0 Volts } 

{ 1 ms, 2 Volts } 

{ 2 ms, 3 Volts } 
{ 3 ms, 2 Volts } 
{ 4 ms, 0 Volts } 
{ 5 ms, -2 Volts } 
{ 6 ms, -3 Volts } 
{ 7 ms, -2 Volts } 
{ 8 ms, 0 Volts } 

Binary  
Encoding: 

011 

101 

110 

101 

011 
001 

000 

000 

001 

010 

011 

100 

101 

110 

001 
011 

Encoding: mapping data from one form to another (not always conversion) 

!  Sample Rate: 1000 samples/sec, Resolution: 3-bits per sample 
!  Our Sampled Signal: {0, 2.2V, 3V, 2.2V, 0, -2.2V, -3, -2.2V, 0} 
!  Our Quantized Signal: {0, 2V, 3, 2V, 0, -2, -3, -2, 0} 
!  Our 3-bit Digitized Data: {011, 101, 110, 101, 011, 001, 000, 001, 011} 

!  space required to store/transmit: 27 bits 

!  ADC related compression algorithm:  
"  CS&Q (Coarser Sampling AND/OR Quantization) 

#  Either reduce number of bits per sample  AND/OR discard a sample completely 
"  Example with our digitized data: 
"  Our 3-bit Digitized Data: {011, 101, 110, 101, 011, 001, 000, 001, 011} 
"  Compressing w/CS&Q:   {011,         110,         011,         000,         011} 

#  Reducing # of samples by 15-bits 

"  Compression Ratio: 6-bits in per group / 3-bits out per group: 2:1 
"  Lossy because we cannot restore exact original 
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!  Decompression & DAC Process 
"  Original digital signal: {011, 101, 110, 101, 011, 001, 000, 001, 011} 
"  Original Sampling Rate: 1000 samples/sec 
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Original Signal (recall ADC/DAC is approximation at best anyway!) 

!  Decompression & DAC Process 
"  Original compressed signal: {011, , 110, , 011, , 000, , 011} 
"  New Sampling Rate Due to Compression: 500 samples/sec 
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Lossy: Compression removed every other sample 

Effect of CS&Q compression: 
   Lowered Sampling Rate 
   Added “noise” to signal 
   Listeners might not notice! 

Lossy Compression: 
   One can achieve high 
   Compression ratios 

Frequently used for Audio: 
    MP3 format uses lossy  
    compression algorithm 
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Compression Algorithms 

Lossy Lossless 

Compression Algorithms 

Fixed Group Size Variable Group Size 
Examples of Fixed Group Size:  
   Take in 2 samples: (6-bits) always spit out: (3-bits) 
   Take in 8-bit ASCII character (group), spit out 7-bit ASCII character (group) 

!  These two tables show popular compression algorithms 
"  Sorted by the two forms of classifications 
"  Notice: JPG, and MPEG are actually forms of compression! 

#  Not just a file format for pictures or video  
#  We will also learn: MP3 is a form of lossy compression as well 
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!  JPG  
"  Uses “transform” 
"  We will study in week 4 
"  Each pixel is 8-bits 

#  1 byte per pixel 

"  Breaks pic into 8x8 
#  Treats as a 64-byte 

group 

"  Lossy algorithm 
#  Reduces each group 

to 2 to 20 bytes 
"  Substantial savings 

#  Not as sharp a pic as  
BMP 
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!  Does each character contain the same amount 
of “information”? 

λ  How often does each character occur? 
λ  Capital letters versus non-capitals? 
λ  How many e’s in a preclass quote? 
λ  How many z’s? 
λ  How many q’s? 
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http://en.wikipedia.org/wiki/File:English-slf.png 

!  Developed in 1950’s (D.A. Huffman) 
!  Takes advantage of frequency of stream of bits 

occurrence in data 
"  Can be done for ASCII (8-bits per character) 

#  Characters do not occur with equal frequency. 
#  How can we exploit statistics (frequency) to pick character encodings? 

"  But can also be used for anything with symbols occurring frequently 
#  AKA: MUSIC  (drum beats…frequently occurring data) 

"  Example of variable length compression algorithm 
#  Takes in fixed size group – spits out variable size replacement 
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!  Example: more than 96% of file consists of 31 characters 
!  Idea: Assign frequently used characters fewer bits 

"  31 common characters get 5b codes 00000--11110 
"  Rest get 13g: 11111+original 8b code  

!  How many bits do we need on average per original byte? 
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!  Bits = #5b-characters * 5 + #13b-character * 13 
!  Bits=#bytes*0.96*5 + #bytes*0.04*13 
!  Bits/original-byte = 0.96*5+0.04*13 
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!  Huffman goes further: Assign MOST used characters least # of bits: 
"  Most frequent: A= 1,    least frequent: G=00011, etc. 
"  Example: 
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symbol encode occur 
(space)  00  15 
A  1110  
B  100100  
C  100101  
D  10110  
E  110  11 
F  011010  
G  011011  
H  011000  
I  0111  

symbol encode occur 
L  0100  
M  1111  
N  1010  
O  10011  
R  0101  
T  10111  
V  10000  
Y  011001  
,  10001  
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symbol encode occur 
(space)  00  15 
A  1110  6 
B  100100  
C  100101  
D  10110  
E  110  11 
F  011010  
G  011011  
H  011000  
I  0111  4 

symbol encode occur 
L  0100  4 
M  1111  6 
N  1010  5 
O  10011  
R  0101  4 
T  10111  
V  10000  
Y  011001  
,  10001  
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symbol encode occur 
(space)  00  15 
A  1110  6 
B  100100  
C  100101  
D  10110  3 
E  110  11 
F  011010  
G  011011  
H  011000  
I  0111  4 

symbol encode occur 
L  0100  4 
M  1111  6 
N  1010  5 
O  10011  2 
R  0101  4 
T  10111  3 
V  10000  2 
Y  011001  
,  10001  2 

