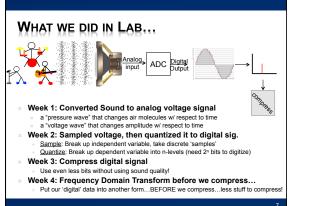
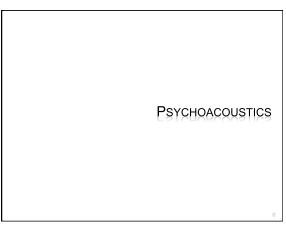

OBSERVE

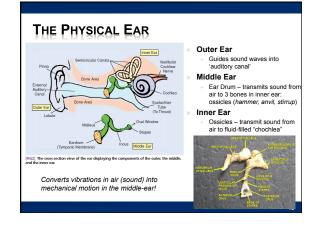

There are sounds we cannot hear
+ Depends on frequency

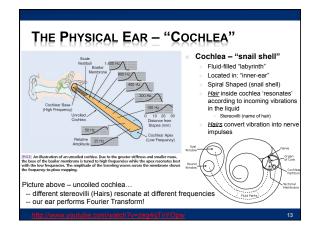

LECTURE TOPICS

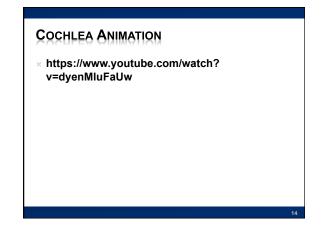
- × Where are we on course map?
- What we did in lab last week
- × Psychoacoustics
 - Structure of Human Ear / encoding signals to brain
 Human Hearing Limits
 Structure Device (Encoder (
 - Critical Bands (Frequency bins)
 Masking
- × Next Lab
- × References

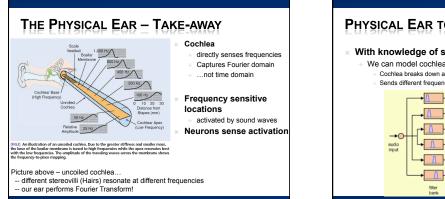
WHAT IS PSYCHOACOUSTICS?

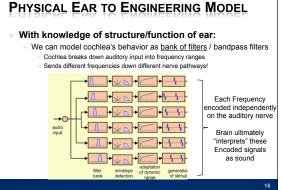
* Scientific study of sound perception

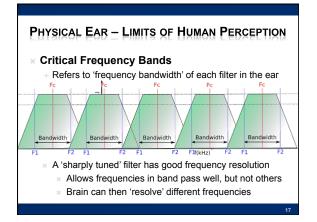

- Branch of science studying the <u>psychological</u> and <u>physiological</u> responses associated with sound
- Also, considered a branch of: <u>psychophysics</u>
 Human physical (and neurological) mechanism for sound perception
- * Why study sound & human's perception? + Example: FREQUENCY vs. PITCH
 - <u>Frequency</u> of sound: "how often" air particles vibrate (Hz)
 <u>Pitch</u> of sound: the sensation of frequency
 How our brains "interpret" the frequency of a sound
- How our brains "interpret" the frequency of a sou
 Things may "sound" one way...
- + ...but be interpreted by our brains very differently!

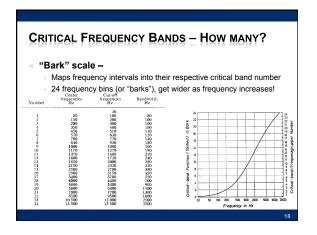

PSYCHOACOUSTICS & DIGITAL MUSIC

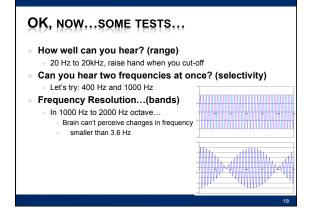

- * How does psychoacoustics relate to MP3? + Think...compression
 - ...or at least, storing less data
- The "consumer" of an MP3 is the human ear...
 Knowing more about brain's interpretation of sound...
 ...helps us remove things human's can't hear anyway
- We've used some of this in our system already:
 + Limit of human perception of sound: 20 Hz to 20,000 Hz
 × We put an anti-aliasing filter limiting incoming audio
 - Fixes our sampling rate, less data to store as a result!

