

First MP3 Player

MpMan -- 1998
SaeHan Information Systems
South Korea
32MB of Flash memory
Held 6 songs (MP3)
(12 on 64MB version)
(3 years before Apple iPod
October 2001
Initially hard disk
Diamond Rio later 1998

EsE150 spima 2018
Lecture Topics Teaser Where are we? Preclass How do we take advantage of psychoacoustics in MP3 Achieve this 6-12x reduction from CD Audio Review Tricks Formulate Optimization Adaptation Next Lab References

PRECLASS

4 critical bands
10 frequencies
16b amplitude
Preclass 1: Bits to represent (no further encode)?

PRECLASS
$\times 4$ critical bands
$\times 10$ frequencies
$\times 16$ amplitude
$\times 80$ encoding budget
\times Preclass 2: amplitude quine 2018
achieve budget?
\times Preclass 3: frequencies (reduced sampling rate)
can keep to achieve budget?

EsE150 Sppla 20718
Preclass 4 critical bands 10 frequencies 16b amplitude 80b encoding budget Preclass 4 Bits to represent which frequency? Bits to encode (frequency, amplitude) pair? Number of (frequency,amplitude) pairs fit within budget?

THE MPEG-1 Standard

MPEG-1, (3) Layers for Audio Coding:

Complexity	Coding	Ratio	Required bitrate
	PCM CD Quality	1:1	1.4 Mbps
	Layer I	4:1	384 kbps
	Layer II	8:1	192 kbps
	Layer III (MP3)	12:1	128 kbps

Why is PCM CD Quality 1.4 Mbps?
Recall: 1 sec. of music: $44,100 \times 16$ bits $=705,600$ bits
Don't forget stereo (R/L): $2 \times 706,600=1,413,200(1.4 \mathrm{Mbs})$ Defines bandwidth requirements of network
Notice: 128 kbps was just about double modem speed in 1992 Enables transmission of audio (MP3) via modem! (Napster!)

THEY KEPT ON GOING: MPEG-1, 2, 4, 7

MPEG is actually family of encoding standards for digital
multimedia information
They all use Psychoacoustics to achieve high compression
MPEG-1: a standard for storage and retrieval of moving pictures and audio on storage media (e.g., CD-ROM). MPEG-1 Layer 3: (MP3)

MPEG-2: standard for digital television, including high-definition television (HDTV), and for addressing multimedia applications.

Advanced Audio Coding (AAC)
MPEG-4: a standard for multimedia applications, with very low bit-rate audiovisual compression for those channels with very limited bandwidths (e.g., wireless channels).
MPEG-7: a content representation standard for information search

Some Knowledge of Digital Audio Formats

.WAV \& .AIFF
Uncompressed PCM (lossless) CD-Audio Quality

.MPA

MPEG-1 Layer 2
Compressed PCM using Psychoacoustics (lossy)
.MP3
MPEG-1 Layer 3
Compressed PCM using Psychoacoustics (lossy)
.M4A (Audio only Apple's iTunes format)
MPEG-4 Part 14 (MP4)
Compressed PCM using Psychoacoustics

Some Terminology

Psychoacoustics
Research into how brain interprets sounds from ear
Perceptual Coding
An audio encoding technique that takes advantage of psychoacoustics
CD delivers all recorded sounds to your ear... but your brain can't actually interpret them
Perceptual coded audio delivers sounds to your ear... .that your brain can actually interpret!
CODEC
Coder/Decoder
MP3 is a standard for a perceptual audio codec... That takes advantage of frequency/time masking to encode audio data!

ESE150 Spring 2018
KNobs WE CAN TURN
Amplitude quantization
Frequency quantization
Frequencies kept (per critical band)
Too soft
Masked
...and can perform lossless compression

BANDS VARY IN IMPORTANCE

Not equally sensitive across bands
If quantize bands differently, where want finer
resolution?
Where tolerate more quantization?

Opportunities/Challenges

What challenge/opportunities might these band spectra represent?

Estismman	
Optimization Problem	
How fit in the resource constraints ($128 \mathrm{~Kb} / \mathrm{s}$) while maximizing goodness (sound quality)?	
Quantify bits used	$\sum_{\text {benusisere }} \sum_{i t s(f r e q)}$
- Quantify goodness	
	$\operatorname{rror}(\text { freq }) \times W(\text { freq })$

SSE 508 smman 2018	
QUANTIFYING BIT cost	
Simple, fixed sample: Frequencies \times Bits/freq Fixed frequencies per Band: Bands $\times($ Frequencies $/$ Band $) \times$ Bits/freq Variable Frequencies per Band:	
$\begin{gathered} \sum_{\substack{\text { bands } \\ \text { Vrequencies }(\text { band }) \times \text { bits/ } / \text { freq })}}^{\text {Variable Frequencies and quantization per Band: }} \end{gathered}$	
$\begin{aligned} & \text { bands } \begin{array}{l} \text { frequencies } \\ \text { Huffman means different } \\ \text { bits/frequency } \end{array} \end{aligned}$	\times bits(band)) $\sum_{\text {bands sfreq }} B i t s(\text { freq })$

Esf150 Spmog 2018	
Optimization Problem	
How fit in the resource constraints ($128 \mathrm{~Kb} / \mathrm{s}$) while maximizing goodness (sound quality)?	
Quantify bits used	$\sum_{\text {bands freq }} \sum_{\text {bits }}$ freq)
* Quantify goodness	
$\sum_{\text {freq }} \operatorname{Error}(\text { freq }) \times W(\text { freq })$	

Adaptive Refinement

Rediscovering where to allocate everything every time may be laborious
Maybe we can get close and adjust?

	Esf150 pring 2018
Next Week Monday start of 2 week lab: Perform perceptual compression Convergence of everything seen first 6 weeks Formal lab report on this 2 week lab No weekly lab report Friday Wednesday: midterm (class time) Office Hours: Cancel Wed. and Thursday evening Add Tuesday 5-9pm Wed. 1-3pm remain	

	EsE150 spman 2018
Midterm - In Class	
	Topics
* Closed book, no notes	- Data representation in bits
* Calculators allowed	- Sounds waves
$\times 4: 35 \mathrm{pm}-5: 50 \mathrm{pm}$	* Sampling
	* Quantization
$\times 5 \%$ of grade	* Nyquist
prepare for final	× Lossy/lossless compression \times Common case
	* Frequency domain
* Last year's final on	Psychoacoustics
syllabus	* Perceptual coding

References

Tutorials on Psychoacoustic Coding (in increasing order of abstraction and generality)
D. Pan, M. Inc, and I.L. Schaumburg. A tutorial on MPEG/audio compression. IEEE
muttimedia, 2(2):60-74, 1995. multimedia, 2(2):60-74, 1995 .
Nikil Jayant, James Johnston, and Robert Safranek. Signal compression based on models of human perception. Proceedings of the IEEE, 81(10):1385-1422, 1993. V. K. Goyal. Theoretical foundations of transform coding. IEEE Signal Processing
Magazine, 18(5):9-21, 2001 .

Lightweight Overview of MP3
Rassol Raissi. The theory behind mp3. Technical report, MP3' Tech, December 2002.
Scientific Basis of MP3 Coding Standard
J. D. Johnston. Transform coding of audio signals using perceptual noise criteria. IEEE
Journal on selected areas in communications, $6(2): 314-323,1988$. Journal on selected areas in communications, 6(2):314-323, 1988