39 

symbol encode occur 
(space)  00  15 
A  1110  6 
B  100100  1 
C  100101  1 
D  10110  3 
E  110  11 
F  011010  1 
G  011011  1 
H  011000  1 
I  0111  4 

symbol encode occur 
L  0100  4 
M  1111  6 
N  1010  5 
O  10011  2 
R  0101  4 
T  10111  3 
V  10000  2 
Y  011001  1 
,  10001  2 

!  Previous example: 
"  Simply looked at letters in isolation, determined 

frequency of occurrence 
!  More advanced models: 

"  Predecessor context: What’s probability of a symbol 
occurring, given: PREVIOUS letter. 

!  Ex:  What’s most likely character to follow a T? 
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!  Compressibility depends on  non-randomness 
(uniformity) 
"  Structure  
"  Non-uniformity 

!  If every character occurred with same freq: 
"  There’s no common case 
"  To which character do we assign the shortest encoding? 

#  No clear winner 
"  For everything we give a short encoding,  

#  Something else gets a longer encoding 

!  The less uniformly random data is… 
"  the more opportunity for compression 

42 
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!  Big idea in optimization engineering 
" Make the common case inexpensive 

!  Shows up throughout computer systems 
"  Computer architecture 

# Caching, instruction selection, branch prediction, … 

"  Networking and communication 
# Compression, error-correction/retransmission 

"  Algorithms and software optimization 
"  User Interfaces 

# Where things live on menus, shortcuts, … 
# How you organize your apps on screens 
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Is there a lower bound for compression? 

44 

45 

What is the least # of bits required to encode information? 

!  Father of Information Theory, brilliant mathematician 
!  While at AT&T Bell Labs, landmark paper in 1948 
!  Determined exactly how low we can go with 

compression! 
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!  What is entropy? 
"  Chaos/Disorganization/Randomness/Uncertainty 

!  Shannon’s Famous Entropy Formula: 
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Shannon’s 
Entropy 

(measured in bits) 
Negative Sum Of: 

Probability of each outcome 
X  

log2 of (probability of each outcome) 

!    

48 
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Not all letters are equally probable 
in English Language 

letter p -log2(p) -p*log2(p) 
a 8.17% 3.61 0.30 
b 1.49% 6.07 0.09 
c 2.78% 5.17 0.14 
d 4.25% 4.56 0.19 
e 12.70% 2.98 0.38 
f 2.23% 5.49 0.12 

z 0.07% 10.40 0.01 
sum 100.00% 4.18 
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€ 

H = − pi
i
∑ × log2(pi)
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€ 

H = − pi
i
∑ × log2(pi)

Symbol Bits Occur P -log2(p) H p*bits 
(space)   2 15 0.21 2.28 0.47 0.41 
A   4 6 0.08 3.60 0.30 0.33 
B   6 1 0.01 6.19 0.08 0.08 
C   6 1 0.01 6.19 0.08 0.08 
D   5 3 0.04 4.60 0.19 0.21 
E   3 11 0.15 2.73 0.41 0.45 

,   5 2 0.03 5.19 0.14 0.14 
sum 3.74 3.77 

!  Shannon’s Entropy represents a lower limit for lossless 
data compression 
"  It tells us the minimum amount of bits that can be used to encode a 

message without loss 

!  Shannon’s Source Coding Theorem: 
"  A lossless data compression algorithm cannot compress messages 

to have (on average) more than 1 bit of Shannon’s Entropy per bit of 
encoded message 
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!  Assumed know statistics 
!  What if you don’t? 
!  What if it changes? 
!  How could we adapt the code to changing 

statics? 
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!  Implement Compression! 
"  Implement different compression algorithms 

!  Remember: 
"  Lab 2 report is due on canvas on Friday 

"  TA Office hours tonight (Ketterer) and Thursday (Detkin) 

54 
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!  Lossless Compression 
"  Exploit non-uniform statistics of data 
"  Given short encoding to most common items 

!  Common Case  
"  Make the common case inexpensive 

!  Shannon’s Entropy 
"  Gives us a formal tool to define lower bound for 

compressibility of data 
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!  ESE 301– Probability 
"  Central to understanding probabilities 

# What cases are common and how common they are 

!  ESE 674 – Information Theory 
!  Most all computer engineering courses 

"  Deal with common-case optimizations 
"  CIS240, CIS371, CIS380, ESE407, ESE532…. 
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!  S. Smith, “The Scientists and Engineer’s Guide to 
Digital Signal Processing,” 1997. 

!  Shannon’s Entropy (excellent video) 
http://www.youtube.com/watch?v=JnJq3Py0dyM 
"  Used heavily in the creation of entropy slides 
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