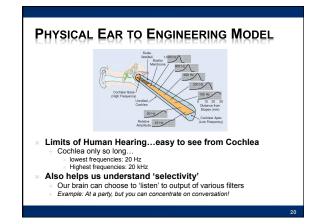

OUR STUDY OF PSYCHOACOUSTICS

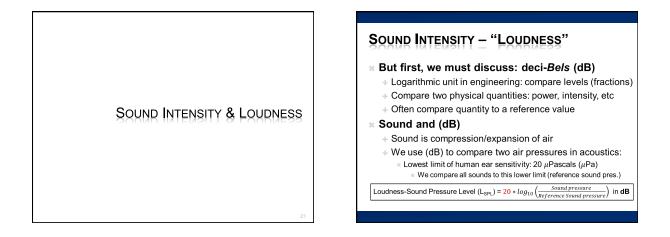

- * Structure of Human Ear / encoding signals to brain
- × Human Hearing Limits
- × Critical Bands
- * Frequency Bins
- * Masking (Spatial vs. Temporal)
- Applied Psychoacoustics (mostly next lecture)
- Using all of the above to build...the "Psychoacoustical Model"
 Perceptual Coding in MP3 (using the model to compress MP3s)

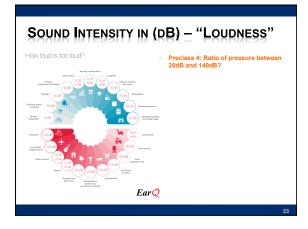


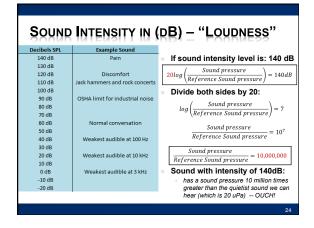


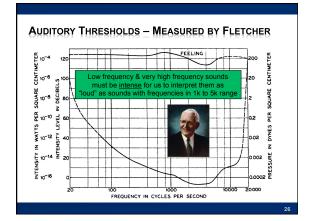












SOUND INTENSITY IN (DB) - "LOUDNESS"

× Loudness -

- + subjective perception of intensity of sound
- Intensity –
 + Sound power per unit area
- » Does loudness change with frequency?
 - + Yes! Scientist: Harvey Fletcher (1940)
 - Measured loudness vs. frequency (Auditory Thresholds)
 Same 'amplitude' sound can sound very quite or really loud
 All depends on its frequency
 - + Turns out...
 - We are very sensitive to frequencies from 1kHz to 5kHz * They don't have to be 'intense' for us to hear them...why??

DEMONSTRATION

- × Same demo as before: 1 Hz to 20kHz
 - Instead of thinking about frequency cutoff (range)
 Think instead about how "loud" the sounds at different frequencies are...
 - × Which 'band' sounds 'loudest' to you?
 - × Note: they are all at same amplitude, so equally intense
 - × But we perceive sounds in 1 kHz to 5 kHz to be louder!

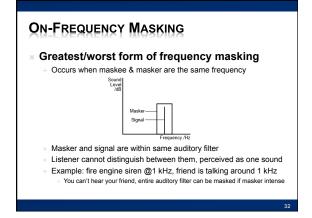
WHY DO WE SET EQUALIZER'S LIKE THIS?

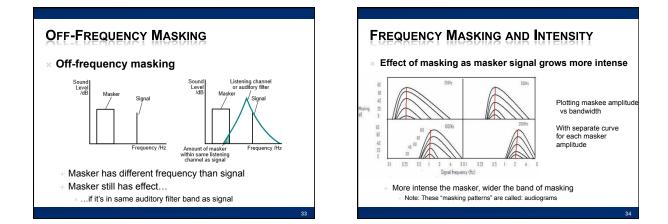
Makes all frequencies in our music sound "equally" loud! + Compare to Fletcher Curve

AUDITORY MASKING

MASKING

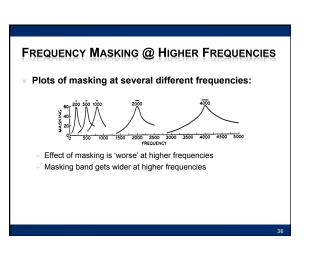
× Auditory Masking

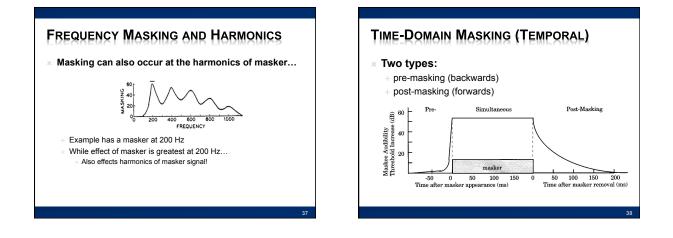

- When the perception of one sound is affected by the presence of another
- × Remember...perception

