

FREQUENCY REPRESENTATION

- How much information is this musical staff communicating?
- ∗ How many keys on piano? → bits/note
- × Let's say 8b duration
- * How many bits for 5 notes?
- + (7b/note+8b/duration) x 5 note = 75 bits?

LAB 2 POSTLAB

- You reproduced 800 samples of a 300Hz sine wave at 1000Hz with 8b precision
 + 6400b
- What did you need to specify to do that?
- * How may bits to represent that?

CONCLUDE

- Can represent common sounds much more compactly in frequency domain than in timesample domain
 - + Frequency domain ~ 75b
 - + Time-sample domain ~ 5Mb

ESE

LECTURE TOPICS

- × Teaser: frequency representation
- Where are we on course map?What we did in lab last week
- + How it relates to this week
- * The Fourier Series can represent any signal
- * The Discrete Fourier Transform (DFT) can translate + Change of basis
- × Next Lab
- × References

HISTORY...

- × Fourier series:
 - Any periodic signal can be represented as a sum of simple periodic functions: sin and cos sin(nt) and cos(nt) where *n* = 1, 2, 3, ... These are called the
 - harmonics of the signal

- FOURIER SERIES IN A NUTSHELL
- States that any PERIODIC function can be written as a sum of sines and cosines!
- This is huge!
- It also gives us a way to breakup a periodic function into its sine/ cosine parts
- Why do we care?
 - Well if music was periodic, we could break it into its sine/cosine pieces and store only the amp/freq/phase Huge storage advantage
 - But also, once we break it down, we could modify them
 - Say we want to enhance the bass or treble of a signal?
 - By increasing amplitude of bass frequencies, we'll get more bass

FOURIER SERIES IN A NUTSHELL

- Other implications...
- If a signal is periodic, we can convert it from time to frequency Imagine anything periodic
- If Earthquake vibrations could be separated into sinusoids...
- Think bit and the second and strengths
 Think bit and statistical statistical strengths
 We could design buildings/bridges to avoid interacting with the strongest frequency vibrations (and not just "all of them")
- It has endless applications in: communications, astronomy, geology, optics
- There is one problem...
 - The above examples aren't exactly periodic!
 - But we'll address that soon...first let's see the Fourier series

FOURIER SERIES (REVIEW OF KEY POINTS)

× The idea of the series:

Any **PERIODIC** wave can be represented as simple sum of sine waves

× 2 Caveats:

Linearity:

The series only holds while the system it is describing is linear because it relies on the superposition principle

- -aka adding up all the sine waves is superposition in action Periodicity:
- - The series only holds if the waves it is describing are periodic Non-periodic waves are dealt with by the Fourier Transform
 - We will examine that in the 2nd half of lecture

NYQUIST

- Remember we said we needed to sample at twice the maximum frequency
 - Now see all signals can be represented as a linear sum of frequencies
 - + ...and the frequency components are orthogonal Can be extracted and treated independently

NTERLUDE

- × Close Encounters Mothership
- https://www.youtube.com/watch? v=S4PYI6TzqYk

Pre		ESE 150 – Spring 2018 $\frac{2}{N} \sum_{i=0}^{N} Sample[i] \times \sin\left(\frac{2\pi ki}{N}\right)$										
Compute Dot Products with frequencies + (equivalently, compute Fourier Components)												
time	0.0	0.1	0.2	0.3	0.4		0 5	0.6	0.7	0.8	0.9	1.0
Sample	0	0.95	0.59	-0.5	9 -0.9	95	0	0.95	0.59	-0.59	-0.95	0
k=1	0.00	0.59	0.95	0.95	0.59	0.0	0	-0.59	-0.95	-0.95	-0.59	0.00
k=2	0.00	0.95	0.59	-0.59	-0.95	0.0	0	0.95	0.59	-0.59	-0.95	0.00
k=3	0.00	0.95	-0.59	-0.59	0.95	0.0	0	-0.95	0.59	0.59	-0.95	0.00
k=4	0.00	0.59	-0.95	0.95	-0.59	0.0	0	0.59	-0.95	0.95	-0.59	0.00
k=5	0.00	0.00	0.00	0.00	0.00	0.0	0	0.00	0.00	0.00	0.00	0.00

THE FOURIER TRANSFORM

WHAT NOW?

- In the first half of the lecture we introduced:
 The idea of frequency domain
 The Fourier Series
- \times In the second half of the lecture:
 - + Fourier Transform
 - + See how to perform this time-frequency translation
 - + Examples

OBSERVE

- Can identify frequencies with dot product
 Identifying projection onto each basis vector in Fourier Series
- ***** Works because they are orthogonal
- × Performing a change of basis
 - + From time-sample basis
 - + To Fourier (sine, cosine) basis

VISUAL DEMONSTRATION

- × Instead of thinking only in sinusoids...
 - + Complex sinusoids can be thought of as cycles...+ Let's visual complex #s a bit...
 - + http://betterexplained.com/examples/fourier/

FREQUENCY-DOMAIN

- * How to make a song appear "periodic:"
 - + Treat the entire song as 1 period of a very complicated sinusoid!
 - + This is the assumption of the Fourier Transform

DISCRETE FOURIER TRANSFORMS

- * A smaller sampling period means:
 - -> more points to represent the signal larger N
 - -> more harmonics used in DFT N harmonics
 - -> Smaller error compared to actual analog signal we capture/produce
- DFTs are extensively used in practice, since computers can handle them

better the reconstruction

{ Cos[0f], Sin[1f], Cos[1f] , Sin[2f], Cos[2f] , Sin[3f], Cos[3f] }

RECONSTRUCTION

- * Not really connect-the-dots in time
- * Recall near Nyquist rate
 - + Could often miss the peak+ Get poor sine waves
 - × …look like peak moves around even if sampled above Nyquist rate
- * Better reconstruction
 - Convert to frequency
 Which can perfectly represent up to half sampling rate
 - Reconstruct from frequency basis

LEARN MORE

* ESE325 – whole course on Fourier Analysis

ESE 150 -- Spring 2018

- * ESE224 signal processing
- ESE215, 319, 419 reason about behavior of circuits in time and frequency domains

REFERENCES

S. Smith, "The Scientists and Engineer's Guide to Digital Signal Processing," 1997. <u>https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/</u>

ESE 150 -- Spring 2018