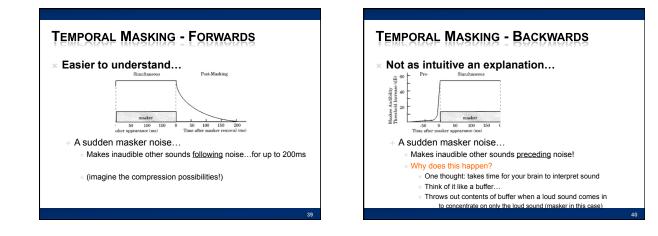

× Two types:

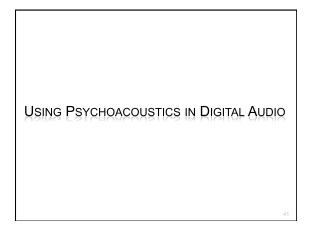
- + Frequency Domain Based:
 - × Many names:
 - \times Frequency Masking, simultaneous masking, spectral masking
- + Time Domain Based:
 - \times Temporal Masking / non-simultaneous masking

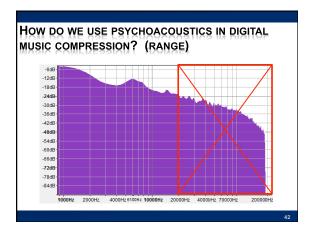
FREQUENCY DOMAIN MASKING

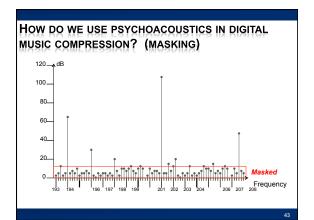

- Masking illustrates the limits of ear selectivity
 In fact, we measure ear selectivity using masking!
- Vocabulary:
 - Masker The noise 'masking' the maskee
 - Maskee The signal being 'masked' by masker

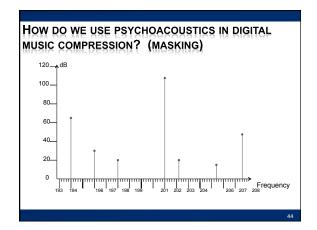





DEMONSTRATION


- Generate 900 Hz Tone (left channel) (maskee)
 + Turn gain all the way down (-36 dB)
- Generate 1000 Hz Tone (right channel) (masker) + Keep gain at 0 dB
- × Play sound...
 - + Bring intensity of 900 Hz tone up so we can hear both tones
 - Mute masker and play it again...
 Maskee was always there, just couldn't hear it
 Even though it was at different frequency of masker





BIG IDEAS

 Human hearing mechanism directly encodes frequency

+ By position on Cochlea

- Differential sensitivity by frequency
 + Hear some frequencies louder than others
- × Frequency Masking

 Limit to what we can simultaneously perceive in critical bands – loud frequencies can hide others

Temporal Masking
 + Loud signals can hide sounds that come after (or before) them

LEARN MORE

- BIBB417 Visual Processing
 + Same kind of look at physiology, but for vision
- LING520 Phonetics 1
 - + Focus on speech, includes both hearing and production

COMING UP

- × In Lab
 - + Measure sensitivity and masking effects
 - + Bring head phones

× Next Lecture

- + Put this together to compress audio
- Derive key features of MP3

SPECIAL EVENT THURSDAY

- The Programmer, a documentary about the women behind the ENIAC
 - http://eniacprogrammers.org
- × Screen Thursday (2/15) 4:30pm Wu & Chen
- Today (2/14) is 72nd anniversary of ENIAC unveiling (1946)

+ Touch on hardware right after Spring Break

REFERENCES

- Physical Ear:
 R. Munkong and B.-H. Juang. IEEE Sig. Proc. Mag., 25(3):98–117, 2008 × Filter Bank:
- http://www.ugr.es/~atv/web_ci_SIM/en/seccion_4_en.htm
- * Bark Scale:
 - + [E. Zwicker. J. Acoust. Soc.Am., 33(2):248, February 1961]
- × DB Chart:
- http://www.dspguide.com/ch22/1.htm
 Masking Discussion:
 Wikipedia: PsychoAcoustics Article